Заземленная нейтраль что это такое
Перейти к содержимому

Заземленная нейтраль что это такое

Прекратить преступную войну против Украины!

рисунок: нейтральная точка вторичной обмотки трансформатораДопустим, у нас есть трансформатор, у которого от самой середины вторичной обмотки сделан отвод. Подадим переменное напряжение на первичную обмотку и рассмотрим, как будет меняться напряжение между точкой отвода и конечными точками вторичной обмотки. В момент 1 на верхней точке будет «плюс» по отношению к отводу, а на нижней — «минус». В момент 2 напряжение между отводом и конечными точками будет равно нулю. В момент 3 «плюс» и «минус» поменяются местами. Если сделать ещё отводы от обмотки, то, чем дальше будет такой отвод от первого отвода и, соответственно, ближе к концу обмотки, тем сильнее будет изменяться напряжение между ним и первым отводом. В точке же первого отвода не бывает ни избытка, ни недостатка электронов. Такая точка называется «нейтральной точкой» (вторичной обмотки трансформатора), или нейтралью. В литературе часто встречается выражение «напряжение в (некой) точке». Если пользоваться им, то можно сказать, что напряжение в нейтральной точке всегда равно нулю.

Вторичная обмотка трехфазного трансформатора устроена более сложно. Она состоит из трёх одинаковых обмоток, которые могут быть соединены «в треугольник» (мы этот случай не будем здесь рассматривать) или «в звезду», где начала обмоток соединены вместе. Точка, где они соединены, также называется «нейтральной точкой».

Что такое сеть с заземлённой нейтралью и сеть с изолированной нейтралью

  1. заземляющим
  2. нулевым рабочим

Если нейтральная точка не соединена с землёй либо соединена через большое сопротивление, то такая сеть называется сетью с изолированной нейтралью. В такой сети (здесь мы рассматриваем сети с напряжением до 1000 Вольт) также может быть заземляющий провод. Поскольку он только только заземляющий, его называют PE — проводником (без N). Объяснение ниже.

Если напряжение в сети меньше 1000 Вольт (например, 380/220 Вольт) и в сети между трансформатором подстанции и потребителем нет ещё трансформаторов, то это сеть, скорее всего, с заземлённой нейтралью. Исключение — сети предприятий с особыми условиями работы, например, шахт.

Если между трансформатором подстанции и потребителем электроэнергии имеется ещё трансформатор, у которого нейтральная точка вторичной обмотки не соединена с землёй, то участок от вторичной обмотки до потребителя по сути является сетью с изолированной нейтралью. Примеры — понижающие трансформаторы, в том числе в кранах, в станках и пр.

Заземление в сетях с изолированной нейтралью

рисунок: сопротивление утечки и емкостное сопротивление в сети с изолированной нейтральюСначала рассмотрим сети с изолированной нейтралью. В сети с исправной изоляцией имеют место токи утечки и емкостные токи (рис. 1). Они протекают и между фазами непосредственно (это на рис. 1 не показано), и через землю. Величина этих токов, однако, невелика. Все электрики должны помнить допустимую величину сопротивления изоляции — не менее 0.5 Мом. Ток при напряжении 220 вольт и сопротивлении 0.5 Мом будет 0.00044 А. Половина тысячной ампера.

рисунок: поражение токами утечки и емкостными токами в сети с изолированной нейтральюТем не менее, токи утечки (и емкостные) могут нанести поражение, и даже смертельное, если человек коснётся фазного провода (рис. 2). Чем выше напряжение сети, тем опаснее такие токи.

рисунок: замыкание на землю в сети с изолированной нейтральюЧто произойдёт, если в одном месте цепи нарушится изоляция и произойдёт замыкание? Замыкание либо на землю, либо на металлическую конструкцию (опору, корпус электродвигателя, корпус светильника, корпус распределительного шкафа и т. п.) соединённую с землёй . Допустим, что в других местах изоляция исправна (рис. 3). Будут иметь место токи через сопротивления утечки и емкостные сопротивления.

рисунок: поражение человека в сети с изолированной нейтральюЕсли при таком замыкании человек, стоящий на земле, коснётся другой фазы, это будет для него смертельно опасно — он окажется под линейным напряжением, то есть под напряжением между двумя фазами (рис. 4).

рисунок: межфазное замыкание в сети с изолированной нейтральюА что будет, если в другом месте замыкает на землю другая фаза? Между фазами побежит ток (рис. 5). Может сработать защита. А может и не сработать. Может сработать не сразу. Это будет зависеть от величины тока. А величина тока зависит от сопротивления земли, которое может быть очень разным, различаться на порядки в зависимости от влажности, промерзания, состава грунта (песок, глина или скала) и т. п. Для человека, попавшего под действие такого тока, это смертельно опасно. И даже если он не касается замкнувших проводников, он может попасть под напряжение шага.

рисунок: заземление в сети с изолированной нейтральюЧтобы избежать такой опасности, делается защитное заземление. Металлоконструкции могущие попасть под напяжение, электрически соединяются с проводником, который соединён с Землёй. Так же, как и в сетях с заземлённой нейтралью, соединён с Землёй он обычно в подстанции. По специальным правилам зарыта в землю специальная железяка и соединена с заземляющим проводом. Что произойдёт при ситуации, как на рисунке 5, но если имеется защитное заземление? Смотрим рис. 6 Ток замыкания пойдёт по заземляющему проводнику. Через землю ток тоже пойдёт, но его величина будет гораздо меньше, чем на рис.5. Общий ток будет большим, и поэтому сработает защита. Чтобы защита наверняка сработала, сопротивление заземляющего проводника должно быть достаточно низким. Он должен быть достаточно толстым, чтобы не отгореть от большого тока.

А зачем нужно соединять защитный провод с землёй? Что это даёт? Может, достаточно просто соединить металлоконструкции друг с другом проводником, чтобы срабатывала защита? Земля является дополнительным защитным проводником (если металлоконструкции соединены с землёй), а случае обрыва основного (защитного проводника), и единственным, хотя и не очень надёжным (рис.5) Я так это понимаю.

Заземление в сетях с заземлённой нейтралью

рисунок: поражение человека в сети с заземлённой нейтральюТеперь перейдём к сетям с заземлённой нейтралью. Что произойдёт, если человек, стоящий на земле, коснётся фазного провода в такой сети (рис. 7)? Это смертельно опасно. Хотя напряжение, под которое он попадёт, будет фазным, (то есть если напряжение между фазами 380 В, человек попадёт под 220 В) ток, идущий через него, может быть очень большим. Сила тока и, соответственно, степень поражения будет зависеть от сопротивления цепи.

рисунок: замыкание на землю в сети с заземлённой нейтральюТак же опасна ситуация, когда фазный провод замыкает на землю или на металлоконструкцию, соединённую с землёй (рис. 8). Сравните рисунок 8 с рисунком 5. Что общего в изображённых ситуациях? Через человека проходит большой ток, зависящий от сопротивления земли. Образуется напряжние шага. Защита может сработать, а может и не сработать. На рис. 5 человек оказывается под линейным напряжением, а на рис. 8 под фазным, но погибнуть можно и от фазного напряжения.

рисунок: замыкание на землю в сети с заземлённой нейтралью при наличии заземленияТеперь посмотрим, что произойдёт при замыкании, если выполнено защитное заземление (рис. 9). Опять же сравните рисунки 9 и 6. Целей защитного заземления две: 1. При замыкании вызвать срабатывание защиты (защитное отключение) 2. Уменьшить напряжение и ток, которым может подвергнуться человек при нарушении изоляции и замыкании.

Встречается термин (защитное) зануление. Что под этим имеется в виду? Под занулением понимается электрическое соединение с нейтралью трансформатора. Смотрите рисунок 9. На нём показано зануление, а поскольку нейтраль трансформатора заземлена, оно же есть и защитное заземление. В сетях с изолированной нейтралью зануление не применяется. Почему? Оно сильно ухудшило бы ситуацию с безопасностью. Почему, я не буду подробно писать, об этом написано в пособии Найфельда. Если в такой сети наряду с занулением было бы применено заземление, то у нас получилась бы сеть с заземлённой нейтралью. как на рисунке 9. Она была бы лишена преимуществ сети с изолированной нейтралью.

рисунок: повторное заземление в сети с заземлённой нейтральюНередко выполняется повторное, или дополнительное заземление (рис. 10). Процитирую Найфельда: «Дополнительное заземление не ухудшает, а часто улучшает безопасность сетей и электроустановок.» При замыкании оно уменьшает ток на зануляющем проводнике, уменьшает напряжение шага, способствует более быстрому срабатыванию защиты. Для повторного заземления часто используются естественные заземлители — проложенные в земле трубопроводы, соединённые с землёй металлоконструкции, наружные оболочки кабелей.

Приведу цитату из ПУЭ: «1.7.61. При применении системы TN рекомендуется выполнять повторное заземление РЕ- и PEN-проводников на вводе в электроустановки зданий, а также в других доступных местах. Для повторного заземления в первую очередь следует использовать естественные заземлители. Сопротивление заземлителя повторного заземления не нормируется.» Значение терминов TN, PE, PEN описано ниже Что может и что не может быть использовано в качестве естественного заземлителя, об этом сказано в ПУЭ 1.7.109 и 1.7.110.

рисунок: неправильное повторное заземление в сети с заземлённой нейтральюВажно помнить, что недопустимо выполнить дополнительное заземление и при этом отсоединиться от основного провода заземления — зануления. Почему? Смотрим рис. 11. В этом случае при замыкании защитное отключение может не сработать, так как, что я уже объяснял, сопротивление земли может быть очень разным.

рисунок: система заземления TTОднако в ПУЭ разрешено использовать систему заземления, электрически не связанную с заземлённой нейтралью трансформатора (рис. 11-1). Эта система называется ТТ. Она допускается только в тех случаях, когда условия электробезопасности в системе TN (то есть при заземлении способом, как на рисунке 9) не могут быть обеспечены. Пример такого случая — сеть, питающая строительную площадку. Как правило, сеть это временная, надёжность её часто оставляет желать лучшего. Поэтому допускается не тянуть на стройплощадку PEN — проводник, а сделать заземление рядом с ней — зарыть (забить) в землю (как и какую, определяют правила) «железяку» и соединить с ней корпуса электрических строительных машин и механизмов. В системе ТТ обязательно применение УЗО.

Процитирую ПУЭ 1.7.57. «Электроустановки напряжением до 1 кВ жилых, общественных и промышленных зданий и наружных установок должны, как правило, получать питание от источника с глухозаземленной нейтралью с применением системы TN.» Посему подавляющее большинство сетей 380/220 В в наших городах, сёлах и на предприятиях — это сети с заземлённой нейтралью.

Но как определить, какая сеть, с изолированной или с заземлённой нейтралью?

У сети с изолированной нейтралью нет нулевого рабочего провода, но есть заземляющий. Если сеть исправна, заземляющий проводник с фазными электрически напрямую не связан (хотя может быть связан через устройства с большим сопротивлением). В сетях с заземлённой нейтралью, как правило, хотя и не всегда, из подстанции в распределительные пункты (щиты, шкафы) приходят 4 провода (жилы кабеля) — 3 фазных и один заземляющий, он же нулевой рабочий (этот провод называют PEN-проводником). PEN-проводник обычно приходит на шину, которая соединена с корпусом щита или шкафа и к которой присоединены и нулевые рабочие, и заземляющие провода. Далее же нулевой рабочий провод идёт отдельной жилой (его также называют N-проводником), а провод заземления отдельной жилой (PE-проводник). Нередко PEN-проводник идёт дальше и разветвляется на нулевой рабочий и заземляющий в распределительном пункте более низкого уровня, например, этажном щитке. Провод заземления также называют нулевым защитным, в отличие от нулевого рабочего. И нулевой рабочий, и заземляющий провод имеют электрическую связь с фазными проводами и через обмотку трансформатора, и через нагрузку, например, светильники. Сопротивление между ними низкое. Вообще, если в сети имеются потребители, работающие от «фазы» и «нуля» (что можно проверить, например, индикатором напряжения на работающей розетке), то это сеть с заземлённой нейтралью. Если в сети имеются и нулевой рабочий провод , и провод заземления, то это сеть с заземлённой нейтралью.

Требуются добровольцы

для испытания приёмов
эффективного самообразования

Как не следует выполнять заземление.

рисунок: нельзя делать заземление через выключательПровод заземления не должен идти через выключатель (рис. 12). Он может быть случайно выключен, и заземление окажется неработающим. Также недопустимо подключать заземление через предохранитель.

рисунок: заземление как ответвление нулевого рабочего проводаНа рис. 13 показано, что может произойти, если заземление выполнено как ответвление нулевого рабочего провода. Если нулевой провод будет оборван или отгорит до такого ответвления, заземлённый таким образом объект окажется под напряжением.

рисунок: заземление как ответвление нулевого рабочего проводаА как быть, если нет отдельного заземляющего провода (в старых сетях)? Пособие Найфельда приводит как правильный вариант заземления, как на рисунке 13-1. То есть заземление (правильнее его будет назвать защитным занулением) взято с общего нулевого рабочего провода . Однако если и он отгорит, опять же корпус окажется под напряжением. Тем не менее, как я понимаю (не уверен, что я прав), такое решение соответствует современным правилам (Нормы устройства сетей заземления 7.21, 10.10.10, сами почитайте). Допустим, вы купили люстру с зажимом для заземляющего провода, а в вашей старой квартире из потолка заземляющий провод не торчит. 7.21 и 10.10.10 запрещают заземлять (занулять) люстру от нулевого рабочего провода. Согласно правилам вы должны протянуть провод заземления (или нулевой защитный провод) от ответвительной коробки, щитка, где (при отсутствии заземляющего провода) вы можете запитать его от нулевого рабочего провода. Кто не хочет этого делать, может оправдаться тем, что «Нормы распространяются на все вновь сооружаемые и реконструируемые электроустановки» (ПУЭ 1.1.1 , Нормы устройства сетей заземления 1.1) и не занулять люстру.

рисунок: недопустимость перемычки между нулевым рабочим проводом и проводом заземленияОбычно нулевой рабочий и заземляющий провод ответвляются от общего провода (PEN-проводника) в элеткрощитах (щитках, шкафах). Запрещено электрически соединять нулевой рабочий и заземляющий провода после того, как они разветвились от общего провода (рис. 13-2). (ПУЭ 1.7.135.) Почему?

рисунок: рабочий ток при наличии перемычки между нулевым рабочим проводом и проводом заземленияПотому, что тогда рабочий ток (как и ток короткого замыкания, если таковое случится) пойдёт не только через нулевой рабочий, но и через заземляющий провод. Если корпуса элекрооорудования соединены с землёй, какой — то ток, возможно, ничтожно малый, пойдёт через них на землю (рис. 13-0-3). Корпуса оборудования могут оказаться под напряжением (возможно, ничтожно малым, а возможно, и заметным). Допустим, что в такой ситуации у нас вышел из строя (отгорел, оборвался) либо нулевой рабочий, либо заземляющий провод (провода нередко отгорают в местах соединений). Возможно, мы об этом даже не узнаем, потому что вместо вышедшего из строя у нас станет работать оставшийся провод. Кто-то может подумать, что это хорошо.

рисунок: перекос фазНо что произойдёт, если впоследствии выйдет из строя оставшийся провод? Сначала рассмотрим другой случай. Допустим, нуль и заземление не связаны, и отгорел нулевой провод. (Рис. 13-0-1) Кстати, поскольку через них идёт рабочая нагрузка, нулевые провода отгорают гораздо чаще, чем заземляющие. В сети возникнет так называемый «перекос фаз» — неравномерность фазного напряжения, пропорциональная неравномерности нагрузки. (Неравномерность нагрузки — это когда суммарные мощности потребителей, запитанных от разных фаз, отличаются друг от друга). Однофазное оборудование (например, светильники) может оказаться либо под очень высоким, либо очень низким напряжением и выйти из строя. Трёхфазное оборудование также может выйти из строя из-за неравномерного напряжения.

рисунок: ноль и заземление отгорелиТеперь рассмотрим случай, когда ноль и заземление связаны перемычкой, и оба они отгорели. (Рис. 13-0-2) Найдите отличия от предыдущего рисунка. Мы имеем ещё одно «удовольствие». Корпуса оборудования окажутся под напряженем (через нагрузку). Величина этого напряжения будет зависеть от неравномерности нагрузки. Наибольшим напряжение будет, если в такой ситуации окажется однофазный участок сети, например, квартира. Это если у нас нет короткого замыкания (на корпус или на нулевой провод).

рисунок: последствия замыкания, когда ноль и заземление отгорелиА если произойдёт короткое замыкание, из-за которого отгорит один из проводов (нулевой или заземляющий), а другой провод уже отгорел ранее, или они оба отгорят? Тогда корпуса у нас окажутся под фазным напряжением (220 в), а однофазное оборудование, запитанное от двух из трёх фаз, окажется под линейным напряжением (380 в). Смотрите рисунок 13-0 .

рисунок: напряжение на заземляющем проводеМногие посетители этой страницы жалуются на напряжение на заземляющем проводе. Уточню: напряжение между заземляющим проводом и потенциалом Земли, который могут иметь, например, трубы водопровода или отопления. Это напряжение может показать емкостной индикатор напряжения — отвёртка. Одну из возможных причин этого — перемычку между нулевым рабочим и заземляющим проводом я описал выше. Другая причина — использование заземляющего провода в качестве нулевого рабочего, возможно, в сочетании с обрывом заземляющего провода или плохим контактом его соединения. Если же на заземляющем проводе все 220 вольт — дело опасное, не касайтесь корпусов — вероятен обрыв (отгорание) заземляющего провода в сочетании с замыканием фазы на него или на корпус. Ещё одну причину опишу подробнее. Как известно, любой проводник обладает сопротивлением. При прохождении тока по нему в нём происходит падение напряжения, пропорциональное доле сопротивления проводника в общем сопротивлении цепи. Это падение можно измерить, соединив вольтметр с двумя концами проводника. Если сопротивление проводника малое (например, это относительно толстый и короткий кабель), то и падение напряжения малое. Если же оно большое (например, это длинный и тонкий провод воздушной линии), то и падение большое. Вот в сетях, запитанных от воздушных линий и бывает нередко такая ситуация. Посмотрите на рис. 13-0-4 Допустим, до разветвления общий нулевой (заземляющий) провод (PEN — проводник) идёт от подстанции алюминиевым проводом по столбам через пять улиц. Сопротивление этого провода относительно велико. Как следствие, возможен и перекос фаз и напряжение на заземляющем проводе и заземлённых корпусах. Кстати, сопротивление фазных проводов воздушной линии будет столь же велико, ведь они идут по тем же столбам, и, как правило, имеют такую же толщину Тут может помочь более равномерное распределение нагрузки по фазам, а также дополнительное (повторное) заземление. ПУЭ (1.7.102) предписывает делать его на концах воздушных линий и ответвлений от них длиной больше 200 метров. Читайте также нормы устройства сетей заземления (5.18 — 5.20, 10.3)

Что будет, если перепутать нулевой рабочий и заземляющий провода

Я выше писал, что на нулевом рабочем проводе может быть напряжение. Это напряжение окажется на вашем корпусе. Рабочий же ток пойдёт через заземляющий провод, что создаст (возможно, ничтожно малое) напряжение на нём и корпусах, заземлённых правильно. Также увеличится вероятность отгорания заземляющего провода. Если он отгорит, нод напряжением окажутся корпуса, заземлённые правильно.

рисунок: последствия неправильного заземленияВот ещё пример последствий неправильного заземления (рис. 13-3). Левый светильник заземлён (неправильно) от нулевого рабочего провода, правый — от заземляющего. Допустим, у нас отгорел нулевой магистральный провод. Тогда у нас ток пойдёт следующим образом: от фазы через лампы на нулевой провод, далее через неправильное заземление первого светильника на его корпус, затем по цепи, на которой висит светильник, по балке, снова по цепи на корпус второго светильника и далее в заземляющий провод. Свет будет гореть. Но если вы пошевелите цепи, на которых висят светильники, они заискрят, да ещё током вас долбанёт. Такая ситуация мне встречалась часто.

рисунок: заземление не должно выполняться последовательноЗаземление не должно выполняться последовательно.

рисунок: следствие заземления, выполненного последовательно
рисунок: правильно выполненное заземление

Значения некоторых терминов

Что означают термины «система заземления TT, TN, IT» и т. д.?
Если первая буква в этих сокращениях «T» (от слова «terra» — земля), то это система с заземлённой нейтралью, если «I», то с изолированной нейтралью. Если вторая буква «T» (например, «TT»), то открытые проводящие части (например, корпуса) заземлены, но не присоединены к нейтрали. Если вторая буква «N», то открытые проводящие части присоединены к глухозаземлённой нейтрали. Третья и последующие буквы, если они есть (например, «TN-S») означают, разделены или совмещены в одном проводе нулевой рабочий и нулевой защитный (то бишь заземляющий) проводники. Если третья буква «S» (от слова «separate» — отдельный), то каждый из этих проводников идёт отдельным проводом по всей системе. Если «C» («common» — общий), то они совмещены в одном проводе. Если «C-S» (например, «TN-C-S»), то общий (нулевой рабочий и заземляющий) провод затем разветвляется.

Что означают термины «N-проводник, PE-проводник, PEN-проводник»?
N — нулевой рабочий; PE — нулевой защитный (заземляющий); PEN — совмещённый нулевой рабочий и защитный.

Электроустановки с каким напряжением следует заземлять?

рисунок: какие электроустановки следует заземлять в зависимости от напряженияСошлюсь на стандарт МЭК 364-4-41-1992 (я не уверен, что он не устарел). Я его изобразил графически.

Какого цвета обычно бывает изоляция заземляющего провода?

рисунок: цвет изоляции заземляющего проводникаЖелто-зелёные полосы. (ПУЭ 1.7.154)

Что такое и для чего нужно уравнивание потенциалов?

Если между двумя точками имеется разность потенциалов (напряжение) и проводящая среда (например, тело человека), то между ними побежит ток. Ток может вызвать поражение человека, искрение, которое приведёт к пожару и другие вредные последствия. Чтобы этого избежать, выполняется уравнивание потенциалов: части оборудования, зданий и сооружений либо соединяются специальным проводником, либо сами их проводящие ток конструкции надёжно соединяются между собой. Также они соединяются с заземляющим (зануляющим) проводом. Уравнивание потенциалов считается мерой, дополнительной к заземлению. Как и в каких случаях его выполнять, об этом написано в Нормах устройства сетей заземления (10-11-40, 10-12-3 и другие разделы).

Читайте Найфельда, ПУЭ, а также Нормы устройства сетей заземления. Там всё точнее и подробнее.

    В частности, в ПУЭ 7-го издания написано:
  • 1.7.101 Каким должно быть сопротивление заземляющего устройства
  • 1.7.102 О повторном заземлении воздушных линий>
  • 1.7.109 Что может быть использовано в качестве естественных заземлителей.
  • 1.7.110 Что нельзя использовать в качестве естественных заземлителей.
  • 1.7.113 и 1.7.117 Сечения заземляющих проводников в электроустановках напряжением до 1 кВ
  • 1.7.119 и 1.7.120 Главная заземляющая шина
  • 1.7.121 — 130 Нормы, регламентирующие заземляющие проводники (PE-проводники)
  • 1.7.121 — 131-135 Нормы, регламентирующие PEN-проводники
  • 1.7.142. Присоединения заземляющих проводников
    Среди прочего, в Нормах устройства сетей заземления написано:
  • 1.3.1.1 Основное правило устройства электроустановок
  • 1.3.1. Заземление электрооборудования, установленного на опорах ВЛ
  • 1.4. Использование естественных заземляющих устройств
  • 1.5. Объединение заземляющих устройств
  • 1.11. Применение УЗО-Д в качестве дополнительной защиты в электроустановках до 1 кВ
  • глава 2 Как выполняется выравнивание потенциалов.
  • 2.6.1 Что подлежит заземлению или занулению
  • 2.7.1 Что не требуется заземлять или занулять
  • глава 5 электроустановки напряжением до 1 кв сети с заземлённой нейтралью (система TN)
  • 5.18 — 5.20 Заземление воздушных линий
  • 7.1 — 7.6 Что может быть использовано в качестве заземляющих и совмещённых проводников
  • 7.7 Необходимость заземления несущих тросов, брони кабелей и металлорукавов
  • 8.1 Естественные заземлители
  • 8.10 Искусственные заземлители
  • 8.25. Соединение частей заземлителя, соединение заземлителей с заземляющими проводниками
  • 10.1.2. Заземление трансформаторов тока
  • 10.2 Заземление кабелей
  • 10.3 Заземление воздушных линий
  • 10.4 Заземление электрических машин
  • 10.5 Заземление отдельных аппаратов, щитов, шкафов, ящиков с электрооборудованием
  • 10.5.4. К одному зануляющему болту (винту) запрещается присоединять более двух кабельных наконечников
  • 10.9 Заземление переносных электроприёмников
  • 10.10 Электрическое освещение
  • 10.10.4 В групповых линиях, питающих светильники общего освещения и штепсельные розетки, нулевой рабочий и нулевой защитный проводники не допускается подключать под общий контактный зажим
  • 10.11 Электроустановки жилых, общественных, административных и бытовых зданий
  • 10.11.14. В зданиях следует применять кабели и провода с медными жилами.
  • 10-11-24 до 10-11-39 УЗО в зданиях
  • 10-11-40 система выравнивания потенциалов в зданиях
  • 10-12 Помещения, содержащие ванну или душ
  • 10-13 Помещения, содержащие нагреватели для саун
  • 10-18 Молниезащита

Почему нулевой провод тоньше фазных?

Нулевой провод делается тоньше фазных, потому что ток, который по нему протекает, меньше тока, протекающего по фазным проводам.

рисунок: нулевое напряжение на нулевой шине при равномерном распределении нагрузки по фазамЕсли нагрузка по фазам в сети распределена (строго) равномерно, токи в ней бегут от фазных проводов к другим фазным проводам. Падение напряжение в сети будет таким, что на нулевой шине окажется потенциал нейтрали и ток в нулевом проводе будет равен нулю. При неравномерности нагрузок в нулевом проводе появляется ток. Он тем больше, чем больше неравномерность.

Зачем нужен нулевой провод?

О том, что нулевой и заземляющий проводники обычно идут от подстанции одним проводом, и зачем нужен заземляющий провод, я писал выше. Теперь о функции нулевого рабочего провода. Он нужен, чтобы не было «перекоса фаз», который я описал выше. Хотя электрики и стремятся добиться равномерности нагрузки (например, подключая равное количество квартир к каждой фазе), неравномерность всё равно имеет место быть. Вы щёлкнули выключателем — и уже изменили соотношение нагрузок. Почему же когда есть нулевой провод, «перекоса фаз» не наблюдается? Во первых, когда к нулевому проводу подключено множество потребителей, неравномерность нагрузки проявляется в гораздо меньшей степени. Когда вы включаете телевизор, чтобы посмотреть футбол, есть вероятность, что и соседи ваши, которые «сидят» на других фазах, тоже включают свои телевизоры. Во вторых, нулевой провод соединён с нейтралью. Нейтраль — это такая точка во вторичной обмотке трансформатора, к которой присоединены одним концом три одинаковых симметричных обмотки. Другим концом они присоединены к фазным проводам. Предположим, нагрузка по фазам распределена равномерно. И вдруг в какой-то фазе она увеличивается.

Эффективно заземленная нейтраль: как определяется, преимущества использования, схема

Посмотрите наши проекты за 2007-2018 г

Передача электричества на большие расстояния осуществляется посредством сетей высокого напряжения. При этом каждая сеть дотирована собственными средствами защиты для обеспечения ее безопасной эксплуатации. Величина питающего напряжения определяет схему, по которой заземляется нейтраль. Согласно ПУЭ, в сетях, где напряжение не превышает значения в 0.4 кВ, используются глухозаземленные нейтрали, а для электросетей с напряжением в диапазоне 0.6 – 35 кB предусмотрено использование схем, в которых нейтраль изолириована. Для линий 110 – 1150 кB предусмотрена установка эффективно заземленных нейтралей – ЭЗН. Эти схемы позволяют предотвращать вероятность возникновения перенапряжения в случае возникновения КЗ одной фазы.

Определение схемы, устройство

Схема ЭЗH предназначена для использования в электросетях более 110кB. В случае замыкания одной фазы на землю такая схема представляется в виде однофазного короткого замыкания. Как правило, в местах с повреждением возникают токи большого напряжения. Благодаря срабатыванию защитной системы опасное напряжение отключается. Исходя из этого, эффективно заземленной нейтралью определяется нейтраль, имеющая заземление и включенная в схемы электросетей с подачей трехфазного напряжения, превышающего отметку в 1000B и коэффициент замыкания которого ≤ 1,4. При однофазном замыкании на землю, в фазах, где отсутствуют какие-либо повреждения, происходит увеличение напряжения на величину, которая не превышает значение 1.4.

Для расчетов используется следующая формула:

Для расчетов используется следующая формула

Если в высоковольтных электросетях используется такая схема заземления, в увеличении изоляции оборудования и самих сетей нет необходимости. К тому же, стоимость эксплуатации и обслуживания ЭЗH является ниже.

Нормативные требования

Согласно регламенту ПУЭ, максимальное значение сопротивления заземления в электросетях, в структуру которых включена эффективно изолированная нейтраль, не должно превышать 0.5 Ом, а уровень сопротивления искусственных заземлителей – не менее 1.0 Ом. Данное правило действительно для электроустановок более 1000B с режимом токов КЗ равными или превышающими 500А.

Схемы глухо заземленной нейтрали и ЭЗH практически аналогичны друг другу. Действие обоих направлено на предупреждение дуговых перенапряжений – токи КЗ уменьшаются искусственным увеличением нулевых последовательностей. С этой целью на подстанциях производится заземление не всех нейтралей трансформаторов, а лишь части из них. Также могут быть применены резисторы.

Результатом таких решений является увеличение напряжения на целых проводниках. Одной из самых серьезных аварий считается короткое замыкание между фазами. В то же время, токи KЗ, как и напряжение, будут иметь меньшую величину, нежели в случае однофазных коротких замыканий. Ввиду этого для проведения расчетных действий используются большие значения, характерные именно для однофазного КЗ.

Главное предназначение эффективно заземленной нейтрали – применение в схемах высоковольтных электросетей с напряжением в 110кB и больше. Также использование данной схемы возможно в сетях, где напряжение не превышает 1000B: на объектах с полным отсутствием каких-либо электрических установок и их монтаж пока не предполагается, где существует риск возникновения пожара или же смонтировано оборудование, которое может выйти из строя или является взрывоопасным.

Иными словами, эффективно заземленная нейтраль используется в электросетях, где напряжение не превышает 1000B, при этом главным условием является отсутствие пожароопасных и взрывоопасных устройств и оборудования.

Наибольшая эффективность применения ЭЗH наблюдается в городских электросетях.

Специфика функционирования подобных электролиний заключается в возможности применения кабеля, рассчитанного на 6 кB, в электросетях, где напряжение составляет 10 кB, а коэффициент замыкания на землю не превышает значения одной единицы. Благодаря этому возможна передача большей мощности, коэффициент которой составляет 1.73, а периодической замены коммутаторов и электрического кабеля не требуется.

Какими достоинствами и недостатками обладает ЭЗH?

В процессе применения эффективно заземленной нейтрали в электросетях свыше 110 кB обеспечиваются следующие преимущества:

  • При возникновении коротких замыканий, схемы эффективно заземленных нейтралей обеспечивают стабилизировать их потенциалы, препятствуя возникновению довольно устойчивой заземляющей дуги.
  • В случае короткого замыкания изоляция кабеля и электроустройств подвержена меньшему напряжению. Благодаря этому возможно использование изоляционных материалов, которые имеют более малый запас прочности. Следовательно, обеспечивается и экономический эффект путем снижения финансовых затрат на эксплуатацию сетей.
  • Возможность установки и использования селективных автоматических устройств защиты с коротким временем реагирования. Так, мгновенное срабатывание защиты предотвращает усугубление возникших неисправностей.

Все же, ЭЗH имеют и некоторые недостатки. Среди них указаны:

  • Независимо от времени и интенсивности короткого замыкания, неисправный участок обесточивается полностью. Как правило, в дополнение к комплектации релейных систем электрозащиты идут и автоматические средства повторного включения напряжения. Если отключение электричества было произведено автоматически, возрастает риск нарушений в подаче напряжения бесперебойно. Это, в свою очередь, может негативно сказаться на подключенных к этой сети потребителях и продуктивности их деятельности. Учитывая все эти факты, наиболее ответственные потребители электроэнергии принимают решение об установке дополнительных устройств, обеспечивающих бесперебойную подачу напряжения.
  • При коротких замыканиях возникают повышенные электромагнитные импульсы, которые отрицательно сказываются на работе и функциональности средств связи. Поэтому, как правило, необходима их дополнительная экранизация.
  • Эксплуатация ЭЗH предполагает установку более сложных средств защиты с минимальным временем срабатывания в случае короткого замыкания.
  • Если токи короткого замыкания существенно выше допустимых значений, генераторная установка выходит из режима синхронизации. Иными словами, при становлении КЗ генератор как-бы притормаживается.
  • Токи высокого напряжения, которые возникают в следствие коротких замыканий, могут повредить кабель и его изоляцию. Также существует риск механического разрушения изоляционных устройств на самих линиях электропередачи, повреждений металлических компонентов статора в генераторе, если произойдет пробой изоляции на землю.
  • При повышении шагового напряжения, которое возникает также в случае короткого замыкания на землю, существенно возрастает опасность для людей – их может ударить током.
  • В случае обрыва нейтральных проводов и при отсутствующем дублирующем заземлении используемое на объекте электрооборудование остается практически без защиты.

Подводим итоги

Резюмируя все выше сказанное в статье, принцип функционирования электросетей с эффективно заземленными нейтралями можно описать следующим образом: при происхождении замыканий на землю, их большая часть сопровождается высоким током коротких замыканий, после чего происходит их самоустранение, как только отключается подача напряжения в сети. При повторном автоматическом включении напряжения в линии передачи электричества ее работа полностью восстанавливается.

В случае, если заземлена лишь часть трансформаторов, это приводит к уменьшению токов короткого замыкания. К примеру, если подстанция предполагает монтаж двух трансформаторных установок, лишь один их них будет подключен к устройству заземления.

Чем называют эффективно заземленную нейтраль?

Высоковольтные линии электропередач предназначены для передачи энергии на большие расстояния. Для обеспечения безопасной работы энергосистемы используются средства защиты. Для чего применяются различные виды заземления нейтрали. Схема подключения заземлителя зависит от питающего напряжения:

Таблица

Для исключения перенапряжения неповрежденных фаз при возникновении однофазного замыкания на землю.

В электросетях с напряжением 110 КВ и выше выполняется система с эффективно заземленной нейтралью. Она представляет собой разновидность сети с глухозаземленной нейтралью. И предназначена для уменьшения коммутационного перенапряжения сети. Что уменьшает требования к изоляции. А это существенно снижает стоимость электросетей.

Позволяет применить быстродействующую защиту от коротких замыканий на землю. Что, в свою очередь, уменьшает вероятность сложных трехфазных замыканий, но в тоже время при замыкании на землю возникают большие токи.

Эффективно заземленная нейтраль

Что же такое эффективно заземленная нейтраль – это трехфазная сеть с коэффициентом замыкания на землю, который эквивалентен значению меньше или равному 1,4 в системах с питающим напряжением свыше 1000 В. И рассчитывается по формуле:

Эффективное заземление нейтрали применяется в сетях напряжением 110 КВ и выше. Применение такой схемы обусловлено стоимостью изоляции.

Схема эффективно заземленной нейтрали

При использовании такой электросхемы во время замыкания одной фазы на землю, потенциал на остальных не превышает значения равного межфазному напряжению, умноженному на коэффициент 0,8. Что позволяет производить расчет изоляции на это значение. В отличие от сетей с изолированной или компенсированной нейтралью, где расчет производится на полное межфазное напряжение.

Требования к сетям, согласно нормативу

Правилами эксплуатации электроустановок потребителями предъявляются требования к заземляющему устройству, сопротивление которого не должно превышать 0,5 Ом в схеме, где применена эффективно заземленная нейтраль. При этом должно учитываться значение искусственного заземляющего устройства, сопротивление которого не должно превышать значения 1 Ом. Что справедливо для сетей с потенциалом выше 1000 В и током короткого замыкания на землю более 500 А.

Однофазное короткое замыкание в сетях с эффективно заземленной нейтралью

Эти требования к заземляющему устройству предъявляются при возникновении КЗ фазы на землю, что является однофазным замыканием в схеме, где присутствует заземленная нейтраль, чтобы немедленно и эффективно произошло отключение.

К сложным аварийным ситуациям относятся замыкания двух или трех фаз на землю. Однако, в этом случае напряжение на неповрежденных фазах и токи замыкания будут существенно ниже, чем при однофазном.

Поэтому при расчетах принимают большие значения, а напряжение и токи двух и трехфазных замыканий не используются.

КЗ в сетях с заземленной (а) и изолированной (б) нейтралями

Такое подключение эффективно при аварии и служит для понижения потенциала между не отказавшей фазой и землей в сетях, где применяется заземленная нейтраль, что позволяет не допустить превышение шагового напряжения. А также не ограничивает вынос потенциала за пределы подстанции и уменьшает риск поражения электрическим током обслуживающего персонала.

Большая часть замыканий после снятия напряжения исчезает, а автоматика (АПВ) включает подачу электропитания в ЛЭП. Для уменьшения токов в аварийной ситуации заземляют не все трансформаторы, а только часть. Так, при смонтированных на подстанции двух силовых трансформаторов подключают только один. Такая система называется электросетью с эффективно заземленной нейтралью.

Преимущества и недостатки системы

Главным достоинством таких систем можно отметить ограничение потенциала в системах напряжением 110 КВ и более в неповрежденных линиях при возникновении аварийной ситуации, что оказывает существенное значение для материалов изоляции. А также применение относительно несложных устройств релейной защиты от однофазных коротких замыканий на землю.

Недостатками подобных электросетей, касательно к сетям с изолированной нейтралью, можно отнести высокие токи КЗ, что требует моментального отключения напряжения. Если этого не произойдет, то возникает опасность серьезного повреждения линии, а также возрастает вероятность поражения электрическим током обслуживающего персонала.

И велико возникновение пожара и даже взрыва. Высокие токи КЗ предъявляют особые требования к устройствам защиты, она должна срабатывать мгновенно, а это усложняет приборы защиты.

Использование в сетях ниже тысячи вольт

Эффективно заземленная нейтраль применяется в основном в сетях с напряжением в 110 В. и более. Однако, допустимо применять в сетях ниже тысячи вольт, где нет, и не предвидится применение приборов, у которых имеется опасность возникновения пожара. Или отсутствуют устройства, у которых может повредиться электрооборудование или возникнуть взрыв.

В последнее время такие электросхемы получили распространение в городских электросетях. Что имеет смысл при коэффициенте тока короткого замыкания на землю меньше единицы. Это дает возможность использовать кабель, рассчитанный на напряжение 6 КВ использовать в сети 10 КВ. Что позволяет увеличить передаваемую мощность на величину 1,73 без замены кабеля и коммутационной аппаратуры.

Электрические сети с эффективно заземленной нейтралью

Эффективно заземленной нейтралью называется заземленная нейтраль трехфазной электросети с напряжением более 1 кВ, у которой коэффициент замыкания на землю не превышает 1,4.

Что это значит? Напряжение между фазой и землей в случае замыкания одной или двух других фазных проводников на землю нужно разделить на напряжение между фазой и землей в данной точке до момента замыкания на землю, и частное не должно оказаться больше 1,4.

Другими словами, если замыкание фазы на землю происходит в трехфазной сети с изолированной нейтралью, то напряжение между остальными фазами и землей возрастает примерно в 1,73 раза, в то же самое время, для сети с эффективно заземленной нейтралью это значение не превышает 1,4.

Электрические сети с эффективно заземленной нейтралью

Данный аспект важен если речь идет о сетях высокого напряжения, где благодаря эффективно заземленной нейтрали нет необходимости увеличивать количество изоляции в оборудовании и в самих сетях, то есть производство сетей и аппаратов, которые будут работать в условиях с эффективно заземленной нейтралью всегда окажется дешевле.

Международная электротехническая комиссия рекомендует сети сверхвысокого и высокого напряжения, с соединенными с землей нейтралями, либо с нейтралями, соединенными с землей через малое активное сопротивление, относить к сетям с эффективно заземленной нейтралью. В частности в России сети напряжением от 110 кВ относятся к сетям с эффективно заземленной нейтралью.

Эффективно заземленная нейтраль

Согласно правилам технической эксплуатации электроустановок потребителей, для сетей с эффективно заземленной нейтралью регламентировано максимальное сопротивление заземляющего устройства в 0,5 Ом с учетом естественного заземления, причем искусственное заземляющее устройство не должно иметь сопротивление больше 1 Ом. Это касается электроустановок с напряжением от 1 кВ, у которых ток замыкания на землю превышает 500 А.

Данное положение диктуется необходимостью прохождения через устройство больших токов в случае короткого замыкания на землю, когда напряжение сети является сверхвысоким или высоким, и требованием ограничить напряжение между исправными фазами и землей, дабы понизить в условиях аварии опасные превышения шаговых напряжений и напряжений прикосновения, а также выносов потенциалов за пределы подстанции.

Необходимо равномерное распределение потенциалов на территории подстанции, а также исключение возникновения шаговых напряжений на расстоянии от подстанции, что достигается применением устройств выравнивания потенциалов, являющихся обязательной частью заземляющих устройств для эффективно заземляемых нейтралей.

Важные нюансы и требования при выполнении заземляющих устройств для сетей с эффективно заземленными нейтралями привносят трудности в их расчет и возведение, делают эти сооружения материалоемкими, особенно если грунт обладает высоким удельным сопротивлением, как то скальный, каменистый или песчаный грунт. Условия возведения оказываются стесненными.

Безусловно, некоторые так называемые недостатки свойственны сетям с эффективно заземленной нейтралью, и они типичны. Через заземленную нейтраль трансформатора, при коротком замыкании на землю, возникает значительный ток короткого замыкания, и это должно быстро устраняться отключением, благодаря устройствам релейной защиты.

Главным образом короткие замыкания на землю в высоковольтных сетях от 110 кВ самоустраняются, и благодаря устройствам автоматического повторного включения электроснабжение восстанавливается. Для возможности отвода больших токов сооружают контуры заземления, которые получаются, однако, дорогими.

Токи однофазного короткого замыкания на землю, в случае большого количества заземленных трансформаторных нейтралей, могут превышать ток трехфазного замыкания, и, чтобы устранить такое положение вещей, вводят режим частичного разземления трансформаторных нейтралей, для этого часть трансформаторов (110-220 кВ) не заземляют, их нейтрали изолируют, соединяя с разомкнутыми разъединителями. Либо ограничивают ток короткого замыкания трансформатора на землю путем заземления его нейтрали через специальное активное сопротивление.

Для каждого из участков сети путем расчетов находят минимальное количество заземленных нейтралей. Исходя из требований к релейной защите для поддержания токов замыкания на землю на определенном уровне, и с целью обеспечения защиты изоляции разземленных нейтралей от перенапряжений, выбирают подходящие точки заземления энергосистемы.

Дело в том, что трансформаторы на 110 — 220 кВ, традиционно для наших производителей, отличаются пониженной изоляцией нейтралей, например для трансформаторов на 110 кВ с регулировкой напряжения под нагрузкой, изоляция нейтрали соответствует 35 кВ, поскольку со стороны нейтрали включаются переключающие устройства с классом изоляции 35 кВ. Это же касается и трансформаторов на 220 кВ. Экономический эффект получается значительным.

Такие трансформаторы предназначены для работы в сетях с эффективно заземленной нейтралью, и напряжение при коротком замыкании на землю с таких сетях не превысит трети линейного значения, то есть 42 кВ для 110 кВ.

Для защиты от перенапряжений разземленных нейтралей, для защиты в ненагруженных режимах при неполнофазных включениях или отключениях трансформаторов с изолированными нейтралями, применяют устройства защиты от кратковременных перенапряжений — вентильные разрядники. Нейтрали защищают разрядниками на предельно допустимое напряжение гашения в 50 кВ.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *