Как собрать блок питания
Перейти к содержимому

Как собрать блок питания

Блок питания своими руками

Простой и надежный блок питания своими руками при нынешнем уровне развития элементной базы радиоэлектронных компонентов можно сделать очень быстро и легко. При этом не потребуются знания электроники и электротехники на высоком уровне. Вскоре вы в этом убедитесь.

Изготовление своего первого источника питания довольно интересное и запоминающееся событие. Поэтому важным критерием здесь является простота схемы, чтобы после сборки она сразу заработала без каких-либо дополнительных настроек и подстроек.

Следует заметить, что практически каждое электронное, электрическое устройство или прибор нуждаются в питании. Отличие состоит лишь в основных параметрах – величина напряжения и тока, произведение которых дают мощность.

Изготовить блок питания своими руками – это очень хороший первый опыт для начинающих электронщиков, поскольку позволяет прочувствовать (не на себе) различные величины токов, протекающих в устройствах.

Современный рынок источников питания разделен на две категории: трансформаторные и безтрансформаторные. Первые достаточно просты в изготовлении для начинающих радиолюбителей. Второе неоспоримое преимущество – это сравнительно низкий уровень электромагнитных излучений, а соответственно и помех. Существенным недостатком по современным меркам является значительная масса и габариты, вызванные наличием трансформатором – самого тяжелого и громоздкого элемента в схеме.

Безтрансформаторные блоки питания лишены последнего недостатка ввиду отсутствия трансформатора. Вернее он там есть, но не в классическом представлении, а работает с напряжением высокой частоты, что позволяет снизить число витков и размеры магнитопровода. В результате снижаются вцелом габариты трансформатора. Высокая частота формируется полупроводниковыми ключами, в процессе из включения и выключения по заданному алгоритму. Вследствие этого возникают сильные электромагнитные помехи, поэтому такие источник подлежат обязательному экранированию.

Мы будем собирать трансформаторный блок питания, который никогда не утратит своей актуальности, поскольку и поныне используется в аудиотехнике высокого класса, благодаря минимальному уровню создаваемых помех, что очень важно для получения качественного звука.

Устройство и принцип работы блока питания

Стремление получить как можно компактнее готовое устройство примело к появлению различных микросхем, внутри которых находятся сотни, тысячи и миллионы отдельных электронных элементов. Поэтому практически любой электронный прибор содержит микросхему, стандартная величина питания которой 3,3 В или 5 В. Вспомогательные элементы могут питаться от 9 В до 12 В постоянного тока. Однако мы хорошо знаем, что розетке переменное напряжение 220 В частотою 50 Гц. Если его подать непосредственно на микросхему или какой-либо другой низковольтный элемент, то они мгновенно выйдут из строя.

Блок питания своими руками

Отсюда становится понятным, что главная задача сетевого блока питания (БП) состоит в снижении величины напряжения до приемлемого уровня, а также преобразование (выпрямление) его из переменного в постоянное. Кроме того, его уровень должен оставаться постоянным независимо от колебаний входного (в розетке). Иначе устройство будет работать нестабильно. Следовательно, еще одна важнейшая функция БП – это стабилизация уровня напряжения.

В целом структура блока питания состоит из трансформатора, выпрямителя, фильтра и стабилизатора.

Функциональная схема блока питания

Помимо основных узлов еще используется ряд вспомогательных, например, индикаторные светодиоды, которые сигнализируют о наличие подведенного напряжения. А если в БП предусмотрена его регулировка, то естественно там будет вольтметр, а возможно еще и амперметр.

Трансформатор

В данной схеме трансформатор применяется для снижения напряжения в розетке 220 В до необходимого уровня, чаще всего 5 В, 9 В, 12 В или 15 В. При этом еще осуществляется гальваническая развязка высоковольтных с низковольтными цепями. Поэтому при любых внештатных ситуациях напряжение на электронном устройстве не превысит значение величины вторичной обмотки. Также гальваническая развязка повышает безопасность обслуживающего персонала. В случае прикосновения к прибору, человек не попадет под высокий потенциал 220 В.

Конструкция трансформатора довольно проста. Он состоит из сердечника, выполняющего функцию магнитопровода, который изготовляется из тонких, хорошо проводящих магнитный поток, пластин, разделенных диэлектриком, в качестве которого служит нетокопроводящий лак.

На стержень сердечника намотаны минимум две обмотки. Одна первичная (еще ее называют сетевая) – на нее подается 220 В, а вторая – вторичная – с нее снимается пониженное напряжение.

Принцип работы трансформатора

Принцип работы трансформатора заключается в следующем. Если к сетевой обмотке приложить напряжение, то, поскольку она замкнута, в ней начнет протекать переменный ток. Вокруг этого тока возникает переменное магнитное поле, которое собирается в сердечнике и протекает по нему в виде магнитного потока. Поскольку на сердечнике расположена еще одна обмотка – вторичная, то поде действием переменного магнитного потока в ней навидится электродвижущая сила (ЭДС). При замыкании этой обмотки на нагрузку, через нее будет протекать переменный ток.

Радиолюбители в своей практике чаще всего применяют два вида трансформаторов, которые главным образом отличатся типом сердечника – броневой и тороидальный. Последний удобнее в применении тем, что на него достаточно просто можно домотать нужное количество витков, тем самым получить необходимое вторичное напряжение, которое прямопропорционально зависит от количества витков.

Трансформатор тороидальный | Трансформатор броневой

Основными для нас являются два параметра трансформатора – напряжение и ток вторичной обмотки. Величину тока примем равной 1 А, поскольку на такое же значение мы возьмем стабилитроны. О чем немного далее.

Диодный мост

Продолжаем собирать блок питания своими руками. И следующим порядковым элементом в схеме установлен диодный мост, он же полупроводниковый или диодный выпрямитель. Предназначен он для преобразования переменного напряжения вторичной обмотки трансформатора в постоянное, а точнее говоря, в выпрямленное пульсирующее. Отсюда и происходит название «выпрямитель».

Существуют различные схемы выпрямления, однако наибольшее применение получила мостовая схема. Принцип работы ее заключается в следующем. В первый полупериод переменного напряжения ток протекает по пути через диод VD1, резистор R1 и светодиод VD5. Далее ток возвращается к обмотке через открытый VD2.

Принцип работы мостового выпрямителя

К диодам VD3 и VD4 в этот момент приложено обратное напряжение, поэтому они заперты и ток через них не протекает (на самом деле протекает только в момент коммутации, но этим можно пренебречь).

В следующий полупериод, когда ток во вторичной обмотке изменит свое направление, произойдет все наоборот: VD1 и VD2 закроются, а VD3 и VD4 откроются. При этом направление протекания тока через резистор R1 и светодиод VD5 останется прежним.

Мостовой выпрямитель

Диодный мост можно спаять из четырех диодов, соединенных согласно схемы, приведенной выше. А можно купить готовый. Они бывают горизонтального и вертикального исполнения в разных корпусах. Но в любом случае имеют четыре вывода. На два вывода подается переменное напряжение, они обозначаются знаком «

», оба одинаковой длины и самые короткие.

Диодный мост

С двух других выводов снимается выпрямленное напряжение. Обозначаются они «+» и «-». Вывод «+» имеет наибольшую длину среди остальных. А на некоторых корпусах возле него делается скос.

Конденсаторный фильтр

После диодного моста напряжение имеет пульсирующий характер и еще непригодно для питания микросхем и тем более микроконтроллеров, которые очень чувствительны к различного рода перепадам напряжения. Поэтому его необходимо сгладить. Для этого можно применяется дроссель либо конденсатор. В рассматриваемой схеме достаточно использовать конденсатор. Однако он должен иметь большую емкость, поэтому следует применять электролитический конденсатор. Такие конденсаторы зачастую имеют полярность, поэтому ее необходимо соблюдать при подключении в схему.

Схема сглаживания выпрямленного напряжения

Отрицательный вывод короче положительного и на корпусе возле первого наносится знак «-».

Конденсатор электролитический

Стабилизатор напряжения LM7805, LM7809, LM7812

Вы наверное замечали, что величина напряжения в розетке не равна 220 В, а изменяется в некоторых пределах. Особенно это ощутимо при подключении мощной нагрузки. Если не применять специальных мер, то оно и на выходе блока питания будет изменяться в пропорциональном диапазоне. Однако такие колебания крайне не желательны, а иногда и недопустимы для многих электронных элементов. Поэтому напряжение после конденсаторного фильтра подлежит обязательной стабилизации. В зависимости от параметров питаемого устройства применяются два варианта стабилизации. В первом случае используются стабилитрон, а во втором – интегральный стабилизатор напряжения. Рассмотрим применение последнего.

В радиолюбительской практике широкое применение получили стабилизаторы напряжения серии LM78xx и LM79xx. Две буквы указывают на производителя. Поэтому вместо LM могут быть и другие буквы, например CM. Маркировка состоит из четырех цифр. Первые две – 78 или 79 означают соответственно положительно или отрицательное напряжение. Две последние цифры, в данном случае вместо них два икса: хх, обозначают величину выходного U. Например, если на позиции двух иксов будет 12, то данный стабилизатор выдает 12 В; 08 – 8 В и т.д.

Для примера расшифруем следующие маркировки:

LM7805 → 5 В, положительное напряжение

LM7912 → 12 В, отрицательное U

Стабилизатор напряжения LM7805 | LM7809 | LM7812

Интегральные стабилизаторы имеют три вывода: вход, общий и выход; рассчитаны на ток 1А.

LM7805 обозначение выводов

Если выходное U значительно превышает входное и при этом потребляется предельный ток 1 А, то стабилизатор сильно нагревается, поэтому его следует устанавливать на радиатор. Конструкция корпуса предусматривает такую возможность.

Если ток нагрузки гораздо ниже предельного, то можно и не устанавливать радиатор.

Схема блока питания

Схема блока питания в классическом исполнении включает: сетевой трансформатор, диодный мост, конденсаторный фильтр, стабилизатор и светодиод. Последний выполняет роль индикатора и подключается через токоограничивающий резистор.

Схема блока питания

Поскольку в данной схеме лимитирующим по тока элементов является стабилизатор LM7805 (допустимое значение 1 А), то все остальные компоненты должны быть рассчитаны на ток не менее 1 А. Поэтому и вторичная обмотка трансформатора выбирается на ток от одного ампера. Напряжение ее должно быть не ниже стабилизированного значения. А по хорошему его следует выбирать из таких соображений, что после выпрямления и сглаживания U должно быть на 2 – 3 В выше, чем стабилизированное, т.е. на вход стабилизатора следует подавать на пару вольт больше его выходного значения. Иначе он будет работать некорректно. Например, для LM7805 входное U = 7 – 8 В; для LM7805 → 15 В. Однако следует учитывать, что при слишком завышенном значении U, микросхема будет сильно нагреваться, поскольку «лишнее» напряжение гасится на ее внутреннем сопротивлении.

Диодный мост можно сделать из диодов типа 1N4007, или взять готовый на ток не менее 1 А.

Сглаживающий конденсатор C1 должен иметь большую емкость 100 – 1000 мкФ и U = 16 В.

Конденсаторы C2 и C3 предназначены для сглаживания высокочастотных пульсаций, которые возникают при работе LM7805. Они устанавливаются для большей надежности и носят рекомендательный характер от производителей стабилизаторов подобных типов. Без таких конденсаторов схема также нормально работает, но поскольку они практически ничего не стоят, то лучше их поставить.

Блок питания своими руками на 78L05, 78L12, 79L05, 79L08

Часто необходимо питать только одну или пару микросхем или маломощных транзисторов. В таком случае применять мощный блок питания не рационально. Поэтому лучшим вариантом будет применение стабилизаторов серии 78L05, 78L12, 79L05, 79L08 и т.п. Они рассчитаны на максимальный ток 100 мА = 0,1 А, но при этом очень компактные и по размерам не больше обычного транзистора, а также не требует установки на радиатор.

78L05 обозначение выводов

Маркировка и схема подключения аналогичны, рассмотренной выше серии LM, только отличается расположением выводов.

LM7805 | 78L05

Для примера изображена схема подключения стабилизатора 78L05. Она же подходит и для LM7805.

LM7805 | 78L05 схема включения

Схема включения стабилизаторов отрицательно напряжения приведена ниже. На вход подается -8 В, а на выходе получается -5 В.

Блок питания с отрицательным напряжением

Как видно, сделать блок питания своими руками очень просто. Любое напряжение можно получить путем установки соответствующего стабилизатора. Следует также помнить о параметрах трансформатора. Далее мы рассмотри, как сделать блок питания с регулировкой напряжения.

Блок питания на 12 В своими руками — схема и пошаговая инструкция выполнения работ

Виды блоков питания, их основные технические характеристики

Блок питания является вторичным источником энергии для технических устройств, преобразующим напряжение питающей электрической сети в их рабочее напряжение.

Наиболее востребованными являются блоки питания, у которых первичное напряжение – это переменное напряжение бытовой электрической сети, равное 220 Вольт, а вторичное − преобразуемое в постоянное, равное 24/12/5/3,3 V. По принципу преобразования напряжения блоки питания (БП) подразделяются на два вида:

  • трансформаторные – когда преобразование осуществляется посредством понижающего трансформатора, они называются линейными;
  • импульсные – преобразование осуществляется благодаря наличию электронных компонентов, обеспечивающих преобразование напряжения, они называются инверторными.

Если в схеме БП предусмотрен стабилизатор выходного напряжения, то такое устройство называется стабилизированным блоком питания.

Основными техническими характеристиками, определяющими возможность использования подобных технических устройств, являются:

  • электрическая мощность, измеряемая в Ваттах (Вт или В×А);
  • напряжение на входе и выходе, измеряемое в Вольтах (В);
  • выходной ток, измеряемый в Амперах (А);
  • коэффициент полезного действия – параметр полезный при использовании БП большой мощности, измеряется в %;
  • наличие элементов защиты внутренних электрических цепей от перегрузок и токов короткого замыкания.

Область применения

Блоки питания с вторичным напряжением в 12 Вольт импульсного типа используются для подключения к бытовой электрической сети:

  • персональных компьютеров различного типа – для зарядки их аккумуляторных батарей и работы непосредственно от сети;
  • для зарядки электронных гаджетов, в том числе сотовых телефонов и смартфонов, плееров и видеокамер, а также прочих устройств, имеющих в своей конструкции аккумуляторные батареи;
  • для зарядки ручного переносного электрического инструмента – шуруповёрт, болгарка и т.д.;
  • для подключения LED светотехнических приборов (светодиодные светильники и ленты);
  • для использования прочих устройств, предполагающих работу от сети постоянного тока с напряжением 12 В и до 5 ампер, – автомагнитола или автоприёмник в условиях дома или гаража.

Принципиальная схема и принцип работы

Принципиальная схема и принцип работы зависит от вида устройства, и поэтому необходимо рассмотреть их отдельно:

  • Трансформаторный БП.

Аналоговый вид БП имеет в своей схеме понижающий трансформатор, обеспечивающий величину вторичного напряжения в заданных величинах, и диодный мост, служащий для его выпрямления. Простейшая схема такого устройства выглядит следующим образом:

схема аналогового блока питания

Принципиальная схема аналогового блока питания

Конденсаторы, установленные в схеме, обеспечивают сглаживание импульсов напряжения на выходе блока питания.

  • Импульсный БП.

Инверторный вид БП работает за счёт электронных компонентов, входящих в схему устройства. Напряжение питающей сети подаётся на входной диодный мост, а его пики сглаживаются установленными конденсаторами. После этого сигнал преобразуется в прочих элементах схемы (транзисторы, микросхема, тиристоры и т.д.) и подаётся на импульсный трансформатор.

Трансформаторы данного вида изготавливаются на основе ферромагнетных материалов, поэтому имеют малые габаритные размеры, позволяющие минимизировать размеры БП. Напряжение, полученное после трансформации, подаётся к нагрузке (выходам блока питания). Такой тип БП называется схемой с гальванической развязкой.

схема Импульсного блока питания

Импульсный блок питания на интегральной микросхеме и с построечными резисторами

Существуют схемы БП без использования гальванического соединения. В этом случае входной сигнал сразу подаётся на фильтр нижних частот.

Расчёт мощности блока питания на 12 V

Мощность БП является одной из главных технических характеристик, определяющих возможность подключения к нему той или иной нагрузки. Мощность поэтому может быть рассчитана разными способами:

Для светодиодных лент.

В этом случае расчёт выполняется следующим образом:

  • за основу берётся мощность в 1 метра LED-ленты, указываемая производителем на упаковке;
  • определяется её длина;
  • эти значения перемножаются, и полученное выражение увеличивается на 30%.

Увеличение на 30% обеспечивает необходимый запас мощности. Этот расчёт можно выразить следующей формулой:

P блока = P уд × L ленты × K запаса , где:

P блока – электрическая мощность блока питания;

P уд − электрическая мощность 1 метра светодиодной ленты;

L ленты – длина ленты;

K запаса — коэффициент запаса мощности.

Для персонального компьютера.

При необходимости определить мощность БП персонального компьютера следует знать мощности всех элементов устройств, входящих в его комплект. Это непростая задача, поэтому существуют специальные программы и онлайн-калькуляторы, служащие для выполнения такого расчёта. Вот некоторые из них:

  • OuterVision® – калькулятор, ссылка для скачивания: https://outervision.com/power-supply-calculator
  • Компания «Enermax», калькулятор питания − ссылка для скачивания: http://www.enermax.outervision.com/index.jsp
  • MSI – калькулятор источника питания, ссылка для скачивания: https://ru.msi.com/power-supply-calculator
  • KSA Power Supply Calculator WorkStation – ссылка для скачивания: http://ksa-soft.ru/soft/10-ksa-power-supply-calculator-workstation.html

Для зарядки электрического инструмента и электронных гаджетов.

Когда необходимо определить мощность БП для зарядки шуруповёрта, смартфона или иного электронного устройства, необходимо знать их электрическую мощность и учесть коэффициент запаса. Это можно отразить следующей формулой:

P блока = P устройства × K запаса

Диоды для блока питания

Для выпрямления переменного напряжения бытовой электрической сети в схемах блоков питания и прочих электронных устройств используют диоды, собираемые по мостовой схеме. Схематично полупроводниковый диод выглядит следующим образом.

схема Устройства полупроводникового диода

Устройство полупроводникового диода

Для устройства диодного моста используется 4 однотипных диода, которые соединяются определённым образом, приведённым на следующей схеме. Их технические характеристики должны соответствовать величине протекающего через них тока, а также величине допустимого обратного напряжения.

Схема соединения диодов по мостовой схеме

Схема соединения диодов по мостовой схеме

Стабилизация напряжения

Для стабилизации напряжения в БП используются электролитические конденсаторы большой ёмкости и стабилитроны. Конденсаторы сглаживают сигналы напряжения, которые имеют полусинусоидальную форму практически до прямой линии. Чем больше ёмкость конденсатора, тем сигнал на выходе более правильной формы и стремится к прямой линии. Стабилитроны обеспечивают постоянство напряжения на выходе блока питания.

Импульсный блок питания 12 V своими руками — схема

Существует большое количество различных схем блоков питания, имеющих различные технические характеристики и собранных на различных электронных компонентах. Ниже представлена схема импульсного БП с вторичным напряжением 12 Вольт.

Принципиальная схема импульсного блока питания

Принципиальная схема импульсного блока питания

При самостоятельном изготовлении подобных устройств необходимо помнить, что для обеспечения заданной пульсации напряжения на выходе ёмкость конденсаторов должна приниматься из расчёта 1 мкФ на 1 Вт выходной мощности. Электролитические конденсаторы должны быть рассчитаны на напряжение не менее 350 В. Оптимальное соотношение мощности БП и технических характеристик электронных компонентов приведено в следующей таблице:

Блок питания Элементы схемы
Мощность, кВт Ток, А Ток диода, А Ёмкость конденсатора, мкФ
0,1 0,4 0,2 100
0,2 0,8 0,4 200
0,3 1,2 0,6 300
0,5 2 1 500
1 4 2 1 000
2 8 4 2 000
3 12 6 3 000
5 20 10 5 000

Основные этапы изготовления импульсного блока питания 12 В своими руками

Работу по изготовлению БП можно разбить на несколько этапов: подготовительный, монтаж и проверка работоспособности. В данной статье рассмотрим изготовление блока питания по схеме, приведённой на рисунке № 10.

Подготовительный этап

В этот период рассчитывается мощность. Она должна быть достаточной для его использования с нагрузкой, планируемой к подключению. Выбирается вид и схема БП (см. рисунок № 10), после чего приобретаются необходимые комплектующие. В рассматриваемом случае это:

  • PTC термистор;
  • два конденсатора из расчёта 1 мкФ на 1 Вт мощности;
  • диодный мост (диоды должны соответствовать по напряжению и току);
  • драйвера − IR2152 (IR2153, IR2153D);
  • полевые транзисторы − IRF740, IRF840;
  • трансформатор (можно использовать б/у от ПК);
  • диоды, устанавливаемые на выходе, серии HER.

Монтаж блока питания

Пошаговая инструкция по изготовлению импульсного БП по выше приведённой схеме выглядит следующим образом:

Печатная плата изготавливается, для этого:

  • используется фольгированный диэлектрик;
  • составленный ранее рисунок переносится на заготовку платы;
  • выполняется протравка;
  • засверливаются отверстия, служащие креплением для элементов схемы.

Проверка работоспособности

Когда БП собран, необходимо его проверить, для этого:

  • к выходу блока питания подключается нагрузка;
  • БП включается в электрическую сеть.

В случае если подключённая нагрузка работает нормально: LED-светильники излучают свет, гаджеты и инструмент заряжаются, а прочая техника работает – значит, монтаж выполнен успешно. Ещё один способ изготовления блока питания − это размещение всех элементов устройства на ДИН-рейке.

Дин-рейка – это металлическая профилированная полоса, предназначенная для крепления электрических приборов и элементов электрических схем.

При использовании ДИН-рейки отпадает потребность в изготовлении монтажной платы, однако конструкция получается более объёмная, т.к. соединение между элементами схемы приходится выполнять при помощи соединительных проводов.

Нюансы изготовления блока питания для шуруповёрта

При изготовлении блока питания 12 В своими руками для подключения шуруповёрта к электрической сети необходимо учитывать следующие нюансы, связанные с его использованием:

  1. Напряжение на выходе должно быть 18–19 В, в противном случае мощность устройства значительно снизится.
  2. Электронные компоненты схемы БП должны соответствовать номинальному току работающего шуруповёрта.
  3. Размер собираемого блока должен быть таким, чтобы разместиться в корпусе демонтируемого аккумулятора (в случае изготовления встроенной конструкции).

В остальном этапы изготовления аналогичны, как и в случае отдельно размещаемого варианта исполнения БП.

Где купить и сколько стоит блок питания 12 V

Они продаются в магазинах бытовой электроники, офисной техники, а также в организациях, специализирующихся на их ремонте. Кроме этого, в интернете также есть предложения различных компаний, предлагающих к реализации БП различной направленности.

Блок питания DC-12V, 20.8А, 250 Вт в водонепроницаемом корпусе, степень защиты − IP67

Стоимость БП зависит от их технических характеристик и типа исполнения, определяющих возможность использования этого устройства. Чем выше мощность и степень защиты – тем больше цена. Она может составлять от нескольких сотен до нескольких тысяч рублей. Наиболее дешёвые модели:

  • ARDV-05-12A (12V, 0,4A, 5W) – 200 рублей;
  • ARDV-12-12AW (12V, 1A, 12W) – 300 рублей;
  • ARDV-24-12A (12V, 2A, 24W) – 400 рублей.

Модели в следующем сегменте:

  • APS-100L-12BM (12V, 8.3A, 100W) – 800 рублей;
  • APS-150-12BM (12V, 12.5A, 150W) – 1 000 рублей;
  • APS-250-12BM (12V, 20.8A, 250W) – 1 400 рублей.

Наличие большого количества предложений на рынке вспомогательных устройств для бытовой техники и приборов позволяет выбрать блок питания в соответствии с предъявляемыми к нему требованиям. А наличие в свободном доступе различных схем, а также электронных компонентов позволяет изготовить БП своими руками даже начинающему любителю электроники, имеющему начальные навыки работы с паяльником.

Стабилизированный блок питания для тёплых ламповых схем

Привет, Хабр! Сегодня соберём трансформаторный источник питания с мостовым выпрямителем и рассмотрим два типа линейных стабилизаторов напряжения. На транзисторном повторителе напряжения и на специализированной микросхеме.

А самое главное, что будем не только паять, но и разбираться, как эти электронные цепи работают. Это нужно не только для того, чтобы найти и устранить неисправность в случае, если она есть, но и определить, какая схема годится для нашей цели, и что в схеме можно изменить, чтобы она работала так, как нам надо.

Буду собирать вот этот радиоконструктор с Алиэкспресс. Это набор для сборки блока питания лампового устройства. Например, усилителя, для электрогитары или винилового проигрывателя. Здесь есть готовая печатная плата и упаковка с деталями. И есть трансформатор.

▍ Что такое трансформатор?

Трансформатор это несколько катушек индуктивности, намотанных обмоточным проводом, на общем сердечнике, то есть магнитопроводе. Сердечник этого трансформатора набран из стальных пластин, потому что трансформатор рассчитан на низкую частоту, 50 герц осветительной электросети.

Трансформатор работает так. Когда через обмотку протекает ток, создаётся магнитное поле. Когда сила тока изменяется, магнитное поле также изменяется. Переменное магнитное поле создаёт в другой обмотке электрический ток. Напишите в комментариях, что я не учла в этом рассказе.

Сейчас я подключила осциллограф к одной обмотке трансформатора на 115 вольт, а к другой 220-вольтовой кратковременно подключу полуторавольтовый щелочной элемент ААА. Мы видим, что в момент включения и выключения батарейки в обмотке, подключённой к осциллографу, возникает напряжение.

Если бы было достаточно постоянного магнитного поля, можно было бы просто установить в катушку постоянный магнит, и получить источник постоянного тока. Но физика так не работает. Электричество — это энергия, и чтобы её получить, необходимо какое-либо движение или превращение. Например, механическое движение в генераторе или химическая реакция в батарейке.

Осциллограф имеет генератор тестового сигнала, сейчас он настроен на один килогерц. Подключим его к обмотке на двести двадцать вольт, видим такую ​​картину.

А если подключить генератор к обмотке на шесть вольт, амплитуда напряжения на выходе будет выше. Не в 35 раз, потому что тестовый генератор маломощный, имеет высокое выходное сопротивление. Однако заметно выше.

Напряжение в розетке отечественной электросети 220 вольт. Для приборов на транзисторах и микросхемах нам обычно нужно 5, 9, 12 вольт. Для газоразрядных ламп и радиоламп требуются сотни вольт. Это может дать трансформатор.

Сетевой трансформатор со стальным сердечником тяжёлый, дорогой, занимает много места, однако блоки питания на его основе устроены проще всего. На их примере легче всего учиться.

▍ Действующее значение переменного тока

В электросети 220 вольт мы имеем напряжение, изменяющееся от нуля до плюс 310 вольт, затем снова до нуля, затем минус 310, далее всё повторяется 50 раз в секунду.

А 220 – это действующее, оно же эффективное значение. Электрочайник с сопротивлением нагретой спирали 22 ома потребляет от источника питания напряжением 220 вольт ток 10 ампер, и будет, соответственно, выделять 2200 ватт тепла. Если это будут 220 вольт постоянного или переменного тока. Что постоянный, что переменный ток, без разницы.

То, что в какой-то момент напряжение выше 220 вольт, а в другие моменты ниже, вплоть до нуля, как раз учитывается в этом среднеквадратичном эффективном значении.

▍ Какие бывают выпрямители

Во вторичной обмотке трансформатора мы также имеем переменное напряжение. Например, 10 вольт действующего значения, что означает амплитуду от минус 14 до плюс 14 вольт. Но на пути тока ставим диод, пропускающий ток только от плюса к минусу. Выходит, что позитивную полуволну синусоиды он пропускает, а негативную отрезает. Так получаем пульсирующий ток. К сожалению, такая простейшая схема однополупериодного выпрямителя использует только позитивную полуволну, а негативная просто теряется.

Хуже всего то, что однополупериодный выпрямитель создаёт постоянное подмагничивание сердечника трансформатора и импульсные помехи. Поэтому использовать его с сетевым трансформатором можно только в случае очень малой мощности. Зато в обратноходовых источниках питания однополупериодный выпрямитель работает прекрасно, но там совсем другая история.

Следует заметить, что частота такого пульсирующего тока уже не 50, а 100 герц. Так двуполупериодный выпрямитель можно использовать для повышения частоты на октаву, что было использовано в гитарном октавере Джими Хендрикса.

Октавер Хендрикса собран по схеме полумоста. Диодов здесь всего два, зато каждый имеет собственную полуобмотку трансформатора. В источниках питания такой двуполупериодный выпрямитель применяется тоже.

И, наконец, электролитический конденсатор служит в блоке питания фильтром, сглаживающим пульсации. Он заряжается до некоторых напряжений, и в те моменты, когда напряжение на выходе выпрямителя ниже, чем нужно, нагрузка питается энергией, запасённой в конденсаторе. А когда выше, конденсатор заряжается от выпрямителя.

Разумеется, процессы в выпрямителе с фильтром на самом деле сложнее и интереснее, но на сегодняшний день нам будет достаточно такого простейшего объяснения. В комментариях можно добавить то, что я не рассказала.

Эта плата содержит три выпрямителя с фильтрами и стабилизаторами напряжения. Рассмотрим схему стабилизатора анодного питания. Таких стабилизаторов на плате два одинаковых.

▍ Стабилизатор на истоковом повторителе

Здесь обмотка трансформатора подключена к входу моста D1. На выходе моста электролитический конденсатор фильтра C1. И дальше есть транзистор, в данном случае мосфет, то есть полевой транзистор с изолированным затвором, включённый по схеме с общим стоком.

На затворе мы имеем напряжение из двух последовательно соединённых стабилитронов D8 и D11.

Чтобы ограничить этот ток, не перегреть и не сжечь стабилитрон, в схеме есть резистор R1. Чтобы отфильтровать шум стабилитронов, используется конденсатор С13. А резистор R3 служит ограничению тока перезарядки затвора полевого транзистора. В следующих статьях рассмотрим этот вопрос более подробно.

Электролитический конденсатор С7 — это выходной фильтр, дополнительно сглаживающий пульсации и препятствующий изменению тока нагрузки создавать помехи в цепи питания.

Почему стабилитрона два? Потому что этот стабилизатор рассчитан на 250 вольт. Один стабилитрон у нас на 130 вольт, другой на 120. В общей сложности выходит двести пятьдесят. Минус потенциал открытия транзистора.

Второй стабилизатор анодного питания на плате устроен точно так же. Туда можно установить другие стабилитроны, тем самым настроить на другое напряжение.

▍ Стабилизатор на микросхеме

Третий стабилизатор предназначен для питания нитей накала ламп. Обычно это означает напряжение 6.3, или вдвое больше, 12.6 вольта. Поэтому здесь можно использовать простую микросхему LM317. Что и сделали разработчики этой платы.

Микросхема LM317 регулирует ток, проходящий через неё, так, чтобы напряжение между выходом и ножкой обратной связи было 1.25 вольта. Если оно ниже, микросхема открывает выходной транзистор сильнее и, соответственно, наоборот.

Это опорное напряжение формируется делителем, нижним плечом которого является резистор R13, а верхним подстроечный резистор R5. Конденсатор C1 служит для подавления помех и предотвращения самовозбуждения цепи обратной связи. И наконец, D14 и R14 это светодиод и резистор, задающий его ток.

▍ Сборка блока питания

Теперь можно спаять эту простую плату, и заодно убедиться в том, насколько это легко и быстро. Если у нас хороший инструмент, паяльник, припой.

Что куда паять, на этой плате нарисовано и подписано. Плата покрыта зелёной паяльной маской. Это термостойкий изоляционный лак, который при пайке — не позволяет припою попадать туда, куда не нужно. Также он защищает компоненты от контакта с токопроводящими дорожками.

Прежде всего установлю два стабилитрона, по два больших резистора 47 кОм и 220 Ом, и маленькие резисторы 10 и 100 кОм. В каком порядке устанавливать стабилитроны, не важно, потому что они соединены последовательно. Но важно соблюдать полярность. На плате нарисовано, где должна быть катодная полоска. Она нарисована на диоде у той ножки, куда направлена ​​стрелка на схематическом изображении диода.

Припой представляет собой трубочку из эвтектического оловянно-свинцового сплава ПОС63 с канифолью, поэтому дополнительные флюсы при пайке им не нужны.

Теперь установим маленькие электролитические конденсаторы. Минус электролитического конденсатора отмечен полоской на самом конденсаторе и на плате. Полярность необходимо соблюдать обязательно, иначе конденсатор взорвётся.

Далее можно впаять все клеммники, потому что они ниже очередных конденсаторов.

Настала очередь подстроечного резистора. На плате нарисовано, с какой стороны должен быть его вал.

Далее более высокие конденсаторы. На плате написано 22 микрофарада, в наборе они по 10. Считаю, что будут работать адекватно. Анодный ток у ламповых предусилителей невелик.

Установим выпрямительные мосты. Все три моста одинаковые, KBP307. Длинная ножка и скос корпуса обозначают плюс.

Теперь светодиод. Стрелка смотрит в сторону катода, то есть минуса. Это короткая ножка, а также катод обозначен срезом фланца корпуса.

Полевые транзисторы нужно прикрутить к радиатору и установить на плату. Их следует беречь от статики. Лучше всего было бы намазать теплопроводной пастой, но у меня её нет.

На очереди два больших конденсатора (не забываем о полярности). Далее два огромных конденсатора.

Напоследок установим микросхему стабилизатор на большом радиаторе. В наборе предоставлены теплопроводящая электроизоляционная прокладка и втулка. Воспользуемся ими при установке LM317.

▍ Испытания и настройка

К сожалению, у меня нет крохотной отвёртки, чтобы подстраивать напряжение накала ламп. Зато есть ватная палочка, которую можно надеть на вал подстроечного резистора в качестве диэлектрической ручки для безопасной регулировки напряжения.

Плата блока питания собрана, теперь можно подключить провода от двух высоковольтных обмоток трансформатора, жёлтые и серые.

Далее у нас есть две шестивольтовые обмотки, белая и коричневая. Чтобы получить двадцать вольт для питания ламп 12АX7 или ЕСС83, их нужно последовательно соединить. Но для этого их необходимо фазировать.

Но прежде чем продолжать, необходимо рассмотреть вопросы техники безопасности.

Во-вторых, в этом блоке питания есть смертельно опасное напряжение. И это не шутка. Более того, это напряжение длительное время остаётся на конденсаторах после отключения от сети.

Поэтому надёжно устанавливаем трансформатор и плату на изолирующее и не огнеопасное основание. Бережём себя, окружающих, и особенно детей и домашних животных от прикосновения к плате. Повторяю, даже после того, как устройство выключено из сети.

Перед испытанием собранной схемы убедимся, что возле него не лежит электропроводных и огнеопасных предметов. Итак, я соединила шестивольтовые обмотки последовательно. Посмотрим, сколько будет на выходе, 12 или 0.

На выходе 0. Необходимо поменять местами провода одной из обмоток.

На выходе 16 вольт. Можно спаять и изолировать получившуюся среднюю точку, а крайние точки подключить к клеммам платы.

Теперь можно перевести мультиметр в режим вольтметра постоянного тока и посмотреть, какие напряжения вышли на выходах. Начнём с высокого анодного напряжения.

А теперь подключу вольтметр к выходу напряжения накала ламп. Крутя вал подстрочного резистора, можно настроить 12.6 вольт. Помним, что это опасное устройство. Работаем одной рукой и не задеваем отвёрткой ничего лишнего.

Чтобы снять опасное напряжение, подключу к выходным клеммам резисторы 330 кОм. Держать их нужно инструментом с изолирующими ручками.

Посмотрим, разрядились ли конденсаторы фильтра через резисторы. Медленно, но верно — напряжение на клеммах снижается.

Итак, наш трёхканальный стабилизированный источник питания работает. Спасибо за внимание! Интересные ламповые схемы с питанием от этого блока будут в следующих статьях.

Мощный блок питания 0-30 В своими руками

Занимаясь проектированием и конструированием различных электронных схем, не обойтись без надежного блока питания с регулируемым напряжением. Сегодня предлагаются различные конструкции: как сложные, так и простые. Узнайте, как сделать блок питания от 0 до 30 В на 10 ампер своими руками по пошаговым инструкциям со схемами и фото-примерами процесса сборки.

Мощный блок питания 0-30 В своими руками

Варианты БП для самостоятельного монтажа

Блок питания выбирают исходя из того, какие схемы предполагается им запитывать. Если это устройства с низким потреблением тока, то и БП не обязательно делать мощный: вполне можно обойтись источником с током на 5 ампер. Рассмотрим несколько вариантов схем, а также узнаем, как собирать самодельные блоки питания.

Простой БП 0-30 В

Одна из несложных схем источника питания с регулировкой выходного напряжения приводится на схеме.

Мощный блок питания 0-30 В своими руками

Устройство выполнено всего на трех транзисторах и отличается высокой точностью напряжения на выходе, благодаря использованию компенсационной стабилизации, а также применением недорогих элементов.

Изделие собирается на печатной плате и после монтажа практически сразу начинает функционировать. Главное — подобрать стабилитрон, который должен соответствовать максимальному напряжению на выходе.

Мощный блок питания 0-30 В своими руками

Для корпуса подойдет любой пластиковый или металлический короб, который окажется под рукой, например, от компьютерного БП.

Мощный блок питания 0-30 В своими руками

В такой корпус без проблем поместится трансформатор на 100 Вт и печатная плата. Имеющийся вентилятор можно оставить, подключив в разрыв его питания сопротивление для снижения оборотов.

Мощный блок питания 0-30 В своими руками

Для измерения потребляемого нагрузкой тока задействуем стрелочный амперметр, устанавливая его на переднюю панель из пластиковой коробки.

Мощный блок питания 0-30 В своими руками

Вольтметр можно использовать цифровой.

Мощный блок питания 0-30 В своими руками

Завершив монтаж, проверяем выходное напряжение, изменяя положение переменного резистора.

Мощный блок питания 0-30 В своими руками

Минимальное значение должно быть около нуля, максимальное – 30 В. Подсоединив нагрузку около 0,5 А, проверяем просадку напряжения на выходе – она должна быть минимальной.

Мощный блок питания 0-30 В своими руками

Мощный импульсный БП

Рассмотрим схему блока питания с регулировкой по току и напряжению. Такие устройства иногда еще называют лабораторными, поскольку они подходят не только для запитки электронных схем, но и для зарядки АКБ.

Мощный блок питания 0-30 В своими руками

Этот БП обеспечивает регулировку напряжения в диапазоне 0-30 В и тока 0-10 А. Источник можно разделить на три части:

  1. Внутренняя схема питания, состоящая из источника напряжения на 12 В, и ток минимум 300 мА. Назначение этого источника – запитка схемы БП. Мощный блок питания 0-30 В своими руками
  2. Блок управления. Выполнен на микросхеме TL494 с простым драйвером. Резистор R4 позволяет регулировать максимальный порог напряжения, R2 – ток. Мощный блок питания 0-30 В своими руками
  3. Силовая часть. Большую часть схемы можно задействовать из старого компьютерного блока питания. Для намотки трансформатора управления подойдет ферритовое кольцо R16*10*4,5, на котором наматывают провод МГТФ 0.07 мм² в количестве 30 витков одновременно в 3 провода. L1 мотают на кольце от того же БП, удалив старую обмотку и намотав медный провод диаметром 2 мм и длиной 2 м. Для L2 подойдет дроссель на ферритовом стержне. Мощный блок питания 0-30 В своими руками

[alert]Чтобы получить выходное напряжение 30 В, вторичную обмотку силового трансформатора нужно перемотать, увеличив количество витков.[/alert]

Для размещения элементов схемы изготавливают печатную плату.

Мощный блок питания 0-30 В своими руками

Если сборка выполнена правильно, блок питания начинает работать сразу. Чтобы была возможность управлять вентилятором по температуре, можно собрать простую схему на lm317.

Мощный блок питания 0-30 В своими руками

На Ардуино

Радиолюбители с опытом иногда собирают блоки питания под управлением Ардуино. Таким образом удается создать контролируемый источник питания с такими режимами: может “отдыхать”, функционировать в режиме экономии либо работать на ток в 10 А и разное выходное напряжение, если это требуется.

Мощный блок питания 0-30 В своими руками

«Умный» блок питания представлен на схеме.

Мощный блок питания 0-30 В своими руками

Для запитки микропроцессора ATmega задействуется импульсный стабилизатор. Благодаря наличию постоянного и стабилизированного напряжения 5 В блок питания можно оснастить разъемом USB, что позволит подзаряжать какие-либо устройства.

Печатную плату можно сделать по образцу.

Мощный блок питания 0-30 В своими руками

Внешний вид устройства и внутреннее расположение компонентов представлены на фото.

Мощный блок питания 0-30 В своими руками

Мощный блок питания 0-30 В своими руками

Блок питания от 0 до 30 В на 10 ампер можно собрать своими руками по любой из представленных схем, а как именно сделать такое устройство, пошагово рассмотрено в инструкциях с фото-примерами. Для сборки простого источника питания потребуются начальные значения в области радиоэлектроники, умение обращаться с паяльником и минимальный перечень радиокомпонентов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *