Не кремнием единым: из каких материалов сегодня изготавливают полупроводники
Кризис производства кремния показал, как сильно мы зависим от полупроводников. Нехватка материала, вызванная сокращением производства в Китае, в конце 2021 года привела к росту цен на него на 300% менее чем за два месяца. Компании и исследователи по всему миру начали еще активнее искать альтернативу кремнию. «Хайтек» рассказывает о самых популярных полупроводниках, которые используются сейчас, и о тех, что придут им на смену.
Читайте «Хайтек» в
От «простых» домашних приборов и компьютеров до солнечных элементов, полевых транзисторов и беспилотных автомобильных цепей — вся техника требует для работы полупроводниковые материалы. Современный мир буквально обязан им своим существованием.
Очевидный лидер отрасли сейчас — кремний. Но он подходит не для всех приборов, кроме того, физические свойства полупроводника ограничивают возможности для дальнейшей миниатюризации и повышения мощности чипов и создание гибких устройств. К счастью, есть и другие альтернативные материалы.
Рассказываем, как работают полупроводники и какие существуют перспективные альтернативы кремнию для создания микроэлектроники. Подробнее про рынок в целом можно прочитать в июльском выпуске дайджеста по робототехнике «Микроэлектроника. Чем меньше, тем лучше», подготовленном Центром компетенций НТИ по направлению «Технологии компонентов робототехники и мехатроники» на базе Университета Иннополис.
Что такое полупроводник
Полупроводник — материал, который по удельной проводимости занимает промежуточное место между проводниками и диэлектриками. Как правило, это кристаллическое твердое вещество. При определенных условиях оно проводит электричество, что делает его идеальным для управления потоком тока.
Полупроводники в нормальном состоянии проводят небольшое количество тока или не вообще блокируют его. Но с ростом температуры или под действием света они начинают лучше пропускать электрические заряды. Также проводимость полупроводников меняется при введении примеси — этот процесс называется легированием.
Важное отличие полупроводника от проводника заключается в том, что ток в нем переносится не только электронами, но и оставленными ими вакансиями — дырками. Дырки, оставшиеся в валентной зоне, могут быть заняты электронами из более низких энергетических состояний и тем самым вносить свой вклад в протекание тока.
Одна из ключевых характеристик полупроводника — это подвижность носителей заряда (электронов и дырок). Это коэффициент, который показывает зависимость между средней скоростью частиц и приложенным внешним электрическим полем. Подвижность электронов и дырок может быть разной, например, у кремния при комнатной температуре отрицательно заряженные частицы движутся почти в три раза быстрее положительных.
Кроме того, полупроводники различаются по ширине запрещенной зоны. Это минимальная энергия, необходимая для перехода электрона из валентной зоны в зону проводимости. У металлов и других полупроводников она равна 0, а при достижении уровня в 4 эВ и больше материал становится диэлектриком.
Еще одна важная характеристика полупроводников — это теплопроводность. Она показывает насколько быстро и просто можно будет отводить от компонентов тепло, чтобы защитить устройство от перегрева.
Кремний
Кремний — второй после углерода по распространенности химический элемент на Земле. Его основным преимуществом является то, что его легко добывать, с кремниевыми кристаллами относительно просто работать, и он обеспечивает хорошие общие электрические и механические свойства. Даже несмотря на относительно низкую подвижность электронов и дырок, пока он остается оптимальным материалом для микроэлектронного производства.
Еще одним его преимуществом является то, что при использовании в интегральных схемах он образует высококачественный оксид кремния, который выступает в качестве изоляционных слоев между различными активными элементами.
Для увеличения плотности элементов и быстродействия интегральных схем используются комбинации элементов монокристаллического и поликристаллического кремния. А для увеличения проводимости поликристаллического кремния его легируют.
Полупроводники из кремния широко применяются для создания интегральных микросхем, биполярных и полевых транзисторов, приборов с зарядовой связью, быстродействующих фотодиодов и многих других устройств. А продукты на основе кремния, такие как MOSFET-или IGBT-транзисторы с суперпереходом, можно использовать в широком диапазоне напряжений (от единиц до нескольких сот вольт) и в различных классах мощности.
Факторы, влияющие на сложность производства. Изображение: Университет Иннополис
Германий
Мы живем в «кремниевую» эпоху, и может показаться, что микроэлектроника началась с этого материала, но первым был германий. Он использовался во многих ранних устройствах: от диодов для обнаружения радаров до первых транзисторов. Именно он до конца 1960-х годов был основным полупроводником, применяемым в электронных приборах, и только в начале 70-х его вытеснил кремний.
Новый «чемпион» гораздо более распространен, его производство дешевле и у него более широкая запрещенная зона и лучше теплопроводность. Но свое преимущество есть и у германия: носители заряда в этом материале гораздо более подвижны.
Например, при температуре 300 K (около 27°С) электроны в «первом» полупроводнике двигаются почти в три раза быстрее, чем у кремния, а дырки — почти в четыре раза.
Хотя германий и не подходит для современной микроэлектроники, благодаря этим свойствам он по-прежнему используется в некоторых радиочастотных приборах. Например, его применяют для создания СВЧ-устройств, аудиоаппаратуры, а также маломощном и прецизионном оборудовании.
Подвижность носителей заряда в различных полупроводниках. Изображение: Университет Иннополис
Арсенид галлия
Арсенид галлия является вторым наиболее распространенным полупроводником, используемым сегодня. В отличие от кремния и германия, арсенид галлия представляет собой соединение, а не элемент, и получается путем соединения трехвалентного галлия с мышьяком, имеющим пять валентных электронов.
Большая ширина запрещенной зоны и высокая подвижность электронов заставляют устройства на основе арсенида галлия быстро реагировать на электрические сигналы, что делает это соединение подходящим для усиления высокочастотных сигналов. Кроме того, этот материал показал свою эффективность при высоких температурах и хорошую устойчивость к радиационному излучению.
Арсенид галлия давно применяется в микроэлектронике, поэтому производство устройств на его основе отлажено. Благодаря особым свойствам, материал используется в основном для создания сверхвысокочастотных приборов микроэлектроники: цифровых и аналоговых интегральных схем, дискретных полевых транзисторов и диодов Ганна, которые работают без p-n-перехода за счет собственных средств материала. Кроме того, микросхемы на основе арсенида галлия применяются при изготовлении мобильных телефонов, микроволновых приборов, устройств спутниковой связи и некоторых радарных систем.
Однако это хрупкий материал с меньшей подвижностью дырок, чем у кремния, что делает невозможными создание таких устройств, как, например, КМОП-транзисторов, быстродействующих и энергосберегающих электронных схем. Его также относительно сложно изготовить, что увеличивает стоимость устройств из арсенида галлия. И у него достаточно низкая теплопроводность, что увеличивает риск перегрева устройств.
Материалы будущего
— Алмазы
Ширина запрещенной зоны алмаза превышает 3 эВ, поэтому по определению он диэлектрик. Однако при добавлении примесей драгоценный камень становится полупроводником.
Теоретически алмазные полупроводниковые устройства обладают превосходными физическими свойствами, включая высокие теплопроводность, напряженность поля пробоя и подвижность носителей. Это позволит существенно снизить потери, быстро рассеивать тепло и увеличить срок службы устройств. Кроме того, он может работать с выходной мощностью и энергоэффективностью в 50 тыс. раз выше, чем у кремниевых устройств, и в 1 200 раз с более высокой частотой.
Однако для промышленного применения в электронных полупроводниковых устройствах необходимы высококачественные алмазные пластины большого размера. Хотя попытки создания алмазных приборов проводятся в течение многих лет. До сих не решены проблемы, связанные с легированием и обработкой материала.
Теплопроводность различных полупроводников. Изображение: Университет Иннополис
— Графен
Графен — двумерная аллотропная модификация углерода. По прогнозу компании McKinsey, у графена есть потенциал превзойти кремний в качестве универсального полупроводникового материала, но до широкой коммерциализации может пройти до 25 лет.
Ключевая особенность этого материала — гибкость, поэтому из него можно производить различные сложные приборы. Этот материал считается многообещающим с точки зрения его дальнейшего использования, и по всему миру существуют целые институты, занимающиеся изучением и разработками в области графена.
Он может пригодиться в самых разных отраслях: от современных энергетических сетей и альтернативной энергетики до биомедицины. В микроэлектронике графен можно использовать в сверхчувствительных микропроцессорах, элементах квантовых компьютеров и датчиках с экстремальными параметрами.
— Арсенид бора
Совсем недавно, в июле 2022 года, исследователи из MIT заявили, что они нашли лучший из известных полупроводников. Им оказался кубический арсенид бора. Этот материал представляет собой соединение из мышьяка и бора.
Его теплопроводность в 10 раз больше, чем у кремния. При этом в отличие от последнего и арсенида галия полупроводник на основе бора демонстрирует высокую подвижность не только для электронов, но и для дырок.
Хотя ученые и говорят о том, что этот материал потенциально способен заменить кремний, но, как и с графеном, до этого еще очень далеко. Например, сначала нужно разработать дешевые способы качественного производства этого материала.
Несмотря на высокую популярность и эффективность кремниевых полупроводников, нужны аналоги. К этому производителей подталкивают сразу два фактора. Во-первых, технология почти достигла предела, за которым будет невозможно создавать все более миниатюрные и мощные устройства. А во-вторых, постоянный рост спроса на кремний приводит к его удорожанию.
Кризис производства, возникший во время пандемии коронавируса, показал, как опасно опираться на единственный источник. Поэтому компании и ученые по всему миру работают над созданием альтернативы. Тем не менее, можно предположить, что благодаря дешевизне, доступности и отлаженности производства кремниевых приборов еще какое-то время этот материал будет занимать лидирующую позицию в микроэлектронике.
Редкие металлы в электронике и электроэнергетике
Редкие, и в частности редкоземельные, металлы находят весьма широкое применение в различных высокотехнологичных отраслях. Машиностроение, металлургия, химическая промышленность, солнечная энергетика, атомная и водородная энергетика, приборостроение, электроника, – всюду используются редкоземельные металлы. Перечислять все области применения редкоземельных металлов можно очень долго, однако давайте рассмотрим часть этого обширного спектра применительно непосредственно к электронике и электроэнергетике.
С каждым годом растет объем редкоземельных металлов, используемых не только в компьютерной технике, но и в экономичных источниках света. Например, в США за счет этого прогнозируют снижение энергопотребления на освещение в 2 раза. Там уже созданы лампы с люминофорами, содержащими тербий, иттрий, церий, европий, что позволило до 3 раз повысить светоотдачу при соответствующей экономичности.
Сверхпроводящие материалы на базе ниобия позволили японцам создать настолько сильные магниты, что скоростные поезда на воздушной подушке, развивающие скорость до 581км/ч уже построены и эксплуатируются.
Большое значение имеют фотоэлектрическое свойства рубидия и цезия, обуславливающие их востребованность для построения фотоумножителей, фотоэлементов, и других фотоэлектрических приборов. Свойства цезия и рубидия похожи, поэтому данные металлы во многом взаимозаменяемы.
Вообще эти металлы довольно широко используются и в радио, и в электротехнике, и в электронике, они применяются в производстве люминесцентных ламп, а соединения цезия и рубидия, как и сами металлы, удобны в качестве катализаторов и препаратов в неорганическом и органическом синтезе.
Литий главным образом применяется в ядерной энергетике и при электролизе алюминия. Карбонат лития, в качестве добавки к алюминию, снижает температуру плавления электролита, уменьшает расход анода и криолита, способствует энергосбережению и снижает себестоимость металла.
Стекло для катодно-лучевых трубок, кинескопы, стекла с электроизоляционными свойствами, — в этих областях добавки лития играют немаловажную роль. Безусловно, литий обширно применяется и в химических источниках тока.
Особенно в сфере высоких технологий распространен скандий: системы хранения данных с высокой скоростью обмена информацией; добавленный в ртутную лампу иоид скандия, в очень небольшом количестве, приближает ее свет к естественному солнечному. Из хромида скандия делают электроды для МГД-генераторов. Также скандий входит в состав материалов для солнечных батарей.
Тантал в качестве материала анодных пленок с особыми диэлектрическими свойствами находит применение в электронике. Электролитические конденсаторы на его основе качественнее алюминиевых, хоть и рассчитаны на работу при меньшем напряжении.
Титан, как и его сплавы, отличается повышенной прочностью даже при высоких температурах, коррозийной стойкостью, и при этом малой плотностью. Из него изготавливают сетки и другие детали электровакуумных приборов, работающих при высоких температурах.
Основа жаропрочных сплавов – вольфрам. Из вольфрама изготавливают нити накаливания и другие детали электровакуумных приборов.
Сплавы молибдена, как и сам молибден, применяются для изготовления деталей электровакуумных приборов, предназначенных для длительной работы при температурах до 1800°С в вакууме.
Из молибдена изготовлено многочисленное оборудование для работы в агрессивных средах, в том числе и элементы ядерных реакторов. Высокотемпературные печи, электрические вводы лампочек, — здесь используют молибденовую ленту.
Особенно высоким спросом пользуются оксиды неодима и диспрозия, служащие для производства мощных магнитов.
Висмут участвует в производстве полупроводниковых материалов, в частности для термоэлектрических приборов, к таким материалам относятся теллурид и селенид висмута, а висмут-цезий-теллур дает перспективу для производства полупроводниковых холодильников суперпроцессоров.
Особо чистый висмут позволяет получать обмотки для измерения магнитных полей, поскольку сопротивление висмута почти линейно зависит от магнитного поля, измеряя сопротивление такой обмотки можно узнавать напряженность внешнего магнитного поля. Также висмут – один из компонентов бессвинцовых и легкоплавких припоев, служащих для монтажа чувствительных СВЧ-компонентов.
Селен – дырочный проводник (p-типа), в качестве полупроводника, селен используется в солнечных батареях, работающих как в открытом космосе, так и на земле. Свинец, легированный селеном, — материал решеток аккумуляторов.
Теллур применяют в качестве легирующей примеси при производстве свинцово-кислотных аккумуляторов. Сплавы теллура со свинцом обладают высокой пластичностью и при этом прочны, поэтому из них делают и кабели. Сплав теллура, цезия и висмута позволил поставить рекорд полупроводникового холодильника, достигнута температура -237°C.
Стекла на основе теллура – полупроводники, и кроме электропроводности к их достоинствам относятся легкоплавкость и прозрачность. Такие стекла нашли применение в построении химической аппаратуры специального назначения.
Как на самом деле производят процессоры
Чтобы создать сверхмощный процессор, достаточно простого.
Песок. В наших компьютерах в буквальном смысле песок, вернее — составляющий его кремний. Это основной элемент, благодаря которому в компьютерах всё работает. А вот как из песка получаются компьютеры.
Что такое процессор
Процессор — это небольшой чип внутри вашего компьютера или телефона, который производит все вычисления. Об основе вычислений мы уже писали — это транзисторы, которые собраны в сумматоры и другие функциональные блоки.
Если очень упрощённо — это сложная система кранов и труб, только вместо воды по ним течёт ток. Если правильным образом соединить эти трубы и краны, ток будет течь полезным для человека образом и получатся вычисления: сначала суммы, потом из сумм можно получить более сложные математические операции, потом числами можно закодировать текст, цвет, пиксели, графику, звук, 3D, игры, нейросети и что угодно ещё.
Кремний
Почти все процессоры, которые производятся в мире, делаются на кремниевой основе. Это связано с тем, что у кремния подходящая внутренняя атомная структура, которая позволяет делать микросхемы и процессоры практически любой конфигурации.
Самый доступный источник кремния — песок. Но кремний, который получается из песка, на самом первом этапе недостаточно чистый: в нём есть 0,5% примесей. Может показаться, что чистота 99,5% — это круто, но для процессоров нужна чистота уровня 99,9999999%. Такой кремний называется электронным, и его можно получить после цепочки определённых химических реакций.
Когда цепочка заканчивается и остаётся только чистый кремний, можно начинать выращивать кристалл.
Кристалл и подложка
Кристаллы — это такие твёрдые тела, в которых атомы и молекулы вещества находятся в строгом порядке. Проще говоря, атомы в кристалле расположены предсказуемым образом в любой точке. Это позволяет точно понимать, как будет вести себя это вещество при любом воздействии на него. Именно это свойство кристаллической решётки используют на производстве процессоров.
Самые распространённые кристаллы — соль, драгоценные камни, лёд и графит в карандаше.
Большой кристалл можно получить, если кремний расплавить, а затем опустить туда заранее подготовленный маленький кристалл. Он сформирует вокруг себя новый слой кристаллической решётки, получившийся слой сделает то же самое, и в результате мы получим один большой кристалл. На производстве он весит под сотню килограмм, но при этом очень хрупкий.
После того, как кристалл готов, его нарезают специальной пилой на диски толщиной в миллиметр. При этом диаметр такого диска получается около 30 сантиметров — на нём будет создаваться сразу несколько десятков процессоров.
Каждую такую пластинку тщательно шлифуют, чтобы поверхность получилась идеально ровной. Если будут зазубрины или шероховатости, то на следующих этапах диск забракуют.
Печатаем транзисторы
Когда диски отполированы, на них можно формировать процессоры. Процесс очень похож на то, как раньше печатали чёрно-белые фотографии: брали плёнку, светили сверху лампой, а снизу клали фотобумагу. Там, куда попадал свет, бумага становилось тёмной, а те места, которые закрыло чёрное изображение на плёнке, оставались белыми.
С транзисторами всё то же самое: на диск наносят специальный слой, который при попадании света реагирует с молекулами диска и изменяет его свойства. После такого облучения в этих местах диск начинает проводить ток чуть иначе — сильнее или слабее.
Чтобы так поменять только нужные участки, на пути света помещают фильтр — прямо как плёнку в фотопечати, — который закрывает те места, где менять ничего не надо.
Потом получившийся слой покрывают тонким слоем диэлектрика — это вещество, которое не проводит ток, типа изоленты. Это нужно, чтобы слои процессора не взаимодействовали друг с другом. Процесс повторяется несколько десятков раз. В результате получаются миллионы мельчайших транзисторов, которые теперь нужно соединить между собой.
Соединяем всё вместе
То, как соединяются между собой транзисторы в процессоре, называется процессорной архитектурой. У каждого поколения и модификации процессоров своя архитектура. Все производители держат в секрете тонкости архитектуры, потому что от этого может зависеть скорость работы или стоимость производства.
Так как транзисторов много, а связей между ними нужно сделать немало, то поступают так: наносят токопроводящий слой, ставят фильтр и закрепляют проводники в нужном месте. Потом слой диэлектрика и снова токопроводящий слой. В результате выходит бутерброд из проводников, которые друг другу не мешают, а транзисторы получают нужные соединения.
В чём сложность
Современные процессоры производятся на нанометровом уровне, то есть размеры элементов измеряются нанометрами, это очень мало.
Если, например, во время печати очень толстый мальчик упадёт на пол в соседнем цехе, еле заметная ударная волна прокатится по перекрытиям завода и печатная форма немного сдвинется, а напечатанные таким образом транзисторы окажутся бракованными. Пылинка, попавшая на пластину во время печати — это, считай, загубленное ядро процессора.
Поэтому на заводах, где делают процессоры, соблюдаются жёсткие стандарты чистоты, все ходят в масках и костюмах, на всех воздуховодах стоят фильтры, а сами заводы находятся на сейсмических подушках, чтобы толчки земной коры не мешали производить процессоры.
Крышка и упаковка
Когда дорожки готовы, диск отправляют на тесты. Там смотрят на то, как работает каждый процессор, как он греется и сколько ему нужно энергии, заодно проверяют на брак.
В зависимости от результатов процессоры с одной пластины могут получить разную маркировку и продаваться по разной стоимости. Те процессоры, которые получились более удачными, становятся дорогими серверными продуктами. Те, где кто-то рядом чихнул или вздохнул, имеют некоторые несовершенства и дефекты, их могут отправить на потребительскую линию.
После тестов диск разрезают на готовые процессорные ядра.
После этого к ядру процессора добавляют контакты, чтобы можно было вставить его в материнскую плату, и накрывают крышкой. Чёрный или металлический прямоугольник, из которого торчат ножки, — это как раз крышка.
Крышка выполняет две функции: защищает сам кристалл от повреждений и отводит от него тепло во время работы. Дело в том, что миллионы транзисторов при работе нагреваются, и если процессор не остужать, то он перегреется и кристалл может испортиться. Чтобы такого не произошло, на крышку процессора ставят воздушные кулеры или делают водяное охлаждение.
Система на чипе
Чипы процессоров уже настолько маленькие, что под одной крышкой можно поместить какое-нибудь ещё устройство. Например, видеосистему — то, что обсчитывает картинку перед выводом на экран. Или устройство радиосвязи с антенной.
В какой-то момент на маленьком чипе площадью около 1 см 2 уже можно было поместить процессор, видео, модем и блютус, сделать всё нужное для поддержки памяти и периферии — в общем, система на чипе. Подключаете к этому хозяйству экран, нужное количество антенн, портов и кнопок, а главное — здоровенную батарею, и у вас готовый смартфон. По сути, все «мозги» вашего смартфона находятся на одном маленьком чипе, а 80% пространства за экраном занимает батарея.
Процессоры: как изготавливают микрочипы
В нынешнее время невозможно представить себе компьютер, смартфон или другой электронный прибор без процессора. В невероятном количестве выходят новые устройства с продвинутыми чипами, благодаря которым аппараты становятся мощнее и умнее. При этом далеко не все догадываются о том, как создаются подобные «камни».
В данной статье мы постараемся многое рассказать о процессе изготовления современных процессоров. Забегая вперед, стоит отметить, что производство чипов – дело сложное и затратное, но также и весьма интересное.
Выбор сырья и начало производства
Процессор имеет очень непростую структуру. Для создания миниатюрных элементов, которые осуществляется моментальные вычисления, необходимо задействовать определенное сырье с многоуровневой системой очистки. Речь идет об обыкновенном песке. Именно из этого сыпучего материала производится кремний. Песок под воздействием невероятно высоких температур смешивается с чистым углеродом. В результате получается полноценный кремний, но его чистота в 98% все еще недостаточна, чтобы сразу же использоваться для микрочипов. Для превращения в «электронный мозг» ему катастрофически не хватает обработки при помощи хлора, чтобы лишиться остатков различных примесей.
Теперь максимально чистый кремний, который помещен в тигель, нужно основательно разогреть. Для этого он направляется в герметичную печь с инертным газом аргоном. Почему бы просто не создать вакуумную среду? К сожалению, эталонный вакуум реализовать на нашей планете нельзя. Только по этой причине потребуется направить свой взор в сторону химии. Так, аргон не дает составу окислиться, великолепно замещая кислород. При этом сам газ вообще не влияет на кремний, что очень важно. В таких условиях песок нагревается до фантастической температуры – 1420 градусов. Он начинает плавиться под действием графитового нагревателя, который никак не загрязняет кремний.
Сейчас в дело вступает длинный затравочный кристалл, состоящий из кремния. Благодаря этому должна начаться кристаллизация, когда жидкий состав постепенно остывает с образованием своеобразной сетки, а именно молекулярной решетки. Теперь кристалл крайне медленно вынимают из тигля, чтобы достать желаемый монокристалл. Примечательно, что «рост» кристалла продолжается около 24-26 часов. В результате мы получаем цельный кристалл в форме цилиндра с 30-сантиметровым диаметром и почти 2-метровой высотой. Такой гигантский «карандаш» может весить до 100-150 кг. Стоит отметить его структуру, которая является абсолютно однородной. Полученная решетка из кремниевых атомов можно с уверенностью назвать идеальной. Вот такая «штука» вытягивается из тигля при помощи затравочного кристалла.
Полученную заготовку обязательно необходимо проверить на чистоту, а также правильность размещения решетки из молекул. Для этого активно применяются не только рентгеноскопические, но и разнообразные химические исследования. Если с кристаллом все хорошо, то его отправляют на физическую обработку. Речь идет о специальной установке, которая способна эффективно резать кремний, чтобы получились 1-миллиметровые пластины. После нарезки потребуется полировка материала, так как проволочная пила все-таки оставляет небольшие микродефекты на поверхности, а и ничего подобного быть не должно.
Обработкой занимаются продвинутые шлифовальные машины, причем данный процесс повторяется многократно. Только когда кремниевый диск будет идеально ровным и гладким шлифовка прекращается. Остается лишь очистить поверхность от пыли, а затем отправить в стерильное помещение для дальнейшего хранения.
Чистота как залог успеха
Производители процессоров строят огромные стерильные цеха, чтобы пыль никак не могла проникнуть внутрь таких помещений. Цех не только должен быть полностью изолированным, но и иметь продвинутую систему очистки воздуха. Профессиональные кондиционеры и прогрессивные конструкции для воздушной очистки делают подобные помещения невероятно стерильными. Так, по чистоте воздуха такие производственные сооружения в тысячи раз опережают даже палаты в хирургических отделениях.
Потрясающая стерильность достигается путем как воздушной очистки, так и нахождения работников в перчатках, масках и специальных костюмах. Более того, последние тенденции в отношении тотальной роботизации повысило уровень стерильности до каких-то сумасшедших показателей. Но и процент брака благодаря промышленным роботам стал заметно ниже. Все это на фоне того, что даже единственной микроскопической пылинки достаточно, чтобы испортить будущий процессор.
Превращаем «вафлю» в микрочип
Сегодня действует конвейерное изготовление процессоров. Причем весь процесс разделен на конкретные этапы с четкими задачами. Так, на место производства будущего чипа доставляются «вафли» в герметичных боксах-контейнерах. Затем ей необходимо пройти сотни технологических этапов и операций. При этом из цеха чип «выходит» в полностью готовом состоянии лишь спустя 2-3 месяца.
Что же представляет собой эта технологическая цепочка, благодаря которой идеально ровный кусок кремния чудесным образом превращается в продвинутый процессор для наших гаджетов и приборов? Тут бытует очень много догадок и размышлений, потому что никто из крупнейших производителей в лице Intel, Qualcomm и AMD не собирается раскрывать собственные секреты. Для начала конструкторы и инженеры компании-изготовителя должны создать 3D-схемы с взаимным расположением всех элементов чипа. Это по-настоящему сложный процесс, требующий особого подхода.
После этого на кремниевую подложку наносятся многочисленные элементы, разделенные на отдельные слои с множеством уровней. Так как данный процесс является чрезвычайно тонким, то его невозможно осуществить вручную. Поэтому изготовление процессоров полностью автоматизировано. Стоит отметить, что технический процесс постоянно совершенствуется, а нанометры все уменьшаются и уменьшаются, позволяя микрочипам с каждым годом бить рекорды производительности.
Когда слои будут нанесены на подложку, а также соединены при помощи атомов меди с возможностью пропускания тока, то остается проверить чип на работоспособность. Примечательно, что на прилавки магазинов могут попадать только на 100% качественные процессоры. Для этого роботизированные машины тщательным образом выбирают, а потом вырезают из общей пластины полностью работоспособные чипы. Происходит сортировка по частотам, энергоэффективности и другим параметрам.
Косметические процедуры
Финишная прямая в процессе изготовления заключается в приклеивании подложки к микросхеме. Для этого конструкция направляется в печь, нагретую до 360-градусной температуры. Когда процессор остывает, то на него одевается крышка, чтобы достаточно хрупкий кремень был надежно защищен.
При этом корпус позволяет отводить лишнее тепло от кристалла. Создаются специальные «ножки» или «шарики» в виде определенного количества электрических контактов. Они аккуратно припаиваются к подложке. Теперь чип основательно промывается в водяном растворе с эффективными веществами для удаления оставшейся грязи. Во многих случаях производители дополнительно тестируют готовые процессоры, чтобы выявить дефекты в работе.
Вот так мы получаем микрочипы, благодаря которым функционируют наши смартфоны, ноутбуки, планшеты, компьютеры, телевизоры и многие другие электрические устройства.