Как найти потенциал в точке
Перейти к содержимому

Как найти потенциал в точке

Потенциал. Разность потенциалов.

Разность потенциалов (напряжение) между 2-мя точками поля равняется отношению работы поля по перемещению заряда из начальной точки в конечную к этому заряду:

Потенциал Разность потенциалов

,

Так как работа по перемещению заряда в потенциальном поле не зависит от формы траектории, то, зная напряжение между двумя точками, мы определим работу, которая совершается полем по перемещению единичного заряда.

Если есть несколько точечных зарядов, значит, потенциал поля в некоторой точке пространс­тва определяется как алгебраическая сумма потенциалов электрических полей каждого заряда в данной точке:

Потенциал Разность потенциалов

.

Эквипотенциальной поверхностью, или поверхностью равного потенциала, является поверхность, для любых точек которой разность потенциалов равна нулю. Это означяет, что работа по перемещению заряда по такой поверхности равна нулю, следовательно, линии напряженности электрического поля перпендикулярны эквипотенциальным поверхностям. Эквипотенциальные поверхности однородного поля представляют собой плоскости, а точечного заряда — концентрические сферы.

Вектор напряженности Потенциал Разность потенциалов(как и сила Потенциал Разность потенциалов) перпендикулярен эквипотенциальным поверхнос­тям. Эквипотенциальной является поверхность любого проводника в электростатическом поле, так как силовые линии перпендикулярны поверхности проводника. Внутри проводника разность потенциалов между любыми его точками равна нулю.

Напряжение и напряженность однородного поля .

Потенциал Разность потенциалов

В однородном электрическом поле напряженность E в каждой точке одинакова, и работа A по перемещению заряда q параллельно на расстояние d между двумя точками с потенциалами φ1, и φ2 равна:

Потенциал Разность потенциалов

,

Потенциал Разность потенциалов

.

Т.о., напряженность поля пропорциональна разности потенциалов и направлена в сторону уменьшения потенциала. Поэтому положительный заряд будет двигаться в сторону уменьшения потенциала, а отрицательный — в сторону его увеличения.

Единицей напряжения (разности потенциалов) является вольт. Исходя из формулы Потенциал Разность потенциалов, Потенциал Разность потенциалов, разность потенциалов между двумя точками равна одному вольту, если при перемещении заряда в 1 Кл между этими точками поле совершает работу в 1 Дж.

Асламазов Л.Г. Напряженность, напряжение, потенциал // Квант

Каждая точка электрического поля характеризуется векторной величиной – напряженностью поля. Напряженность  поля в данной точке равна силе, действующей на положительный пробный заряд, помещенный в эту точку, и отнесенной к единице заряда. Это – силовая характеристика электрического поля.

При перемещении электрического заряда в поле совершается работа. Электростатическое поле обладает очень важным свойством потенциальностью: работа по перемещению заряда из одной точки поля в другую не зависит от формы траектории. Это позволяет ввести понятие напряжения (или разности потенциалов). Напряжение U между двумя точками поля (*Под словами «пояс», «электрическое поле» здесь и в дальнейшем мы будем понимать электростатическое поле, то есть поле, созданное неподвижными зарядами.) равно работе, совершаемой электрическим полем по перемещению единицы положительного заряда из одной точки в другую.

В отличие от напряженности, определенной в отдельно взятой точке, напряжение характеризует две точки ноля. Если зафиксировать одну точку, выбрав ее за начало отсчета, то любая точка поля будет иметь определенное напряжение по отношению к выбранной точке. Это напряжение называют потенциалом φ. Очевидно, что началу отсчета соответствует нулевой потенциал. Чаще всего нулевой потенциал приписывается точке, бесконечно удаленной от заряда, создающего поле. В этом случае потенциал φ некоторой точки поля равен работе, совершаемой электрическим полем по перемещению единицы положительного заряда из этой точки в бесконечность. Это – энергетическая характеристика электрического поля.

Иногда задавать в каждой точке скалярную величину – потенциал φ – удобнее, чем векторную величину напряженность  . Естественно, что эти две величины должны быть связаны друг с другом.

Рассмотрим вначале однородное электрическое поле. Его напряженность  одинакова во всех точках; силовые линии такого поля – параллельные прямые (рис. 1).

Найдем разность потенциалов между точками B и D. Потенциал φB точки B равен работе по перемещению единицы заряда из этой точки в бесконечность. Форма траектории при подсчете работы не имеет значения, поэтому будем перемещать заряд сначала по отрезку BC потом по отрезку CD а затем из точки D в бесконечность. Сила, действующая на единицу заряда со стороны электрического поля, равна напряженности. На отрезке ВС работа этой силы равна l, где E – проекция вектора напряженности на силовую линию, a l – длина отрезка ВС. На отрезке CD сила работы не совершает, так как она перпендикулярна перемещению. Наконец, работа по перемещению единицы заряда из точки D в бесконечность равна потенциалу φD. Поэтому: или для разности потенциалов:

(1)

Для того чтобы формула (1) давала правильный знак разности потенциалов, величине l надо приписывать определенный знак в зависимости от расположения точек B и C на силовой линии. Будем считать, что l – это проекция вектора BD на направление силовой линии. Тогда знак положителен, если точка C лежит «ниже» по силовой линии, чем точка B и отрицателен в противоположном случае. Для случая, изображенного на рисунке 1, l > 0, и разность потенциалов , что соответствует убыванию потенциала вдоль силовой линии .

Итак, в однородном электрическом иоле между напряженностью и разностью потенциалов имеется простая связь, даваемая формулой (1).

Какова связь между потенциалом и напряженностью в случае неоднородного электрического поля? В таком поле напряженность  меняется от точки к точке. Пусть, для простоты рассуждений, изменение напряженности происходит только в одном направлении, которое примем за ось ОХ (рис. 2).

Тогда напряженность поля  зависит только от координаты x:  . Ясно, что в небольших участках пространства напряженность меняется мало, и электрическое поле там можно приближенно считать однородным. Возьмем близкие точки B и D и найдем разность потенциалов между ними. Воспользуемся формулой (1). Потенциал так же, как и напряженность, зависит только от координаты x (*Плоскость x = const эквипотенциальна, так как при перемещении единицы заряда в этой плоскости электрическое поле работы не совершает.):

Проекция вектора  на ось ОХ равна разности координат точек D и B:

Таким образом, для близких точек B и D получаем:

(2)

Чтобы формула (2) стала точной, надо устремить точку B к точке D и найти предел, к которому стремится правая часть при неограниченном сближении точек:

(3)

Легко увидеть, что правая часть формулы (3) – это производная потенциала, взятая с обратным знаком. Таким образом, в неоднородном электрическом поле связь между потенциалом и напряженностью в каждой точке следующая:

(4)

Знак минус в формуле (4) означает, что потенциал убывает вдоль силовой линии: поскольку проекция напряженности на силовую линию , что и означает убывание потенциала.

Если нарисовать график зависимости φ от x, то тангенс угла наклона α касательной к графику в каждой его точке равен производной в этой точке (рис. 3). Поэтому можно сказать, что напряженность электрического поля определяет наклон касательной к графику потенциала.

Рассмотрим теперь несколько конкретных задач.

Задача 1. Сфера радиуса R имеет заряд Q. Найти зависимость напряженности и потенциала от расстояния r от центра сферы. Нарисовать графики.

Найдем вначале напряженность поля. Внутри сферы электрического поля нет: при r < RE = 0. Вне сферы напряженность поля такая же, как у точечного заряда Q помешенного в центр сферы: при r> R проекция напряженности на выбранное направление от центра , где ε0 – электрическая постоянная. На поверхности сферы, при r = R электрическое поле испытывает скачок . Зависимость E от r графически показана на рисунке 4, а.

image003.jpg

Величину скачка ΔE можно выразить через поверхностную плотность заряда (равную заряду, приходящемуся на единицу площади поверхности сферы):

Заметим, что это общее свойство электростатического поля: на заряженной поверхности его проекция на направление нормали всегда испытывает скачок независимо от формы поверхности.

Выясним теперь, как меняется потенциал φ в зависимости от r. Мы уже знаем, что в любой точке тангенс угла наклона касательной к графику потенциала должен совпадать со значением проекции напряженности (взятой с противоположным знаком). При 0 < r < RE = 0, и, следовательно, во всех этих точках касательная к графику потенциала должна быть горизонтальной. Это означает, что на участке 0 < r < R потенциал не меняется: φ = const.

Вне сферы, при r > R производная отрицательна и величина ее убывает с расстоянием r. Поэтому и потенциал должен убывать с расстоянием, стремясь к нулю при . Действительно, чем дальше расположена точка, в которой мы ищем потенциал, тем меньшую работу надо совершать при перемещении единицы заряда из этой точки в бесконечность. Величина потенциала φ при r > R такая же, как у точечного заряда, помещенного в центр сферы:

Может ли потенциал испытать скачок на поверхности сферы, то есть при r = R? Очевидно, что нет. Скачок потенциала означал бы, что при перемещении единичного заряда между двумя очень близкими точками 1 и 2 электрическое поле совершало бы конечную работу:

должно оставаться конечным при что невозможно. Таким образом, потенциал не испытывает скачков.

График зависимости φ от r изображен на рисунке 4, б.

Задача 2. Шар радиуса R равномерно заряжен по всему объему. Полный заряд тара Q. Нарисуйте графики зависимости напряженности и потенциала от расстояния r от центра шара.

Такой шар можно представить себе состоящим из большого числа тонких заряженных сфер, вложенных одна в другую. Каждая сфера внутри себя поля не создает, а вне создает поле такое же, как точечный заряд, помещенный в ее центр. Поэтому вне шара, при r > R напряженность такая же, как напряженность поля точечного заряда Q помещенного в центр шара:

Внутри шара, на расстоянии R поле создают только сферы с радиусами от 0 до r (для сфер большего радиуса рассматриваемая точка находится внутри них). Следовательно, напряженность на расстоянии s от центра шара такая же, как напряженность поля точечного заряда Qr. помещенного в центр шара, где Qr – суммарный заряд всех сфер с радиусами от 0 до r, то есть заряд шара радиуса r. Если на шар радиуса R приходится заряд Q, то на шар радиуса r будет приходиться заряд

Таким образом, внутри шара напряженность поля – она линейно растет с расстоянием.

На поверхности шара, в точке r = R напряженность скачка не испытывает. Это находится в соответствии с общим правилом, так как поверхностная плотность заряда в данном случае равна нулю: шар заряжен однородно, и на бесконечно тонкий поверхностный слой приходится бесконечно малый заряд.

График зависимости E от r показан на рисунке 5, a.

Нарисуем теперь график потенциала. Производная от потенциала

всегда отрицательна (E ≥ 0). Поэтому с увеличением r потенциал должен монотонно убывать. В точке r = 0 производная потенциала равна нулю. Следовательно, касательная к графику в. этой точке горизонтальна: в точке r = 0 потенциал имеет максимум. В точке r = R ни потенциал, ни его производная скачков не испытывают. Первое следует из общего правила для потенциала, о втором мы уже говорили выше. Поэтому кривые, изображающие зависимость потенциала от расстояния при r < R и r > R в точке r = R должны сопрягаться – гладко без излома переходить одна в другую. При потенциал . График зависимости φ от r представлен на рисунке 5, б.

Задача 3. Две плоскости расположены параллельно друг другу на расстоянии d и заряжены с поверхностной плотностью заряда σ1 и σ2 соответственно. Нарисовать графики зависимости напряженности поля и потенциала от координаты x (ось ОХ перпендикулярна пластинам). Рассмотреть случаи одноименных (рис. 6, а) и разноименных (рис. 7, а) зарядов на пластинах.

image004.jpg

Каждая плоскость создает по обе стороны от себя однородное электрическое поле, напряженность которого

Воспользовавшись принципом суперпозиции, для случая одноименных зарядов приходим к графику, показанному на рисунке 6, б, а для разноименных – к графику на рисунке 7, б. Скачки напряженности опять соответствуют общему правилу:

Соответствующие графики для потенциалов показаны на рисунках 6, в и 7, в. На отдельных участках зависимость потенциала от координаты – линейная, так как напряженность поля постоянна. Изломы происходят в тех местах, где напряженность поля испытывает скачок.

Заметим, что в данной задаче потенциал не стремится к нулю при . Это, очевидно, связано с тем, что плоскость бесконечна. В действительности размеры реальных пластин всегда ограничены; это приводит к тому, что потенциал падает с увеличением расстояния от пластин.

Задача 4. Две одинаковые параллельные пластины имеют заряды +q и –q. Как меняется разность потенциалов U между пластинами при увеличении расстояния d между ними? Нарисуйте график зависимости U от d.

Пока расстояние между пластинами значительно меньше их размеров, такую систему можно считать плоским конденсатором. Тогда – напряжение линейно растет с расстоянием (начальный участок на рисунке 8).

image005.jpg

Это соответствует тому, что напряженность поля . Как только расстояние между пластинами становится сравнимым с размерами пластин, электрическое поле появляется и вне пространства между пластинами. Тогда становятся существенными так называемые краевые эффекты, и зависимость потенциала от расстояния – довольно сложная. Однако качественно ясно, что, вследствие ослабления поля в области между пластинами, напряжение будет расти медленнее, чем по линейному закону (средний участок на рисунке 8). При дальнейшем увеличении расстояния между пластинами оно станет много больше их размеров. Тогда каждую пластину уже можно считать изолированным телом, и ее потенциал где C0 – емкость уединенной пластины. Таким образом, при очень больших расстояниях разность потенциалов перестает зависеть от расстояния между пластинами (график зависимости U от d. на рисунке 8 имеет горизонтальную асимптоту).

Краевые эффекты часто оказываются существенными при решении электростатических задач, связанных с законом сохранения энергии, рассмотрим, например, такой вариант ускорителя электронов.

Задача 5. В пластинах плоского конденсатора, заряженного до разности потенциалов U сделано сквозное отверстие. Конденсатор помещен в постоянное магнитное поле, направленное перпендикулярно электрическому полю в конденсаторе (рис. 9). Электрон влетает в пространство между пластинами конденсатора, ускоряется, приобретая энергию U вылетает через отверстие и. двигаясь в магнитном поле по окружности, возвращается в конденсатор. Затем он снова ускоряется, движется по окружности большего радиуса, опять входит в конденсатор и т.д. На первый взгляд кажется, что таким образом можно разогнать электрон до больших энергий, то есть создать ускоритель. Так ли это?

Оказывается, такой ускоритель работать не будет – не учтен краевой эффект. Вне конденсатора всегда существует слабое электрическое поле, которое тормозит электрон при егодвижении по окружности. Отрицательная работа поля при этом в точности равна положительной работе при разгоне электрона в конденсаторе: работа в электростатическом поле не зависит от формы траектории. Магнитное поле работы не совершает (сила Лоренца перпендикулярна скорости движения электрона). Поэтому полная работа всех сил, действующих на электрон, при его возвращении в начальную точку будет равна нулю, и кинетическая энергия электрона не изменится. Ускоритель работать не будет.

1. Может ли существовать электростатическое поле, у которого силовые линии – параллельные прямые, а абсолютная величина напряженности меняется только в направлении, перпендикулярном силовым линиям (рис. 10)?

2. Две концентрические металлические сферы радиусов R1 и R2 имеют заряды Q1 и Q2 соответственно. Найдите напряженность и потенциал электрического поля на произвольном расстоянии r от центра сфер. Нарисуйте графики зависимости E от r и φ от r. Рассмотрите случаи одноименных и разноименных зарядов. Как выглядят графики для случая Q1 = –Q2 (сферический конденсатор)?

3. Точечный заряд q окружен металлической сферой радиуса R с зарядом Q. Найдите напряженность поля и потенциал на произвольном расстоянии r от заряда q если он находится в центре сферы; нарисуйте графики зависимости E от r и φ от r. Как изменятся графики, если заряд сместить из центра сферы? Решите ту же задачу для случая, когда металлическая сфера заземлена.

4. Электрон влетает в пространство между пластинами плоского конденсатора так, что его скорость составляет острый угол с направлением силовых линий. Тогда при движении в конденсаторе он будет тормозиться и вылетит с меньшей скоростью; его кинетическая энергии уменьшится. Увеличится ли при этом энергия конденсатора?

5. Два одинаковых конденсатора емкостью C каждый, один из которых заряжен до напряжения U а второй – не заряжен, соединяют параллельно. Найти энергию системы до и после соединения конденсаторов. Почему эти энергии не равны?

6. Точечный заряд q находится вне незаряженной металлической сферы радиуса R на расстоянии d от ее центра. Найти потенциал сферы.

1. Не может, иначе работа по перемещению заряда по замкнутому контуру была бы отлична от нуля.

2. При R1 > r > 0 напряженность E = 0 и ; при R2 > r > R и ; при r > R2 и (рис. 11).

image006.jpg

image007.jpg

3. При R > r > 0 напряженность и ; при r > R и (рис. 12).

image008.jpg

image009.jpg

4. Энергия конденсатора не изменяется; изменяется энергия взаимодействия электрона и конденсатора (работа по перемещению электрона в бесконечность из начальной и конечной точек не одна и та же).

5. ровно половина энергии перешло в тепло (независимо от сопротивления подводящих проводов).

6. (потенциал сферы такой же, как в ее центре, а там суммарный потенциал поля индуцированных на сфере зарядов равен нулю).

Методика выполнения расчета потенциалов точек электрической цепи

Строим потенциальную диаграмму для любого замкнутого контура, включающего две ЭДС.

Возьмем контур АДСВА.

Определим величину тока, проходящего по этому контуру. Зададим направление тока по часовой стрелке. Исходя из этого источник ЭДС Е1 работает в режиме потребителя, источник ЭДС Е2 – в режиме генератора.

По закону Ома для замкнутой цепи находим величину тока:

Зададимся обходом контура по часовой стрелке. Заземлим точку А контура, ее потенциал равен нулю φА = 0.

Зная величины и направление тока и ЭДС, а также величины сопротивлений, вычислим потенциалы всех точек контура при переходе от элемента к элементу. Начнем обход от точки А.

По результатам расчетов строим потенциальную диаграмму. По оси абсцисс откладываем сопротивления контура в той последовательности, в которой производим обход контура, прикладывая сопротивления друг к другу, по оси ординат – потенциалы точек с учетом их знака.

Методика расчета электрической цепи постоянного тока на основе

III. Основы электродинамики

Рассмотрим ситуацию: заряд q0 попадает в электростатическое поле. Это электростатическое поле тоже создается каким-то заряженным телом или системой тел, но нас это не интересует. На заряд q0 со стороны поля действует сила, которая может совершать работу и перемещать этот заряд в поле.

Работа электростатического поля не зависит от траектории. Работа поля при перемещении заряда по замкнутой траектории равна нулю. По этой причине силы электростатического поля называются консервативными, а само поле называется потенциальным.

Потенциал

Система «заряд — электростатическое поле» или «заряд — заряд» обладает потенциальной энергией, подобно тому, как система «гравитационное поле — тело» обладает потенциальной энергией.

Физическая скалярная величина, характеризующая энергетическое состояние поля называется потенциалом данной точки поля. В поле помещается заряд q, он обладает потенциальной энергией W. Потенциал — это характеристика электростатического поля.

Вспомним потенциальную энергию в механике. Потенциальная энергия равна нулю, когда тело находится на земле. А когда тело поднимают на некоторую высоту, то говорят, что тело обладает потенциальной энергией.

Касательно потенциальной энергии в электричестве, то здесь нет нулевого уровня потенциальной энергии. Его выбирают произвольно. Поэтому потенциал является относительной физической величиной.

В механике тела стремятся занять положение с наименьшей потенциальной энергией. В электричестве же под действием сил поля положительно заряженное тело стремится переместится из точки с более высоким потенциалом в точку с более низким потенциалом, а отрицательно заряженное тело — наоборот.

Потенциальная энергия поля — это работа, которую выполняет электростатическая сила при перемещении заряда из данной точки поля в точку с нулевым потенциалом.

Рассмотрим частный случай, когда электростатическое поле создается электрическим зарядом Q. Для исследования потенциала такого поля нет необходимости в него вносить заряд q. Можно высчитать потенциал любой точки такого поля, находящейся на расстоянии r от заряда Q.

Диэлектрическая проницаемость среды имеет известное значение (табличное), характеризует среду, в которой существует поле. Для воздуха она равна единице.

Разность потенциалов

Работа поля по перемещению заряда из одной точки в другую, называется разностью потенциалов

Эту формулу можно представить в ином виде

Эквипотенциальная поверхность (линия) — поверхность равного потенциала. Работа по перемещению заряда вдоль эквипотенциальной поверхности равна нулю.

Напряжение

Разность потенциалов называют еще электрическим напряжением при условии, что сторонние силы не действуют или их действием можно пренебречь.

Напряжение между двумя точками в однородном электрическом поле, расположенными по одной линии напряженности, равно произведению модуля вектора напряженности поля на расстояние между этими точками.

От величины напряжения зависит ток в цепи и энергия заряженной частицы.

Принцип суперпозиции

Потенциал поля, созданного несколькими зарядами, равен алгебраической (с учетом знака потенциала) сумме потенциалов полей каждого поля в отдельности

Как определить знак потенциала

При решении задач возникает много путаницы при определении знака потенциала, разности потенциалов, работы.

На рисунке изображены линии напряженности. В какой точке поля потенциал больше?

Верный ответ — точка 1. Вспомним, что линии напряженности начинаются на положительном заряде, а значит положительный заряд находится слева, следовательно максимальным потенциалом обладает крайняя левая точка.

Если происходит исследование поля, которое создается отрицательным зарядом, то потенциал поля вблизи заряда имеет отрицательное значение, в этом легко убедиться, если в формулу подставить заряд со знаком «минус». Чем дальше от отрицательного заряда, тем потенциал поля больше.

Если происходит перемещение положительного заряда вдоль линий напряженности, то разность потенциалов и работа являются положительными. Если вдоль линий напряженности происходит перемещение отрицательного заряда, то разность потенциалов имеет знак «+», работа имеет знак «-«.

Порассуждайте самостоятельно отрицательные или положительные значения будут принимать работа и разность потенциалов, если заряд перемещать в обратном направлении относительно линий напряженности.

Зависимость напряженности и потенциала от расстояния

Потенциал поля, созданного равномерно заряженной сферой радиусом R и зарядом q на расстоянии r от центра сферы, равен

Напряжение в природе

Напряжение в клетках сетчатки глаза при попадания в них света около 0,01 В.
Напряжение в телефонных сетях может достигать 60 В.
Электрический угорь способен создавать напряжение до 650 В.

Энергия взаимодействия зарядов*

Из определения потенциала следует, что потенциальная энергия электростатического взаимодействия двух зарядов q1 и q2, находящихся на расстоянии r друг от друга, численно равна работе, которая совершается при перемещении точечного заряда q2 из бесконечности в данную точку поля, созданного зарядом q1

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *