Как устроены радиоуправляемые модели
Радиоуправляемые модели автомобилей вызывают в последние годы все более живой интерес как у детей, так и у взрослых. Это могут быть модели на электродвигателе или даже на двигателе внутреннего сгорания.
В рамках данной статьи мы раскроем тему устройства радиоуправляемых моделей различных типов, и рассмотрим принцип их работы, чтобы тот, кто заинтересуется конструированием собственных радиоуправляемых моделей или просто их покупкой, знал, с чем ему предстоит иметь дело.
Что касается радиоуправляемых моделей автомобилей, то в первую очередь нужно обратить внимание на то, что масштабы бывают очень разными, начиная от 1:5, заканчивая 1:28. Наиболее популярны сегодня масштабы 1:8 и 1:10, а что касается масштаба 1:5, то это очень крупные модели, которые в основном являются моделями на ДВС. Двигатель внутреннего сгорания больше в размерах, чем электродвигатель.
По объему цилиндров двигатели внутреннего сгорания подразделяются на классы: 12, 15, 18, 21, 25. Это цифры, обозначающие рабочий объем двигателя в кубических дюймах, в соответствии с американской классификацией. Очевидно, чем выше класс двигателя, тем выше его мощность. Так, например, мощность двигателя 15 класса составляет в среднем 0,9 л.с.
Двигатели внутреннего сгорания для радиоуправляемых моделей работают, как правило, на смеси масла, метанола и нитрометана. Такое топливо в канистрах можно приобрести в магазинах, где продаются радиоуправляемые модели. Фирменное топливо — гарантия долговечной работы мотора.
Говоря об электродвигателях, следует отметить, что питаются они, как правило, от аккумуляторов, набранных в батарею, и общее напряжение батареи составляет 7,2 В и более.
В магазинах радиоуправляемых моделей продаются такие аккумуляторы, как в виде отдельных ячеек по 1,2 В, так и в виде готовых батарей различной емкости. Сами двигатели классифицируются по количеству витков обмотки статора, обычно — от 10 и более, и чем меньше витков, тем выше скорость вращения ротора.
Основой модели является шасси, ведь именно на шасси располагаются и крепятся как сам двигатель, так и электроника. Шасси бывают различных типов, с разными модификациями приводов, в зависимости от назначения модели. Формула-1 обычно заднеприводные (чаще) или полноприводные (реже), чтобы по ровной поверхности развивать высокую скорость.
У багги, которые водят по гравию, по песку, — чаще всего привод полный, реже — задний. Аналогично багги, траки чаще всего используют полный привод. Монстры с огромными колесами, в основном — полный привод. Шоссейные модели, для езды по ровным поверхностям, чаще — с полным приводом.
Когда стоит вопрос выбора между электродвигателем или двигателем внутреннего сгорания, важно сравнить все достоинства и недостатки того и другого типа двигателей, чтобы выбор получился рациональным.
Так, модели на жидком топливе способны развивать огромные скорости — до 80 км/ч, но задумайтесь, чем чреваты аварии, лобовые столкновения на таких скоростях. Стоит случайно врезаться в стену, и потребуется дорогостоящий ремонт.
Потяните ли вы регулярные заправки качественным топливом, которое дороже бензина? Хотя, объем двигателя мал, и 4-литровой канистры хватит надолго, но все же. Плюс ДВС в том, что продолжительность езды по времени довольно значительна, при этом звук двигателя очень реалистичен. Модели на ДВС дороже моделей на электродвигателях.
Отсюда виден основной минус радиоуправляемых моделей на электродвигателях — у них довольно быстро садится аккумулятор, и езда на одной зарядке вряд ли будет длиться более четверти часа. Но модели на электродвигателях, в сравнении с моделями на ДВС, ездят очень тихо, мотор почти не слышно, нет выхлопов, высокое ускорение, хотя и невелика скорость. Тем не менее, придется раскошелиться на хороший аккумулятор и на зарядное устройство, чтобы заряжаться от сети или от автомобильного прикуривателя.
Принципиально радиоуправление моделей не зависит от масштаба, оно устанавливается на модель в формате Ready to run, если вы покупаете модель, и не требует от потребителя ничего кроме того, чтобы взять в руки пульт, и приступить к вождению. Однако, некоторые модели продаются в виде конструктора, и наконец, кто-то захочет самостоятельно изготовить модель. Поэтому давайте все же рассмотрим принцип работы системы радиоуправления.
В моделях на электродвигателях (как и на моделях с ДВС) установлен приемник. Когда на пульте управления нажимается курок или поворачивается рулевое колесо, приемник внутри модели тут же принимает посланный с пульта сигнал. Сигнал обрабатывается в приемнике, и соответствующее устройство в конструкции модели приводится в действие.
При повороте рулевого колеса (на пульте), сервопривод заставит через тяги повернуться колеса. При нажатии на курок газа, регулятор скорости получит сигнал к изменению оборотов двигателя, и через передачу (кардан или ремни) колеса начнут вращаться быстрее или медленнее. Мотор, как и электроника приемника с регулятором скорости, питается от батареи.
Если говорить о моделях с ДВС, то при нажатии на курок газа на пульте, или при повороте руля на пульте, все так же посылается сигнал в приемник. Приемник обрабатывает сигнал, и включает соответствующие устройства.
При повороте руля на пульте, через систему тяг сервомотор заставит колеса повернуть. При нажатии на газ, второй сервомотор станет двигать заслонку карбюратора, и топливно-воздушная смесь будет подана в цилиндр потоком определенного объема, — скорость изменится. Для питания сервомоторов используется батарея.
Итак, как вы поняли, в конструкцию именно радиоуправляемой модели входят следующие неотъемлемые ее компоненты: пульт управления, приемник, сервоприводы, двигатель (электрический или ДВС), регулятор скорости для электродвигателей. Данные части продаются в виде комплектов или по отдельности.
Остановимся более подробно на принципе работы электроники передатчика и приемника. Передатчик представляет собой в простейшем виде высокочастотный генератор и низкочастотный модулятор. Модулятор включает высокочастотный генератор с частотой команды. Излучаемый антенной пульта, модулированный высокочастотный сигнал принимается приемником, установленным на модели.
Приемник содержит усилитель низкой частоты, высокочастотный каскад и электронное реле. Высокочастотный каскад усиливает и детектирует принятый сигнал, затем сигнал фильтруется, и отфильтрованный сигнал поступает на вход усилителя низкой частоты. Ток низкой частоты сигнала команды действует на эмиттерный повторитель, который приводит к срабатыванию реле в цепи питания соответствующего двигателя.
В простейшем виде радиоуправляемая модель способна ехать вперед и поворачивать, это зависит, разумеется, от количества сервоприводов. Так, квадрокоптер может обладать шестью приводами.
Что касается команд, то они могут передаваться и по радиоканалу, и по wi-fi, и по bluetooth, и по ИК, благодаря тому, что сигнал как-никак всегда кодируется, и не создает помех, а приемник легко распознает свой сигнал, благодаря предварительной настройке.
Теперь остановимся на аккумуляторах для моделей с электродвигателем. Сегодня распространены три типа аккумуляторов: Никель-кадмиевые, никель-металлгидридные и литиевые. Напряжение 7,2 В характерно для первых двух типов, и 7,4 вольта — для литиевых. Литиевые нынче все более популярны, их емкость достигает десятков миллиампер-часов, хотя цена, конечно, соответствующая.
Что касается жидкого топлива, то здесь, как говорилось выше, требуется особое топливо, которое содержит нитрометан. Нитрометан усиливает отдачу ДВС, и содержание сего компонента обычно лежит в диапазоне 16-25%. Содержащееся в топливе масло обеспечивает двигателю смазку. На канистре с топливом указывается процентное содержание в топливе нитрометана, а также тип моделей, для которых данное топливо подойдет.
Кузовы изготавливают из поликарбоната, — легкого и эластичного материала, стойкого к ударам. В продаже есть модели с кузовом и без. Кузов для своей модели можно приобрести и отдельно. Благо, выбор кузовов сегодня очень велик.
Есть прозрачные и окрашенные варианты. Прозрачные можно покрасить изнутри краской для поликарбоната, такая краска продается в магазинах моделей. Для новичков лучше всего подойдет кузов более эластичный, чтобы управление неопытного водителя не привело бы к быстрому его разрушению от аварийных ударов.
Радиоуправление
В системах радиоуправления при передаче команды от оператора (диспетчера) к объекту код команды, набранной оператором на пульте управления, преобразуется в последовательность электрических импульсов, а затем при помощи модуляции (фазовой, амплитудной, частотной модуляции и т.д.) — в радиосигнал. Для повышения надёжности радиоуправления применяют различные помехоустойчивые коды, в том числе корректирующие коды, а также контроль по методу обратного канала, когда от объекта к пункту управления передаются сигналы, подтверждающие приём и исполнение (либо только приём, либо только исполнение) команды. В некоторых системах (например, в системах управления полётом ракет, беспилотных летательных аппаратов) управление производится непрерывно при помощи автоматически получаемого сигнала рассогласования между заданным и истинным (текущим) положениями объекта управления.
Виды управления
- Командное следящее радиоуправление.
- Автономное радиоуправление.
- Радиоуправление при наведении по лучу.
- Управление космическими аппаратами.
Применение
Радиоуправление применяется при построении систем автоматики, в авиа- и ракетостроении, робототехнике. В современное время получило развитие направление управления бытовой техникой и приборами («умный дом»).
Из чего состоит радиоуправляемая автомодель
Любой моделист должен представлять, как устроена его модель. Это просто необходимо, так как её периодически потребуется обслуживать, настраивать и ремонтировать. В этой статье мы рассмотрим, из каких частей она состоит. Составные части автомодели:
- Шасси
- Подвеска
- Силовая установка
- Источник энергии
- Трансмиссия
- Сервоприводы
- Колёса
- Кузов
- Аппаратура радиоуправления
Шасси
Шасси — основа любой радиоуправляемой автомодели. Как правило, это металлическая или пластиковая пластина, к которой крепятся все остальные элементы. Шасси в виде металлической пластины используется на моделях багги и трагги, пластиковые и карбоновые — на шоссейных моделях. Модели монстров и краулеров обычно обладают самым сложным шасси в виде одной или нескольких деталей замысловатой формы. Часто под словом «шасси» также понимают шасси модели в сборе с подвеской и трансмиссией.
Стальная пластина шасси багги
Шасси монстра Revo
Пластиковое шасси типа «ванна»
Карбоновое шасси
Подвеска
Подвеска модели обеспечивает плавный ход автомобиля при прохождении неровностей, постоянный контакт колёс с дорогой для улучшения управляемости, а для внедорожных моделей также принимает на себя удар при приземлении после прыжков. В подвеске большинства моделей используются маслонаполненные амортизаторы, установленные вертикально по одному на каждое колесо. В простых моделях могут использоваться фрикционные амортизаторы. У некоторых монстров устанавливается по два амортизатора на каждое колесо.
Амортизаторы радиоуправляемой автомодели
Составные части амортизаторов
Подвеска багги — классическая схема
Нестандартная оригинальная подвеска моделей Traxxas
Силовая установка
Роль силовой установки модели модели может выполнять электромотор или двигатель внутреннего сгорания (ДВС). Силовая установка электрической модели состоит из мотора и регулятора скорости. Если с назначением мотора обычно вопросов не возникает, то функция регулятора скорости не всегда сразу понятна. Если быть кратким, то регулятор является промежуточным звеном между аккумулятором и мотором, обеспечивая нужное напряжение на контактах мотора, чтобы он вращался с необходимой скоростью. Электромоторы можно разделить на два вида: коллекторные и бесколлекторные. Коллекторный двигатель в автомоделизме можно считать несколько устаревшим, но силовые установки на его основе значительно дешевле и используются достаточно часто. Недостатком такого вида моторов является наличие щеток, которые довольно быстро изнашиваются и двигатели требуют постоянного обслуживания (или замены) при интенсивной эксплуатации. Бесколлекторные (brushless) моторы более дорогие, мощные и практически не нуждаются в обслуживании. Главным внешним отличием бесколлекторного мотора от коллекторного является наличие у него трёх проводов вместо двух.
Коллекторная система
Бесколлекторная система
Двигатели внутреннего сгорания, применяемые на автомоделях, можно разделить на калильные и бензиновые. На большинство моделей устанавливаются именно калильные ДВС, работают они на специальном топливе. Не на бензине!. Рабочий объем калильного двигателя обычно варьируется в пределах от 2 до 6 кубических сантиметров. Часто объем указывают в кубических дюймах, например: двигатель объемом 0.21 кубического дюйма (его еще могут называть «двадцать первый», называя только сотые доли объема в дюймах) = 3.44 см 3 .
Бензиновые двигатели используются на моделях больших масштабов, это связано с тем, что минимальный объем бензинового двигателя составляет порядка 20 см 3 , он довольно большой и тяжелый. Обычно используются двигатели объемом 20-30 см 3 .
Бензиновые двигатели развивают значительно меньшую мощность на один кубический сантиметр своего объема, но имеют больший крутящий момент и значительно экономичнее.
Большинство автомодельных двигателей — одноцилиндровые.
Калильный двигатель 0.21 in 3
Бензиновый двигатель 23 см 3
Источник энергии
Электрические автомодели работают от аккумуляторов (не от батареек, как игрушки). Наиболее часто используемые типы аккумуляторов — NiMH и LiPo. Напряжение, от которого работает автомодель бывает обычно от 7.4 до 22.2 вольт. При выборе аккумулятора следует учитывать характеристики регулятора скорости, установленного на модели, от него будет зависеть тип аккумулятора и его напряжение.
NiMh аккумулятор
LiPo аккумулятор
Аккумуляторы практически никогда не идут в комплекте с автомоделью и их нужно покупать отдельно. Одними из лучших по соотношению цена-качество являются недорогие китайские аккумуляторы Turnigy. Подробнее: Аккумуляторы для радиоуправляемых моделей.
Специальное топливо для калильных двигателей состоит из метилового спирта, нитрометана и масла. При обращении с этим топливом следует соблюдать крайнюю осторожность — метиловый спирт чрезвычайно ядовит! Стоимость такого топлива достаточно высока, порядка 200-500 рублей за литр. Стандартный бак модели, объемом 120-150 см 3 расходуется примерно за 10 минут (зависит от объема двигателя, бывают настоящие обжоры).
Так же, как и калильные, модельные бензиновые двигатели двухтактные, значит заправлять их надо смесью бензина и специального масла для двухтактных двигателей. Путь за ним лежит в любой магазин бензотехники.
Трансмиссия
Трансмиссия передает крутящий момент от двигателя к колесам. Для передачи крутящего момента используются зубчатые колёса, карданы и ремни. Большинство моделей имеют полный привод на четыре колеса (4WD), хотя немалое распространение имеют также заднеприводные модели (2WD). Между колесами на одной оси устанавливаются дифференциалы, а часто также межосевой дифференциал.
Шасси с карданным приводом и центральным дифференциалом
Шасси с ременным приводом
Сервоприводы
Для поворота колёс при рулении, а также для управления газом и тормозом на моделях с ДВС используются сервоприводы (в простонародье — «сервы», по-английски «servo»). Сервы — это небольшие коробочки с электромотором и редуктором, которые могут поворачивать свой выходной вал на заданный угол и удерживать его в этом положении.
Один из популярных сервоприводов
Внутренности «сервы»
Колёса
В отличие от колёс настоящего автомобиля, колёса автомоделей не накачиваются воздухом, его роль выполняют мягкие внутренние вставки. При выборе колёс для спортивной автомодели нужно руководствоваться только их характеристиками, а никак не внешним видом. Красивые колёса со хромированными спицами и мощным протектором могут себе позволить только монстры и модели для дрифта. Модели же, предназначенные для гонок, довольствуются сплошными дисками без спиц и шинами со специальным мелким протектором.
Колёса монстра Traxxas Summit
Спортивные колёса
Кузов
Кузов подавляющего большинства автомоделей изготавливается из лексана — тонкого, прочного и гибкого листа прозрачного пластика. Такой кузов очень лёгкий и отлично защищает модель при столкновениях и переворотах. Покраска кузова из лексана производится специальными красками изнутри. Устанавливается лексановый кузов на специальные стойки и закрепляется клипсами. В отличие от настоящего автомобиля, такой кузов не является неотъемлемой частью модели и может быть легко заменён на другой. Поэтому практически бессмысленно выбирать модель только по кузову или говорить «я купил модель Порше 911». При интенсивной эксплуатации модель за свою жизнь может сменить несколько кузовов, постепенно приходящих в негодность.
Некрашенный лексановый кузов
Клипсы на капоте автомодели
Аппаратура радиоуправления
И, наконец, модель становится радиоуправляемой только тогда, когда на ней установлена аппаратура радиоуправления или просто «аппаратура». Аппаратура состоит из двух частей — передатчика и приёмника. Для управления автомоделями, как правило, используется передатчик пистолетного типа, курок которого управляет ускорением и тормозом, а рулевое колесо — поворотом модели. На рынке присутствует огромный выбор самой различной аппаратуры стоимостью от пары десятков до нескольких сотен долларов. Последнее время практически вся новая аппаратура работает на частоте 2.4 ГГц, при этом одновременно в одном месте может запускаться много моделей, не создавая друг другу помех.
Аппаратура с телеметрией Traxxas TQi 2.4Ghz
Одна из самых простых и дешёвых, аппаратура Hobby King GT-2 2.4Ghz вполне подойдёт начинающим. Подробнее: Аппаратура управления автомоделью.
Заключение
Если вы покупаете готовую к запуску модель (RTR, Ready to Run, Ready to Race), то вам нужно будет приобрести только аккумуляторы или топливо. А профессиональные модели часто поставляются в виде набора для самостоятельной сборки (Kit), к ней, как минимум, потребуется также аппаратура и силовая установка.
Как работает радиоуправление
Простейшее радиоуправление. Специально для начинающих.
Автор: Матроскин
Опубликовано 14.09.2011
Создано при помощи КотоРед.
2011
Решил сделать схемы которые делал в детстве и они у меня не получились и описать свои ошибки. Тогда я никак не мог понять почему я передатчиком посылаю одни команды, а приемником если и принимаю, со совсем что то непохожее. Сейчас я конечно знаю почему у меня так получалось, но в виду излишка свободного времени решил все это сделать в железе как тогда в детстве. Ностальгия наверное. Для начала взял самые простейшие схемы, Тем более форум просто забит вопросами «Как сделать радиоуправление на одну команду».
Когда начинал писать, то думал, что постепенно дойду и до сложных постепенно усложняя приемную и передающую часть., т.к. в каждом конкретном случае возникают проблемы совершенно разные. К примеру вместо сверхрегенератора применить для радиоуправления простую и дешевую микросхему TDA 7000 или TDA 7021.
Подход в этом случае будет немного другой, т.к. там будут действовать другие дестабилизирующие факторы. Конечно для профессионалов эта идея покажется смешной, но для начинающих в качестве первой конструкции по моему самое то и поняв общие принципы можно уже с понятием делать на специализированных микросхемах.
На TDA7000(70221) по моему и схема и настройка будет еще проще. В ней, при её простоте заложено довольно много возможностей для целей радиоуправления.
К сожалению статья моя раздулась до безобразия, а я успел только про примитивные сверхрегенераторы на 27 мгц написать, поэтому я ими и закончил
Понятно подходы выделения полезного сигнала при радиоуправлении различны для разных приемных и передающих систем. У каждой системы есть свои особенности.
Даже если взять тот же сверхрегенератор, но частоту взять раз в десять больше, то одно проблемы отпадут, но появятся новые.
К сожалению в этой статье до этого не дошел, хотя сам передатчик и приемник сверхрегенератор на частоту 225 мгц сделал.
На этих частотах обработка сигнала и его выделение проще, но труднее сама аппаратура, но при этом открываются большие возможности в конструировании малогабаритной аппаратуры радиоуправления на большие расстояния..
Вот даже моя примитивная система на 225 мгц работает в пределах квартиры без всяких антенн. Частоту взял именно эту просто из за того, что вытащил кварц на 25 мгц из старой сетевой карточки и сделал на его основе передатчик. Справа там просто мультивибратор на логике, что бы сигнал передатчика промодулировать.
А это приемник сверхрегенератор на частоту 225 мгц.
Монтаж на пятачках. Считаю, что для макетов идеальный способ. Расположение пятачком делается в процессе монтажа и заранее неизвестно. Прочитать об этом способе можно в книге С.Г. Жутяев «Любительская УКВ радиостанция»
С этим все. Начинаю со сверхрегенераторами на 27 мгц, а там как получится.
Понятно, что сначала нужно было сделать простейший маломощный передатчик — маячек для моих экспериментов. Схему сделал для данных целей самую примитивную. Сделал на трех транзисторах. Генератор на 27 мгц и мультивибратор на микросхеме. В дальнейшем этот мультивибратор для однокомандной апппаратуры будет лишний. Его приделал только для настройки. Питание 4,5 вольта.
Как говорил, схема сверхрегенератора классическая. Катушка такая же, как и в передатчике. Транзистор КТ315Б
Подключил к УНЧ и антенну длиной 15 см. Покрутил R2 и добился шумов суперизации.
Взял книжку книжку Г. Миль «Электронное дистанционное управление моделями» Подцепил осциллограф к точке «1» на схеме и как подозревал картинка моя было и близко на эту не похожа.
Что я только не крутил, но они форму менять не хотели или их уровень поднимался выше от нулевой линии, что тоже уменьшало чувствительность.
Дроссель в эмиттере у меня был самодельный. Намотано 50 витков провода на резисторе 100 ком. От отчаяния взял и поставил фабричный дроссель ДПМ-01 и произошло чудо. Осциллограмма сразу приняла приличный вид и чувствительность улучшилась.
Стал экспериментировать с самодельными дросселями. Во всяком случае на 27 мгц наиболее близким к этому оказался намотанный на ферритовом кольце дроссель диаметром 10 мм. Витков 35. Тип феррита не знаю. Взял случайный. Дальше эксперименты прекратил, но понял, что дроссель в сверхрегенераторе очень важная часть и никогда его не нужно как иногда рекомендуют мотать просто на резисторе.
Настала пока делать однокомандную управление. В теории все просто выглядит. Когда несущей нет, то сверхрегенератор сильно шумит. Этот шум нудно выпрямить и использовать как команду. Если подать просто несущую, т.е. включить передатчик без модуляции, то эти шумы пропадают. После детектора получается ноль, а это равносильно подаче команды. Эта система привлекает тем, что когда передатчик отключен, то на выходе приемника нет ложных команд. Шумит он и шумит.
Вот и у Г. Миля об этом написано.
Такая привлекательная простая схема. Жалко, что на практике она очень нестабильно работает. Так и у меня в те годы получилось и решил я её добить. Может кому пригодится. Дело в том, что на выходе сверхрегенератора присутствует переменное напряжение суперизации, как видели оно порядка единиц вольт, хотя и частота у него намного больше напряжения шумов, но величина шумов всего лишь несколько милливольт и эффективно отделить их очень затруднительно. Конечно идеальный случай поставить НЧ трансформатор или ФНЧ на L С элементах, но лень мотать тысячи витков. Хотя в давние времена люди были не такие ленивые и мотали такое.
Здесь нужно заметить, что если сверхрегенератор использовать для приема голоса, то сильное подавление частоты суперизации можно не делать. Просто не нужно будет подавать на УНЧ сильный сигнал, что бы не загонять его в режим отсечки этим напряжением суперизации. В нашем случае это напряжение нужно убрать как можно сильнее. На выходе сверхрегенератора стоит примитивный фильтр НЧ на R 5, С7 но все, на что он способен, так получить на его выходе вот такое с амплитудой порядка 0,2 вольта, а шумов при таком на экране осциллографа еще и не видим, хотя они там точно есть. Амплитуда этих шумов совсем мала. Это картинка в точке «2»
Если присмотреться, то наши шумы чуть видны в верхней части этих импульсов.
При таком безобразии приемник будет реагировать не на шумы, а на эти импульсы.
Т.к. ни LC фильтр мне не хочется, ни трансформатор ставить, то остается единственны путь, это поставить активный RС фильтр с частотой среза в несколько килогерц.
Взял опять на транзисторе. После фильтра поставил усилитель с маленьким выходным сопротивлением и получил основной блок для дальнейших экспериментов.
Если теперь посмотреть сигнал в точке «3» при отсутствии несущей, то видим только шум сверхрегенератора приличной амплитуды. Он то и является в нашем случае сигналом команды.
Кстати макет базового блока так выглядит. Виден монтаж на пятачках. Конструкция довольно жесткая. Можно спокойно её бросать и ничего с ней не будет. Все сделано на выводах деталей обрезанных до размера 1 – 2 мм
Единственно желательно сердечник катушки закрепить.
Теперь имея базовый блок делаем для начала простейшее однокомандное управление.
Принцип простой. Шумы уже выделили. Теперь их усилим, продетектируем, подадим на триггер Шмита и дальше на силовой ключ. Если передатчик не включен, то светодиод горит. При включении передатчика шумы пропадают и светодиод гаснет. Если нужно другая логика, то нужно добавить еще один ключ или вместо светодиода поставить реле, но это уже нюансы.
Это макет однокомандного управления так выглядит.
Передатчик для него до безобразия просто выглядит. Просто генератор на кварце 9 мгц работающий на третьей механической гармонике. Его просто включают или выключают.
В принципе можно сделать и без кварца. Для увеличения мощности в генераторе поставил два транзистора КТ315 в параллель, что тоже необязательно. Можно один или что то мощнее, например КТ603 или КТ3117
А это полная схема. Вверху базовый блок, снизу дешифратор команды.
Деталей получилось довольно много, но это компенсируется простотой и наглядностью настройки, где каждый каскад выполняет одну определенную функцию.
Теперь, как и задумал элементарные принципы передачи нескольких команд. Я взял две команды, хотя по этому принципу можно сделать порядка четырех.
Принцип частотного разделения каналов. Принцип широко известен. Правда для разделения каналов в аналоговых системах обычно применяют избирательные LС фильтры, но это не для ленивых, а коты как известно здорово ленивые.
Вот здесь схема с катушками из книги Г. Миля.
Поэтому фильтры решил взять активные на RС. Схем много перепробовал, но не понравились. Больше понравился фильтр Мюллера Фогта. О нем тоже в книге Г. Миля написано.
Базовый блок прежний, только после него вместо усилителя и триггера Шмита пришлось поставить усилитель-ограничитель, т.к. случались ложные срабатывания когда передатчик расположен близко от приемника. Было одновременное срабатывание двух соседних каналов. Когда поставил ограничитель и ограничил величину сигнала поступающих на фильтры, этот дефект пропал.
И наконец полная схема вместе с фильтрами и выходными ключами. Частоты я брал случайные. Первая получилась 1200 гц, вторая 750 гц. Желательно, что бы они не делились на целое число и не создавали в тракте гармоники, т.е. выбор 1200 гц и 600 гц был бы совсем не удачен в данном случае.
Само собой схемы фильтров можно взять и другие, но мне эти понравились.
А это внешний вид макета.
Теперь к передатчику можно переходить. Схема стандартная. Задающий генератор на кварце 9 мгц. Кварц работает на третьей механической гармонике. Дальше идет апериодический буферный каскад в котором происходит также модуляция. Подобная схема модуляции позволяет сделать большую скорость передачи, хотя требует дополнительного каскада. Выходной каскад самый примитивный. Если в нем предусмотреть цепи согласования с антенной, то параметры его конечно улучшаться. Так же можно в оконечном каскаде поставить и более мощный транзистор, хотя бы КТ603, но у меня не было этих целей. Я начал антенну согласовывать, но бросил, т.к. дальности для моих экспериментов и так хватало, а так при желании мощность его можно существенно увеличить особо не раздувая габаритов.
Модулятор по сути два мультивибратора работающих на разных частотах.
На схеме все понятно. Включаем или один мультивибратор или другой.
Там резистор R17 можно подобрать для увеличения мощности, но я не стал. Мне большая мощность не нужна была для экспериментов.
А это макет передатчика с которым я экспериментировал. Система само собой полностью работоспособная. Там видна спиральная антенна и удлиняющая катушка. Окончательно я её не настроил, т.к. большой дальности не преследовал на данном этапе своих экспериментов.
Силы мои иссякли, да и по опыту знаю, что чем длиннее статья, тем меньше охотников дочитать её до конца. Хотел сделать еще дистанционный аналоговый термометр, но выдохся. Просто на входе модуляции передатчика поставить генератор управляемый напряжением, а в качестве дешифратора приемника поставить преобразователь частота-напряжение. Такие ставили в аналоговых частотомерах.
В заключение хочу сказать, что конечно вместо примитивных шифраторов и дешифраторов на транзисторах здесь можно поставить более совершенные шифраторы и дешифраторы на логике или на МК в которых предусмотреть дополнительно свою систему зашиты достоверности информации дополнительно к этой, хотя не вижу смысла делать такое к таким примитивным передатчикам и приемникам.