III. Основы электродинамики
Нам приходится буквально отлеплять одну от другой свежевыстиранные и доставаемые из сушилки вещи, или когда мы никак не можем привести в порядок наэлектризованные и буквально встающие дыбом волосы. А кто не пробовал подвесить воздушный шарик к потолку, после трения его о голову? Подобное притяжение и отталкивание является проявлением статического электричества. Подобные действия называются электризацией.
Статическое электричество объясняется существованием в природе электрического заряда. Заряд является неотъемлемым свойством элементарных частиц. Заряд, который возникает на стекле при трении его о шелк, условно называют положительным, а заряд, возникающий на эбоните при трении о шерсть, — отрицательным.
Рассмотрим атом. Атом состоит из ядра и, летающих вокруг него, электронов (на рисунке синие частицы). Ядро состоит из протонов (красные) и нейтронов (черные).
.
Носителем отрицательного заряда является электрон, положительного — протон. Нейтрон — нейтральная частица, не имеет заряда.
Величина элементарного заряда — электрона или протона, имеет постоянное значение и равна
Весь атом нейтрально заряжен, если количество протонов соответствует электронам. Что произойдет, если один электрон оторвется и улетит? У атома станет на один протон больше, то есть положительных частиц больше, чем отрицательных. Такой атом называют положительным ионом. А если присоединится один электрон лишний — получим отрицательный ион. Электроны, оторвавшись, могут не присоединятся, а некоторое время свободно перемещаться, создавая отрицательный заряд. Таким образом, в веществе свободными носителями заряда являются электроны, положительные ионы и отрицательные ионы.
Для того, чтобы имелся свободный протон, необходимо, чтобы разрушилось ядро, а это означает разрушение атома целиком. Такие способы получения электрического заряды мы рассматривать не будем.
Тело становится заряженным, когда оно содержит избыток одних или иных заряженных частиц (электронов, положительных или отрицательных ионов).
Величина заряда тела кратна элементарному заряду. Например, если в теле 25 свободных электронов, а остальные атомы являются нейтральными, то тело заряжено отрицательно и его заряд составляет . Элементарный заряд не делим — это свойство называется дискретностью
Одноименные заряды (два положительных или два отрицательных) отталкиваются, разноименные (положительный и отрицательный) — притягиваются
Точечный заряд — это материальная точка, которая имеет электрический заряд.
Закон сохранения электрического заряда
Замкнутая система тел в электричестве — это такая система тел, когда между внешними телами нет обмена электрическими зарядами.
Алгебраическая сумма электрических зарядов тел или частиц остается постоянной при любых процессах, происходящих в электрически замкнутой системе.
На рисунке пример закона сохранения электрического заряда. На первой картинке два тела разноименного заряда. На втором рисунке те же тела после соприкосновения. На третьем рисунке в электрически замкнутую систему внесли третье нейтральное тело и тела привели во взаимодействие друг с другом.
В каждой ситуации алгебраическая сумма заряда (с учетом знака заряда) остается постоянной.
Главное запомнить
1) Элементарный электрический заряд — электрон и протон
2) Величина элементарного заряда постоянна
3) Положительный и отрицательный заряды и их взаимодействие
4) Носителями свободных зарядов являются электроны, положительные ионы и отрицательные ионы
5) Электрический заряд дискретен
6) Закон сохранения электрического заряда
Электрический заряд
Электромагнитные взаимодействия принадлежат к числу наиболее фундаментальных взаимодействий в природе. Силы упругости и трения, давление газа и многое другое можно свести к электромагнитным силам между частицами вещества. Сами электромагнитные взаимодействия уже не сводятся к другим, более глубоким видам взаимодействий.
Столь же фундаментальным типом взаимодействия является тяготение — гравитационное притяжение любых двух тел. Однако между электромагнитными и гравитационными взаимодействиями имеется несколько важных отличий.
1. Участвовать в электромагнитных взаимодействиях могут не любые, а только заряженные тела (имеющие электрический заряд).
2. Гравитационное взаимодействие — это всегда притяжение одного тела к другому. Электромагнитные взаимодействия могут быть как притяжением, так и отталкиванием.
3. Электромагнитное взаимодействие гораздо интенсивнее гравитационного. Например, сила электрического отталкивания двух электронов в раз превышает силу их гравитационного притяжения друг к другу.
Каждое заряженное тело обладает некоторой величиной электрического заряда . Электрический заряд — это физическая величина, определяющая силу электромагнитного взаимодействия между объектами природы. Единицей измерения заряда является кулон (Кл).
Два вида заряда
Поскольку гравитационное взаимодействие всегда является притяжением, массы всех тел неотрицательны. Но для зарядов это не так. Два вида электромагнитного взаимодействия — притяжение и отталкивание — удобно описывать, вводя два вида электрических зарядов: положительные и отрицательные.
Заряды разных знаков притягиваются друг к другу, а заряды разных знаков друг от друга отталкиваются. Это проиллюстрировано на рис. 1 ; подвешенным на нитях шарикам сообщены заряды того или иного знака.
Рис. 1. Взаимодействие двух видов зарядов
Повсеместное проявление электромагнитных сил объясняется тем, что в атомах любого вещества присутствуют заряженные частицы: в состав ядра атома входят положительно заряженные протоны, а по орбитам вокруг ядра движутся отрицательно заряженные электроны.
Заряды протона и электрона равны по модулю, а число протонов в ядре равно числу электронов на орбитах, и поэтому оказывается, что атом в целом электрически нейтрален. Вот почему в обычных условиях мы не замечаем электромагнитного воздействия со стороны окружающих тел: суммарный заряд каждого из них равен нулю, а заряженные частицы равномерно распределены по объёму тела. Но при нарушении электронейтральности (например, в результате электризации) тело немедленно начинает действовать на окружающие заряженные частицы.
Почему существует именно два вида электрических зарядов, а не какое-то другое их число, в данный момент не известно. Мы можем лишь утверждать, что принятие этого факта в качестве первичного даёт адекватное описание электромагнитных взаимодействий.
Заряд протона равен Кл. Заряд электрона противоположен ему по знаку и равен Кл. Величина
называется элементарным зарядом. Это минимальный возможный заряд: свободные частицы с меньшей величиной заряда в экспериментах не обнаружены. Физика не может пока объяснить, почему в природе имеется наименьший заряд и почему его величина именно такова.
Заряд любого тела всегда складывается из целого количества элементарных зарядов:
Если , то тело имеет избыточное количество электронов (по сравнению с количеством протонов). Если же , то наоборот, у тела электронов недостаёт: протонов на больше.
Электризация тел
Чтобы макроскопическое тело оказывало электрическое влияние на другие тела, его нужно электризовать. Электризация — это нарушение электрической нейтральности тела или его частей. В результате электризации тело становится способным к электромагнитным взаимодействиям.
Один из способов электризовать тело — сообщить ему электрический заряд, то есть добиться избытка в данном теле зарядов одного знака. Это несложно сделать с помощью трения.
Так, при натирании шёлком стеклянной палочки часть её отрицательных зарядов уходит на шёлк. В результате палочка заряжается положительно, а шёлк — отрицательно. А вот при натирании шерстью эбонитовой палочки часть отрицательных зарядов переходит с шерсти на палочку: палочка заряжается отрицательно, а шерсть — положительно.
Данный способ электризации тел называется электризацией трением. С электризацией трением вы сталкиваетесь всякий раз, когда снимаете свитер через голову 😉
Другой тип электризации называется электростатической индукцией, или электризацией через влияние. В этом случае суммарный заряд тела остаётся равным нулю, но перераспределяется так, что в одних участках тела скапливаются положительные заряды, в других — отрицательные.
Рис. 2. Электростатическая индукция
Давайте посмотрим на рис. 2 . На некотором расстоянии от металлического тела находится положительный заряд . Он притягивает к себе отрицательные заряды металла (свободные электроны), которые скапливаются на ближайших к заряду участках поверхности тела. На дальних участках остаются нескомпенсированные положительные заряды.
Несмотря на то, что суммарный заряд металлического тела остался равным нулю, в теле произошло пространственное разделение зарядов. Если сейчас разделить тело вдоль пунктирной линии, то правая половина окажется заряженной отрицательно, а левая — положительно.
Наблюдать электризацию тела можно с помощью электроскопа. Простой электроскоп показан на рис. 3 (изображение с сайта en.wikipedia.org).
Рис. 3. Электроскоп
Что происходит в данном случае? Положительно заряженная палочка (например, предварительно натёртая) подносится к диску электроскопа и собирает на нём отрицательный заряд. Внизу, на подвижных листочках электроскопа, остаются нескомпенсированные положительные заряды; отталкиваясь друг от друга, листочки расходятся в разные стороны. Если убрать палочку, то заряды вернутся на место и листочки опадут обратно.
Явление электростатической индукции в грандиозных масштабах наблюдается во время грозы. На рис. 4 мы видим идущую над землёй грозовую тучу.
Рис. 4. Электризация земли грозовой тучей
Внутри тучи имеются льдинки разных размеров, которые перемешиваются восходящими потоками воздуха, сталкиваются друг с другом и электризуются. При этом оказывается, что в нижней части тучи скапливается отрицательный заряд, а в верхней — положительный.
Отрицательно заряженная нижняя часть тучи наводит под собой на поверхности земли заряды положительного знака. Возникает гигантский конденсатор с колоссальным напряжением между тучей и землёй. Если этого напряжения будет достаточно для пробоя воздушного промежутка, то произойдёт разряд — хорошо известная вам молния.
Закон сохранения заряда
Вернёмся к примеру электризации трением — натирании палочки тканью. В этом случае палочка и кусок ткани приобретают равные по модулю и противоположные по знаку заряды. Их суммарный заряд как был равен нулю до взаимодействия, так и остаётся равным нулю после взаимодействия.
Мы видим здесь закон сохранения заряда, который гласит: в замкнутой системе тел алгебраическая сумма зарядов остаётся неизменной при любых процессах, происходящих с этими телами:
Замкнутость системы тел означает, что эти тела могут обмениваться зарядами только между собой, но не с какими-либо другими объектами, внешними по отношению к данной системе.
При электризации палочки ничего удивительного в сохранении заряда нет: сколько заряженных частиц ушло с палочки — столько же пришло на кусок ткани (или наоборот). Удивительно то, что в более сложных процессах, сопровождающихся взаимными превращениями элементарных частиц и изменением числа заряженных частиц в системе, суммарный заряд всё равно сохраняется!
Например, на рис. 5 показан процесс , при котором порция электромагнитного излучения (так называемый фотон) превращается в две заряженные частицы — электрон и позитрон . Такой процесс оказывается возможным при некоторых условиях — например, в электрическом поле атомного ядра.
Рис. 5. Рождение пары электрон–позитрон
Заряд позитрона равен по модулю заряду электрона и противоположен ему по знаку. Закон сохранения заряда выполнен! Действительно, в начале процесса у нас был фотон, заряд которого равен нулю, а в конце мы получили две частицы с нулевым суммарным зарядом.
Закон сохранения заряда (наряду с существованием наименьшего элементарного заряда) является на сегодняшний день первичным научным фактом. Объяснить, почему природа ведёт себя именно так, а не иначе, физикам пока не удаётся. Мы можем лишь констатировать, что эти факты подтверждаются многочисленными физическими экспериментами.
Электрический заряд
Электрический заряд создает электрическое поле. Электрический заряд воздействует на другие электрические заряды с помощью электрической силы и под влиянием других зарядов с той же силой в противоположном направлении.
Различают 2 типа электрического заряда:
Положительный заряд (+)
Положительный заряд имеет больше протонов, чем электронов (Np/ Ne).
Положительный заряд обозначается знаком плюс (+).
Положительный заряд притягивает другие отрицательные заряды и отталкивает другие положительные заряды.
Положительный заряд притягивается другими отрицательными зарядами и отталкивается другими положительными зарядами.
Отрицательный заряд (-)
В отрицательном заряде больше электронов, чем протонов (Ne/ Np).
Отрицательный заряд обозначается знаком минус (-).
Отрицательный заряд притягивает другие положительные заряды и отталкивает другие отрицательные заряды.
Отрицательный заряд притягивается другими положительными зарядами и отталкивается другими отрицательными зарядами.
Направление электрической силы (F) в зависимости от типа заряда
q1 / q2 расходы | Усилие на q 1 заряда | Усилие при заряде q 2 | |
---|---|---|---|
— / — | ← ⊝ | ⊝ → | пополнение |
+ / + | ← ⊕ | ⊕ → | пополнение |
— / + | ⊝ → | ← ⊕ | достопримечательности |
+ / — | ⊕ → | ← ⊝ | достопримечательности |
Заряд элементарных частиц
Кулоновский блок
Электрический заряд измеряется в кулонах [C].
Один кулон имеет заряд 6,242 × 10 18 электронов:
1С = 6,242 × 10 18 эл.
Расчет электрического заряда
Когда электрический ток течет в течение определенного времени, мы можем вычислить заряд:
§ 4. Положительные и отрицательные заряды
Зарядим при помощи стеклянной палочки, потертой о шелк, легкую гильзу, подвешенную на шелковой нити, и поднесем к ней кусок сургуча, заряженного трением о шерсть. Гильза будет притягиваться к сургучу (рис. 7). Однако мы видели (§1), что эта же подвешенная гильза отталкивается от зарядившего ее стекла. Это показывает, что заряды, возникающие на стекле и сургуче, различаются по качеству.
Рис. 7. Бумажная гильза, заряженная от стекла, притягивается к наэлектризованному сургучу
Следующий опыт показывает это еще нагляднее. Зарядим два одинаковых электроскопа при помощи стеклянной палочки и соединим их стержни металлической проволокой, держа последнюю за изолирующую ручку. Если электроскопы вполне одинаковы, то после соединения отклонения их листков делаются равными, указывая этим на то, что полный заряд распределяется поровну между обоими электроскопами. Зарядим теперь один из электроскопов при помощи стекла, а другой – при помощи сургуча, и притом так, чтобы отклонения их листков стали одинаковы, и опять соединим их (рис. 8). Оба электроскопа окажутся незаряженными, а значит, заряды стекла и заряды сургуча, взятые в равных количествах, нейтрализуют, или компенсируют, друг друга.
Рис. 8. Два одинаковых электроскопа, заряженные разноименными зарядами и соединенные проводником, разряжаются; равные разноименные заряды при соединении не дают никакого заряда
Если бы в этих опытах мы использовали другие заряженные тела, то нашли бы, что часть из них действует как заряженное стекло, т. е. они отталкиваются от зарядов стекла и притягиваются к зарядам сургуча, а часть – как заряженный сургуч, т. е. они притягиваются к зарядам стекла и отталкиваются от зарядов сургуча. Несмотря на обилие различных веществ в природе, существует только два разных рода электрических зарядов.
Мы видим, что заряды стекла и сургуча могут компенсировать друг друга. Но величинам, которые при сложении уменьшают друг друга, принято приписывать разные знаки.
Поэтому условились приписывать и электрическим зарядам знаки, разделяя заряды на положительные и отрицательные (рис. 8).
Положительно заряженными называют тела, которые действуют на другие заряженные тела так же, как стекло, наэлектризованное трением о шелк. Отрицательно заряженными называют тела, которые действуют так же, как сургуч, наэлектризованный трением о шерсть. Из опытов, описанных выше, следует, что одноименные заряды отталкиваются, разноименные – притягиваются).
4.1. К электроскопу, заряженному при помощи сургучной палочки, прикасаются заряженным стеклом. Как изменится отклонение листков?
4.2. При натирании о шелк латунного стержня, зажатого в руке, последний не электризуется. Если, однако, произвести этот опыт, изолировав стержень от руки, например обернув его в резину, на нем возникнут заряды. Объясните различие результатов в этих двух опытах.
4.3. Каким образом, имея под руками горелку, можно удалить электрические заряды с диэлектрика, например с наэлектризованной стеклянной палочки?
4.4. Станьте на деревянную доску, положенную на четыре изолирующие подставки, например на крепкие стеклянные стаканы, возьмите в руку кусок меха и начните бить мехом по деревянному столу. Ваш товарищ может извлечь из вашего тела искру, поднеся к нему руку. Объясните, что при этом происходит.
4.5. Как доказать на опыте, что шелк при трении о стекло электризуется и притом отрицательно?