Какое электрическое поле называется вихревым
Перейти к содержимому

Какое электрическое поле называется вихревым

Какое электрическое поле называется вихревым? В чём его особенности?

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Инфофиз. Репетитор по физике и информатике

В мире нет ничего особенного. Никакого волшебства. Только физика.

Чак Паланик

Вихревое электрическое поле

  • Печать
  • E-mail
Вихревое электрическое поле — это электрическое поле, которое порождается переменным магнитным полем и линии напряженности которго замкнуты.

Вихревое электрическое поле

Переменное магнитное поле порождает инду­цированное электрическое поле. Если магнитное поле постоянно, то индуциро­ванного электрического поля не возникнет. Следовательно, индуцированное электрическое поле не связано с зарядами, как это имеет место в случае элект­ростатического поля; его силовые линии не начинаются и не заканчиваются на зарядах, а замкнуты сами на себя, подобно силовым линиям магнитного поля. Это означает, что индуцированное электрическое поле, подобно магнитному, является вихревым.

Если неподвижный проводник поместить в переменное магнитное поле, то в нем индуцируется э. д. с. Электроны приводятся в направленное движение электрическим полем, индуцированным переменным магнитном полем; возни­кает индуцированный электрический ток. В этом случае проводник является лишь индикатором индуцированного электрического поля. Поле приводит в движение свободные электроны в проводнике и тем самым обнаруживает себя. Теперь можно утверждать, что и без проводника это поле существует, обладая запасом энергии.

Сущность явления электромагнитной индукции заключается не столько в появлении индуцированного тока, сколько в возникновении вихревого электрического поля.

Это фундаментальное положение электродинамики установлено Максвел­лом как обобщение закона электромагнитной индукции Фарадея.

В отличие от электростатического поля индуцированное электрическое поле является непотенциальным, так как работа, совершаемая в индуцированном электрическом поле, при перемещении единичного положительного заряда по замкнутому контуру равна э. д. с. индукции, а не нулю.

Направление вектора напряженности вихревого электрического поля уста­навливается в соответствии с законом электромагнитной индукции Фарадея и правилом Ленца. Направление силовых линий вихревого эл. поля совпадает с направлением индукционного тока.

Так как вихревое электрическое поле существует и в отсутствие проводника, то его можно применять для ускорения заряженных частиц до скоростей, со­измеримых со скоростью света. Именно на использовании этого принципа основано действие ускорителей электронов — бетатронов.

Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.

Отличие вихревого электрического поля от электростатического

1) Оно не связано с электрическими зарядами;
2) Силовые линии этого поля всегда замкнуты;
3) Работа сил вихревого поля по перемещению зарядов на замкнутой траектории не равна нулю.

Научная электронная библиотека

Подобно тому, как движущийся электрический заряд создаёт вихревое магнитное поле, направление вектора индукции которого определяется правилом правого винта (рис. 1.6), переменное магнитное поле создаёт вихревое электрическое поле (рис. 1.13), направление напряжённости которого определяется правилом левого винта:

Если направление увеличения вектора магнитной индукции совпадает с направлением поступательного движения левого винта, то направление вращения шляпки левого винта совпадает с направлением вектора напряжённости электрического поля.

_1_13.tif

Рис. 1.13. Вихревое электрическое поле. Замкнутый контур напряжённости электрического поля перпендикулярен плоскости рисунка

Возникновение вихревого электрического поля под действием переменного магнитного поля называется явлением электромагнитной индукции (индукцией). Само вихревое электрическое поле, возникшее под действием магнитного поля, называется индуцированным электрическим полем.

На практике, переменное магнитное поле нередко получают изменением силы тока в соленоиде (рис. 1.11). Экспериментально вихревое электрическое поле можно обнаружить с помощью металлического (например, алюминиевого) кольца (проводящего контура) внутрь которого вносится магнит (рис. 1.14).

_1_14.wmf

Рис. 1.14. Иллюстрация возникновения индукционного тока

Как видно из рис. 1.14 вихревое электрическое поле, вызванное движением магнита внутрь кольца, приводит к возникновению электрического тока в проводящем контуре (индукционного тока) и вектору магнитной индукции, направленному из кольца против движения магнита. Кольцо становится подобным магниту, обращённому одноимённым полюсом к приближающемуся магниту. Одноимённые же полюсы отталкиваются. Поэтому кольцо от магнита будет отталкиваться, а стержень, свободно вращающийся вокруг вертикальной оси, поворачиваться. При движении магнита из кольца направление электрического тока в проводящем контуре сменится на противоположное также как и направление вектора магнитной индукции. В результате кольцо к магниту станет притягиваться. При движении внутрь кольца южного полюса магнита поведение стержня с кольцами окажется тем же самым. Электрический ток, возникающий под действием индуцированного электрического поля называется индукционным током. Русским физиком Э.Х. Ленцем впервые было сформулировано общее правило определения направления индукционного тока. Согласно правилу Ленца возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван. Важно отметить, что если магнит внести в другое (разрезанное) кольцо, то электрического тока в нём не возникнет и стержень не повернётся.

Работу по перемещению единичного положительного заряда вдоль замкнутого контура называют электродвижущей силой (ЭДС):

где Е – абсолютное значение вектора s158.wmf, замкнутого в форме окружности с радиусом r. В общем случае, для замкнутого контура длиной l произвольной формы

Размерность ЭДС та же, что у потенциала и напряжения (вольты).

При этом установлено, что электродвижущая сила индукции (εi) определяется равенством:

s159.wmf(1.8)

где s160.wmf– скорость изменения магнитного потока Ф через площадь S,

α – угол между вектором магнитной индукции и нормалью (перпендикуляром) к плоскости S. Единицей магнитного потока является вебер, 1 Вб ≡ 1 Tл∙1 м2.

Знак «минус» в равенстве (1.8) означает, что:

2.psdиндуцированное вихревое электрическое поле совершает работу, противоположную по знаку работе, совершаемой переменным магнитным полем – вектор s161.wmfиндукционного тока противоположен направлению изменения вектора магнитной индукции переменного магнитного поля;

2.psdнаправление вектора напряжённости определяется против правила буравчика, то есть по правилу левого винта.

Если скорость изменения магнитного потока на измеряемом отрезке времени ∆t – постоянна, то равенство (1.8) может быть записано в интегральной форме:

s162.wmf

Сила индукционного тока (I), измеряемая в амперах (А), определяется равенством:

s163.wmf

где R – сопротивление проводящего контура, [R] = Ом.

Примеры решения задач

Определить ЭДС индукции в контуре проводника, если за три секунды магнитный поток в этом контуре равномерно уменьшился на 0,6 мВб.

s164.wmfs165.wmf

Ответ: s166.wmf

s167.wmf– ?

Магнитный поток, пронизывающий контур проводника равномерно увеличился с 1,4 мВб до 2 мВб и при этом ЭДС индукции оказалась равной – 1,2 мВ. Найти время изменения магнитного потока и силу индукционного тока, если сопротивление проводника 0,24 Ом.

s168.wmf

следовательно s169.wmf

s170.wmf s171.wmfs172.wmf

Ответ: ∆t = 0,5 с; I = 5 А

Задачи для самостоятельного решения

1. На сколько изменился магнитный поток за 5 секунд, если в течение этого времени электродвижущая сила равнялась –0,9 В? Увеличивался магнитный поток или уменьшался?

2. Магнитный поток, пронизывающий контур проводника, равномерно уменьшался с 3 Вб до 0,5 Вб, и при этом ЭДС индукции оказалась равной 2 В. Найти время изменения магнитного потока и сопротивление проводящего контура, в котором сила индукционного тока оказалась равной 0,05 А.

1. Сформулируйте правило левого винта.

2. Что такое индукция?

3. Как можно доказать экспериментально возникновение индуцированного электрического поля?

Помогите пожалуйста ответить -Какое поле называется индукционными или вихревым электрическим полем?
— Что является источником индукционного электрического поля?
— Что такое токи Фуко? Приведите примеры их использования. В каких случаях с ними приходится бороться?
— Какими отличительными свойствами обладает индукционное электрическое поле по сравнению с магнитным полем? Стационарным или электростатическим полем?

andryukhina2001

. Это свойство используется для демпфирования подвижных частей гальванометров, сейсмографов и др.

Тепловое действие токов Фуко используется в индукционных печах — в катушку, питаемую высокочастотным генератором большой мощности, помещают проводящее тело, в нем возникают вихревые токи, разогревающие его до плавления.

С помощью токов Фуко осуществляется прогрев металлических частей вакуумных установок для их дегазации.

Паразитные токи Фуко

Во многих случаях токи Фуко могут быть нежелательными. Для борьбы с ними принимаются специальные меры: с целью предотвращения потерь энергии на нагревание сердечников трансформаторов, эти сердечники набирают из тонких пластин, разделённых изолирующими прослойками. Появление ферритов сделало возможным изготовление этих проводников сплошными.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *