Связь между ЭДС и напряжением источника. Режимы работы электрической цепи
Закон Ома позволяет установить связь между ЭДС нс- точника и напряжением на его зажимах.
Применяя закон Ома к внешнему участку цепи, заключенному между зажимами источника, находим
где U — напряжение на зажимах источника.
Подставляя (1.8) в (1.7), получаем искомую зависимость:
Величина /7?и представляет собой падение напряжения на внутреннем сопротивлении источника. Таким образом, напряжение на зажимах источника равно его ЭДС, уменьшенной на величину падения напряжения внутри источника.
Если зажимы источника ЭДС разомкнуты, то ток в цепи отсутствует: I = 0, при этом Е= U. Такой режим работы источника называется режимом холостого хода. Следовательно, ЭДС источника равна напряжению на его зажимах, когда источник работает в режиме холостого хода, или короче: ЭДС источника Е равна напряжению холостого хода /Ухх:
Ясно, что ЭДС, как и напряжение, измеряется в вольтах и может быть замерена вольтметром, подсоединенным к зажимам источника электрической энергии, работающего в режима холостого хода.
Режим работы, при котором зажимы источника соединены между собой проводом, имеющим очень малое сопротивление (R
0), называется коротким замыканием источника.
Полагая в (1.7) Rh + Rh = 0, находим
где / <— ток короткого замыкания.
Внутреннее сопротивление источника ЭДС Rn обычно невелико, поэтому ток короткого замыкания может достигать больших величин и представлять опасность для элементов цепи и обслуживающего персонала. Режим короткого замыкания, как правило, является аварийным.
Основным режимом работы электрической цепи является номинальный или расчетный режим. В этом режиме генератор работает при высоком коэффициенте полезного действия, отдавая в течение длительного времени максимально допустимый рабочий ток при номинальном напряжении. Все приемники электрической энергии рассчитываются на номинальное напряжение сети. Это напряжение регламентируется государственным стандартом. Для сетей постоянного тока оно обычно устанавливается на уровне 110, 220 или 440 В. Сети электроснабжения автомобилей и тракторов обычно рассчитаны на напряжение 12 В.
Карточка № 1.5 (312)
Связь между ЭДС и напряжением источника. Режимы работы электрической цепи
ЭДС аккумулятора 12 В. При разрядном токе 10 А напряжение на зажимах 11,7 В.
Какие формулы выражают связь действующих значений эдс
В выпуклом четырёхугольнике ABCD известны углы: ∠BAC = 41◦ , ∠DAC = 8◦ , ∠ABD = 82◦ , ∠CBD = 16◦ . Докажите, что ABCD — это трапеция.
Нужна помощь по физике за 9 класс. Нужно решить задачу.
На рисунке даны графики скоростей двух тел. Определите:
а) начальную конечную скорости каждого из тел;
б) с каким ускорением двигались тела;
в) напишите уравнения скорости и перемещения для каждого тела;
г) через сколько секунд оба тела приобрели одинаковую скорость (определить арифметически).
Переменный электрический ток
Переменный ток (AC — Alternating Current) — электрический ток, меняющий свою величину и направление с течением времени.
Часто в технической литературе переменным называют ток, который меняет только величину, но не меняет направление, например, пульсирующий ток.
Необходимо помнить при расчётах, что переменный ток в этом случае является лишь составляющей частью общего тока.
Такой вариант можно представить как переменный ток AC с постоянной составляющей DC. Либо как постоянный ток с переменной составляющей, в зависимости от того, какая составляющая наиболее важна в контексте.
DC — Direct Current — постоянный ток, не меняющий своей величины и направления.
В реальности постоянный ток не может сохранять свою величину постоянной, поэтому существует условно в тех случаях, где можно пренебречь изменениями его постоянной величины, либо в качестве составляющей (DC) для периодически меняющегося электрического тока любой формы. Тогда величина DC будет равна среднему значению тока за период, и будет являться нулевой линией для переменной составляющей AC.
При синусоидальной форме тока, например в электросети, постоянная составляющая DC равна нулю.
Постоянный ток с переменной составляющей в виде пульсаций показан синей линией на верхнем графике рисунка.
Запись AC+DC в данном случае не является математической суммой, а лишь указывает на две составляющие тока. Суммируются мощности.
Величина тока будет равна квадратному корню из суммы квадратов двух величин — значения постоянной составляющей DC и среднеквадратичного значения переменной составляющей AC.
Термины AC и DC применимы как для тока, так и для напряжения.
Параметры переменного тока и напряжения
Величина переменного тока, как и напряжения, постоянно меняется во времени. Количественными показателями для измерений и расчётов применяются их следующие параметры:
Период T — время, в течении которого происходит один полный цикл изменения тока в оба направления относительно нуля или среднего значения.
Частота f — величина, обратная периоду, равная количеству периодов за одну секунду.
Один период в секунду это один герц (1 Hz). Частота f = 1 /T
Циклическая частота ω — угловая частота, равная количеству периодов за 2π секунд.
Обычно используется при расчётах тока и напряжения синусоидальной формы. Тогда в пределах периода можно не рассматривать частоту и время, а исчисления производить в радианах или градусах. T = 2π = 360°
Начальная фаза ψ — величина угла от нуля (ωt = 0) до начала периода. Измеряется в радианах или градусах. Показана на рисунке для синего графика синусоидального тока.
Начальная фаза может быть положительной или отрицательной величиной, соответственно справа или слева от нуля на графике.
Мгновенное значение — величина напряжения или тока измеренная относительно нуля в любой выбранный момент времени t.
i = i(t); u = u(t)
Последовательность всех мгновенных значений в любом интервале времени можно рассмотреть как функцию изменения тока или напряжения во времени.
Например, синусоидальный ток или напряжение можно выразить функцией:
С учётом начальной фазы:
Здесь Iamp и Uamp — амплитудные значения тока и напряжения.
Амплитудное значение — максимальное по модулю мгновенное значение за период.
Может быть положительным и отрицательным в зависимости от положения относительно нуля.
Часто вместо амплитудного значения применяется термин амплитуда тока (напряжения) — максимальное отклонение от нулевого значения.
Среднее значение (avg) — определяется как среднеарифметическое всех мгновенных значений за период T.
Среднее значение является постоянной составляющей DC напряжения и тока.
Для синусоидального тока (напряжения) среднее значение равно нулю.
Средневыпрямленное значение — среднеарифметическое модулей всех мгновенных значений за период.
Для синусоидального тока или напряжения средневыпрямленное значение равно среднеарифметическому за положительный полупериод.
Среднеквадратичное значение (rms) — определяется как квадратный корень из среднеарифметического квадратов всех мгновенных значений за период.
Для синусоидального тока и напряжения амплитудой Iamp (Uamp) среднеквадратичное значение определится из расчёта:
Среднеквадратичное — это действующее, эффективное значение, наиболее удобное для практических измерений и расчётов. Является объективным количественным показателем для любой формы тока.
В активной нагрузке переменный ток совершает такую же работу за время периода, что и равный по величине его среднеквадратичному значению постоянный ток.
Коэффициент амплитуды и коэффициент формы
Для удобства расчётов, связанных с измерением действующих значений при искажённых формах тока, используются коэффициенты, которыми связаны между собой амплитудное, среднеквадратичное и средневыпрямленное значения.
Коэффициент амплитуды — отношение амплитудного значения к среднеквадратичному.
Для синусоидального тока и напряжения коэффициент амплитуды KA = √2 ≈ 1.414
Для тока и напряжения треугольной или пилообразной формы коэффициент амплитуды KA = √3 ≈ 1.732
Для переменного тока и напряжения прямоугольной формы коэффициент амплитуды KA = 1
Коэффициент формы — отношение среднеквадратичного значения к средневыпрямленному.
Для переменного синусоидального тока или напряжения коэффициент формы KФ ≈ 1.111
Для тока и напряжения треугольной или пилообразной формы KФ ≈ 1.155
Для переменного тока и напряжения прямоугольной формы KФ = 1
SA Переменный ток
В механической системе вынужденные колебания возникают при действии на нее внешней периодической силы. Аналогично этому вынужденные электромагнитные колебания в электрической цепи происходят под действием внешней периодически изменяющейся ЭДС или внешнего изменяющегося напряжения.
Вынужденные электромагнитные колебания в электрической цепи представляют собой переменный электрический ток.
- Переменный электрический ток — это ток, сила и направление которого периодически меняются.
Мы в дальнейшем будем изучать вынужденные электрические колебания, происходящие в цепях под действием напряжения, гармонически меняющегося с частотой ω по синусоидальному или косинусоидальному закону:
u = U_m \cdot \sin \omega t\) или \(
u = U_m \cdot \cos \omega t\) ,
где u – мгновенное значение напряжения, Um – амплитуда напряжения, ω – циклическая частота колебаний. Если напряжение меняется с частотой ω, то и сила тока в цепи будет меняться с той же частотой, но колебания силы тока не обязательно должны совпадать по фазе с колебаниями напряжения. Поэтому в общем случае
i = I_m \cdot \sin (\omega t + \varphi_c)\) ,
где φc – разность (сдвиг) фаз между колебаниями силы тока и напряжения.
Исходя из этого можно дать еще такое определение:
- Переменный ток – это электрический ток, который изменяется с течением времени по гармоническому закону.
Переменный ток обеспечивает работу электрических двигателей в станках на заводах и фабриках, приводит в действие осветительные приборы в наших квартирах и на улице, холодильники и пылесосы, отопительные приборы и т.п. Частота колебаний напряжения в сети равна 50 Гц. Такую же частоту колебаний имеет и сила переменного тока. Это означает, что на протяжении 1 с ток 50 раз поменяет свое направление. Частота 50 Гц принята для промышленного тока во многих странах мира. В США частота промышленного тока 60 Гц.
Генератор переменного тока
Основная часть электроэнергии в мире в настоящее время вырабатывается генераторами переменного тока, создающими гармонические колебания.
- Генератором переменного тока называется электротехническое устройство, предназначенное для преобразования механической энергии в энергию переменного тока.
ЭДС индукции генератора изменяется по синусоидальному закону
где \(<\rm E>_
где \(I_
Основными частями генератора являются (рис. 1):
- индуктор — электромагнит или постоянный магнит, который создает магнитное поле;
- якорь — обмотка, в которой индуцируется переменная ЭДС;
- коллектор со щетками — устройство, посредством которого снимается с вращающихся частей или подается по ним ток.
Неподвижная часть генератора называется статором, а подвижная — ротором. В зависимости от конструкции генератора его якорь может быть как ротором, так и статором. При получении переменных токов большой мощности якорь обычно делают неподвижным, чтобы упростить схему передачи тока в промышленную сеть.
На современных гидроэлектростанциях вода вращает вал электрогенератора с частотой 1-2 оборота в секунду. Таким образом, если бы якорь генератора имел только одну рамку (обмотку), то получался бы переменный ток частотой 1-2 Гц. Поэтому, для получения переменного тока промышленной частоты 50 Гц якорь должен содержать несколько обмоток, позволяющих увеличить частоту вырабатываемого тока. Для паровых турбин, ротор которых вращается очень быстро, используют якорь с одной обмоткой. В этом случае частота вращения ротора совпадает с частотой переменного тока, т.е. ротор должен делать 50 об/с.
Мощные генераторы вырабатывают напряжение 15-20 кВ и обладают КПД 97-98 %.
Из истории. Первоначально Фарадей обнаружил лишь едва заметный ток в катушке при движении вблизи нее магнита. «Какая от этого польза?» — спросили его. Фарадей ответил: «Какая может быть польза от новорожденного?» Прошло немногим более половины столетия и, как сказал американский физик Р. Фейнман, «бесполезный новорожденный превратился в чудо-богатыря и изменил облик Земли так, как его гордый отец не мог себе и представить».
*Принцип действия
Принцип действия генератора переменного тока основан на явлении электромагнитной индукции.
Пусть проводящая рамка площадью S вращается с угловой скоростью ω вокруг оси, расположенной в ее плоскости перпендикулярно однородному магнитному полю индукцией \(\vec\) (см. рис. 1).
При равномерном вращении рамки угол α между направлениями вектора индукции магнитного поля \(\vec\) и нормали к плоскости рамки \(\vec
где ω — угловая скорость вращения рамки, ν — частота ее вращения.
В этом случае магнитный поток, пронизывающий рамку будет изменяться следующим образом
Тогда согласно закону Фарадея индуцируется ЭДС индукции
Подчеркнем, что ток в цепи проходит в одном направлении в течение полуоборота рамки, а затем меняет направление на противоположное, которое также остается неизменным в течение следующего полуоборота.
Действующие значения силы тока и напряжения
Пусть источник тока создает переменное гармоническое напряжение
Согласно закону Ома, сила тока в участке цепи, содержащей только резистор сопротивлением R, подключенный к этому источнику, изменяется со временем также по синусоидальному закону:
где \(I_m = \dfrac
Кроме этих величин используются еще одна характеристика переменного тока: действующие (эффективные) значения силы тока и напряжения.
- Действующим (эффективным) значением силы переменного тока называется сила такого постоянного тока, который, проходя по цепи, выделяет в единицу времени такое же количество теплоты, что и данный переменный ток.
Обозначается буквой I.
- Действующим (эффективным) значением напряжения переменного тока называется напряжение такого постоянного тока, который, проходя по цепи, выделяет в единицу времени такое же количество теплоты, что и данный переменный ток.
Обозначается буквой U.
Действующие (I, U) и амплитудные (Im, Um) значения связаны между собой следующими соотношениями:
Таким образом, выражения для расчета мощности, потребляемой в цепях постоянного тока, остаются справедливыми и для переменного тока, если использовать в них действующие значения силы тока и напряжения:
Необходимо отметить, что закон Ома для цепи переменного тока, содержащей только резистор сопротивлением R, выполняется как для амплитудных и действующих, так и для мгновенных значений напряжения и силы тока, вследствие того, что их колебания совпадают по фазе.
*Вывод формулы
Зная мгновенные значения u и i, можно вычислить мгновенную мощность
которая, в отличие от цепей постоянного тока, изменяется с течением времени. С учетом уравнений (1) и (2) перепишем выражение для мгновенной мощности на резисторе в виде
Первое слагаемое не зависит от времени. Второе слагаемое P2 — функция косинуса удвоенного угла и ее среднее значение за период колебаний равно нулю (рис. 2, найдите сумму площади выделенных фигур с учетом знаков).
Поэтому среднее значение мощности переменного электрического тока за период будет равно
Тогда с учетом закона Ома \(\left(I_
По определению действующих значений необходимо сравнивать мощности (количество теплоты в единицу времени) переменного и постоянного тока. Запишем уравнения для расчета мощности постоянного тока
и сравним с уравнениями (4>:
Литература
Жилко, В.В. Физика: учеб. пособие для 11 класса общеобразоват. шк. с рус. яз. обучения / В.В. Жилко, Л.Г. Маркович. — Минск: Нар. Асвета, 2009. — С. 46-51.