Какие редукторы позволяют получить большие передаточные числа при малых габаритах
Перейти к содержимому

Какие редукторы позволяют получить большие передаточные числа при малых габаритах

Справочная информация по выбору редуктора

Редукторы (латинского слова reductor) получили широкое распространение во всех отраслях промышленного и аграрного хозяйства, поэтому их производство с каждым годом увеличивается, появляются новые модификации, совершенствуются уже существующие модели.

Редуктор служит для снижения частоты вращения тихоходного вала и увеличения усилия на выходном валу. Редуктор может иметь одну или несколько ступеней, цель которых увеличение передаточного отношения. По типу механической передачи редукторы могут быть червячными, коническими, планетарными или цилиндрическими. Конструктивно редуктор выполнен как отдельное изделие, работающее в паре с электродвигателем и установленное с ним на одной раме.

Промышленностью сегодня выпускаются редукторы общего и специального назначения.
Редукторы общего назначения могут применяться во многих случаях и отвечают общим требованиям. Специальные же редукторы имеют нестандартные характеристики подходящие под определенные требования.

Классификация, основные параметры редукторов

В зависимости от типа зубчатой передачи редукторы бывают цилиндрические, конические, волновые, планетарные, глобоидные и червячные. Широко применяются комбинированные редукторы, состоящие из нескольких совмещенных в одном корпусе типов передач (цилиндро-конические, цилиндро-червячные и т.д.).

Конструктивно редукторы могут передавать вращение между перекрещивающимися, пересекающимися и параллельными валами.
Так, например цилиндрические редукторы позволяют передать вращение между параллельными валами, конические — между пересекающимися, а червячные — между пересекающимися валами.

Общее передаточное число может достигать до нескольких десятков тысяч, и зависит от количества ступеней в редукторе. Широкое применение нашли редукторы, состоящие из одной, двух или трех ступеней, при чем они могут, как описывалось выше, совмещать разные типы зубчатых передач.

Ниже представлены наиболее популярные виды редукторов, серийно выпускаемые промышленностью.

Цилиндрические редукторы

Цилиндрические редукторы являются самыми популярными в машиностроении. Они позволяют передавать достаточно большие мощности, при этом КПД достигает 95%. Вращение передается между параллельными или соосными валами. Передаваемая мощность зависит от типоразмера редуктора. В цилиндрических редукторах применяются передачи, состоящие из прямозубых, косозубых или шевронных зубчатых колес. Количество цилиндрических передач напрямую влияет на передаточное отношение. Например, одноступенчатый редуктор может иметь передаточное число 1,5 до 10, две ступени — от 10 до 60, а три ступени — от 60 до 400.

Кинематические схемы наиболее распространенных видов цилиндрических редукторов представлены на рисунке ниже:

А) — Простой одноступенчатый цилиндрический редуктор
Б) – Двухступенчатый редуктор цилиндрический с несимметричным расположением зубчатых колес
В) – Трехступенчатый цилиндрический редуктор, входной вал быстроходной передачи изготовлен с двумя шестернями
Г) – Соосный цилиндрический редуктор
Д) — Соосный цилиндрический редуктор с симметричным расположением опор относительно тихоходной передачи
Е) — Соосный цилиндрический редуктор с шевронной быстроходной передачей
Ж) — Соосный цилиндрический редуктор с раздвоенной передачей
З) — Соосный цилиндрический редуктор с посаженными на быстроходный вал двумя косозубыми шестернями с противоположенным наклоном зубьев
И) – Трехступенчатый цилиндрический редуктор с раздвоенной быстроходной и тихоходной передачей

Червячные редукторы

Червячные редукторы получили большую популярность в виду своей простоты и достаточно низкой стоимости. Из всех видов червячных редукторов наиболее распространены редукторы с цилиндрическими или глобоидными червяками. Как и многие другие типы редукторов червячные могут состоять из одной или нескольких ступеней. На одноступенчатом редукторе передаточное отношение может быть в пределах 5-100, а на двух ступенях может достигать 10000. Основными достоинствами редукторов червячного типа являются компактные размеры, плавность хода и самоторможение. Из недостатков можно отметить не очень высокий КПД и ограниченная нагружаемая способность. Основными элементами являются зубчатое колесо и цилиндрический червяк. Цилиндрический червяк представляет собой винт с нанесенной на его поверхности резьбой определенного профиля. Число заходов зависит от передаточного отношения, и может составлять от 1 до 4. Вторым основным элементом редуктора является червячное колесо. Оно представляет собой зубчатое колесо из сплава бронзы, количество зубьев также зависит от передаточного отношения и может составлять 26-100.

В ниже приведенной таблице представлена зависимость передаточного отношения от количества зубов колеса и заходов винта.

Кинематические схемы одноступенчатых червячных редукторов представлены ниже:

А) Редуктор с нижним расположением червяка
Б) Редуктор с верхним расположением червяка
В) Редуктор с боковым расположением червяка (ось червяка расположена горизонтально)
Г) Редуктор с боковым расположением червяка (ось червяка расположена вертикально)

Редукторы червячные двухступенчатые позволяют получить моменты в диапазоне 100 – 2800Нм. Конструкция представляет собой жесткую скрутку двух редукторов. Между собой редукторы соединены с помощью фланца. Цилиндрический вал первой ступени установлен в полый вал второй ступени.
Вариант расположения червячных пар представлен на рисунке ниже:

Расположение входного и выходного вала зависит от варианта сборки. Существуют следующие сборки: 11, 12, 13, 16, 21, 22, 23, 26.

Планетарные редукторы

Планетарные редукторы нашли широкое применение в тяжелом машиностроении, так как обладают рядом преимуществ перед редукторами другого типа. На редукторах планетарного типа можно получить достаточно большие передаточные числа, при этом габариты редуктора будут намного меньше чем у червячного или цилиндрического редуктора. Конструкция редуктора представляет собой планетарный механизм. Основными элементами редуктора являются сателлиты, солнечная шестерня, кольцевая шестерня и водило.

Внешний вид устройства планетарного редуктора представлен ниже:

А) сателлиты
Б) солнечная шестерня
В) водило
Г) кольцевая шестерня

Кольцевая шестерня планетарного редуктора находится в неподвижном состоянии, Вращение от входного вала передается на солнечную шестерню находящеюся в зацеплении со всеми сателлитами. Сателлиты вращаются внутри неподвижной кольцевой шестерни передавая энергию вращения на водило, а далее на выходной вал редуктора. Планетарный механизм может быть одно-, двух- и трехступенчатым, передаточное отношение зависит от количества зубьев на каждой шестерне.

Свое название планетарный редуктор получил благодаря тому, что зубчатые колеса вращаются подобно планетам солнечной системы. Планетарные редукторы могут быть одно-, двух- и трехступенчатыми. Передаточное отношение может быть в пределах 6 – 450. Редукторы планетарного типа обладают высоким КПД, и позволяют передавать большие мощности без потерь на нагрев. Для удобства монтажа планетарные редукторы выпускаются на лапах или на опорном фланце, а также возможен комбинированный вариант.

В настоящий момент на Российском рынке приводной техники пользуются популярностью редукторы серии 3МП и МПО.

Конические и цилиндро-конические редукторы

Конические и цилиндро-конические редукторы передают момент между пересекающимися или скрещивающимися валами. В редукторах применяются шестерни в виде конуса с прямыми или косыми зубами. Конические редукторы имеют большую плавность зацепления, что позволяет им выдерживать большие нагрузки. Редукторы могут быть одно-, двух- и трехступенчатыми. Большое распространение получили цилиндро-конические редукторы, где общее передаточное отношение может достигать 315. Быстроходный и тихоходный валы редуктора могут располагаться горизонтально и вертикально. По типу кинематической схемы конические и цилиндро-конические редукторы могут быть развернутые или соосные.

На рисунке ниже представлены кинематические схемы конических редукторов:

А) Реверсивный конический редуктор. Смена направления вращения достигается установкой зубчатого колеса с противоположенной стороны конической шестерни.

Б) Реверсивный конический редуктор. Конические шестерни вращаются в разных направлениях. Подключение тихоходного вала к одной из конических шестеренок происходит за счет кулачковой муфты.

В) Двухступенчатый коническо-цилиндрический редуктор. Быстроходный и тихоходный валы находятся под прямым углом в одной плоскости.

Г) Двухступенчатый коническо-цилиндрический редуктор. Входной и выходные валы перекрещиваются и лежат в разных плоскостях.

Д) Трехступенчатый коническо-цилиндрический редуктор. Быстроходный и тихоходный валы находятся под прямым углом в одной плоскости.

Е) Трехступенчатый коническо-цилиндрический редуктор. Промежуточная и тихоходная цилиндрическая передача собраны по соосной схеме.

Конические редукторы широко используются в изделиях, где требуются передать высокий момент под прямым углом. В отличие от червячных редукторов, конические редукторы не имеют быстро изнашиваемого бронзового колеса, что позволяет работать им в тяжелых условиях длительное время. Также важным отличием является обратимость, возможность передавать вращение от тихоходного вала к быстроходному валу. Обратимость позволяет разгрузить редукторный механизм в отличие от червячного редуктора, что позволяет использовать конический редуктор в установках с высокой инерцией.

Классификация редукторов в зависимости от вида передач и числа ступеней:

Конструкция и назначение редуктора

Механизм, служащий для понижения угловой скорости и одновременно повышающий крутящий момент, принято называть редуктором. Энергия вращения подводится на входной вал редуктора, далее в зависимости от передаточного отношения на выходном валу получаем пониженную частоту и увеличенный момент.

В состав редуктора в зависимости от типа механической передачи обычно входят зубчатые или червячные пары, центрирующие подшипники, валы, различные уплотнения, сальники и т.д. Элементы редуктора помещаются в корпус, состоящий из двух частей – основания и крышки. Рабочие механизмы редуктора при работе непрерывно смазываются маслом путем разбрызгивания, а в отдельных случаях применяется принудительный насос, помещенный внутрь редуктора.

Существует огромное количество различных типов редукторов, но наибольшую популярность получили цилиндрические, планетарные, конические и червячные редукторы. Каждый тип редуктора имеет свои определенные преимущества и недостатки, которые следует учитывать при конструировании оборудования. Основными же критериями для подбора редуктора являются определение необходимой мощности или момента нагрузки, коэффициента редукции (передаточного отношения), а также монтажного расположения источника вращения и рабочего механизма.

Особенности редукторов по виду механических передач

Мировой промышленностью выпускается огромное количество редукторов и редукторных механизмов различающихся по типу передачи, вариантам сборки и т.д. Рассмотрим основные типы механических передач, их особенности и преимущества.

Цилиндрическая передача – является самой надежной и долговечной из всех видов зубчатых передач. Данная передача применяется в редукторах, где требуется высокая надежность и высокий КПД. Цилиндрические передачи обычно состоят из прямозубых, косозубых или шевронных зубчатых колёс.

а) Прямозубая цилиндрическая передача

б) Косозубая цилиндрическая передача

в) Шевронная цилиндрическая передача

г) Цилиндрическая передача с внутренним зацеплением

Конические передачи – обладают всеми преимуществами цилиндрических зубчатых передач и применяются в случае перекрещивания входного и выходного валов.

а) Коническая зубчатая передача с прямым зубом

б) Коническая зубчатая передача с косым зубом

в) Коническая зубчатая передача с криволинейным зубом

г) Коническая гипоидная передача

Червячная передача – позволяет передавать кинетическую энергию между пересекающимися в одной плоскости валами. Основными преимуществами данной передачи является высокий показатель передаточного отношения, самоторможение, компактные размеры. Недостатками являются низкий КПД, быстрый износ бронзового колеса, а также ограниченная способность передавать большие мощности.

Гипоидная передача – она же спироидная состоит из конического червяка и диска со спиральными зубьями. Ось червяка значительно смещена от оси конического колеса, благодаря чему число зубьев одновременно входящих в зацепление в несколько раз больше чем у червячных передач. В отличие от червячной пары в гипоидной передаче линия контакта перпендикулярна к направлению скорости скольжения, что обеспечивает масленый клин и уменьшает трение. Благодаря этому КПД гипоидной передачи выше, чем у червячной передачи на 25%.

а) Червячная передача с цилиндрическим червяком

б) Червячная передача с глобоидным червяком

в) Спироидная передача

г) Тороидно-дисковая передача

д) Тороидная передача внутреннего зацепления

Волновая передача – прототипом является планетарная передача с небольшой разницей количества зубов сателлита и неподвижного колеса. Волновая передача характеризуется высоким показателем передаточного отношения (до 350). Основными элементами волновой передачи являются гибкое колесо, жесткое колесо и волновой генератор. Под действием генератора гибкое колесо деформируется и происходит зацепление зубьев с жестким колесом. Волновые передачи широко применяются в точном машиностроении благодаря высокой плавности и отсутствия вибраций во время работы.

1) Зубчатое колесо с внутренними зубьями

2) Гибкое колесо с наружными зубьями соединенное с выходным валом редуктора

3) Генератор волн

Количество ступеней редуктора

Число ступеней редуктора напрямую влияет на передаточное отношение. В червячных редукторах наиболее распространены одноступенчатые пары. Цилиндрические же редукторы, состоящие из одной ступени, применяются реже, чем двух- или трехступенчатые редукторы. В производстве редукторов все чаще применяются комбинированные передачи, состоящие из разных типов передач, например коническо-цилиндрические редукторы.

Входные и выходные валы редукторов

В редукторах обычно применяются обычные прямые валы, имеющие форму тел вращения. На валы редукторов действуют внешние нагрузки, консольные нагрузки и усилия преодоления зацеплений. Крутящий момент на валу определяется рабочим крутящим моментом редуктора или реактивным крутящим моментом привода. Консольная нагрузка определяется способом соединения редуктора с двигателем, зависит от радиального или осевого усилия на вал. В ряде машин, к которым предъявляются особые требования в отношении габаритов или веса используются редукторы с полым валом. Полый вал редуктора позволяет располагать вал исполнительного механизма внутри редуктора, тем самым отпадает необходимость использовать переходные полумуфты и т.п.

Срок службы редуктора

Срок службы редуктора зависит от правильных расчетов параметров действующей нагрузки. Также на длительность работы влияет своевременное профилактическое обслуживание редуктора, замена масла и сальников. Регулярный профилактический осмотр позволит избежать незапланированного ремонта или замену редуктора. Уровень масла контролируется через смотровое окно в редукторе и при необходимости доливается до нужного уровня.

Ниже приведена таблица зависимости срока службы редуктора от типа передачи:

Устройство редуктора

Основными элементами редуктора являются:

1. Прошедшие обработку зубчатые колеса с зубьями высокой твердости. Материалом обычно служит сталь марки (40Х, 40ХН ГОСТ 4543-71). В планетарных редукторах шестерни и сателлиты изготовлены из стали марки 25ХГМ ГОСТ 4543-71. Зубчатые венцы из стали 40Х. Червячные валы изготавливаются из стали марки ГОСТ 4543-71 – 18ХГТ, 20Х с последующей цементацией рабочих поверхностей. Венцы червячных редукторов изготавливают из бронзы Бр010Ф1 ГОСТ 613-79. Гибкое колесо волнового редуктора изготовлено из кованой стали 30ХГСА ГОСТ 4543-71.
2. Валы (оси) быстроходные, промежуточные и тихоходные. Материалом является — сталь марки (40Х, 40ХН ГОСТ 4543-71). В зависимости от варианта сборки выходные валы могут быть одно- и двухконцевыми, а также полыми со шпоночным пазом. Выходные валы планетарных редукторов изготовлены заодно с водилом последней ступени. Материалом служит чугун или сталь.
3. Подшипниковые узлы. Используются подшипники качения воспринимающие большие осевые и консольные нагрузки. Применяются обычно конические роликоподшипники.
4. Шлицевые, шпоночные соединения. Шлицевые соединения чаще применяются в червячных редукторах (выходной полый вал). Шпонки применяются для соединения валов с зубчатыми колесами, муфтами и другими деталями.
5. Корпуса редукторов. Корпуса и крышки редукторов выполняются методом литья. В качестве материалов используется чугун марки СЧ 15 ГОСТ 1412-79 или сплав алюминия АЛ11. Для улучшения отвода тепла корпуса редукторов снабжаются ребрами.

Монтажное исполнение

Соосный редуктор — входной и выходной вал находятся на одной оси

Червячный редуктор — входной и выходной вал находятся под прямым углом

Цилиндрический редуктор — входной и выходной вал находятся на параллельных осях

Коническо-цилиндрический редуктор — входной и выходной вал перекрещиваются

Монтажное положение соосных цилиндрических или планетарных редукторов

Монтажное положение и вариант сборки червячных одноступенчатых редукторов

Монтажное положение и вариант сборки червячных двухступенчатых редукторов

Монтажное положение и вариант сборки цилиндрических редукторов

Методика выбора редуктора в зависимости от нагрузки

Методика выбора редуктора заключается в грамотном расчете основных параметров нагрузки и условий эксплуатации.

Технические характеристики описаны в каталогах, а выбор редуктора делается в несколько этапов:

  • выбор редуктора по типу механической передачи
  • определение габарита (типоразмера) редуктора
  • определение консольных и осевых нагрузок на входной и выходной валы
  • определение температурного режима редуктора

На первом этапе конструктор определяет тип редуктора исходя из заданных задач и конструктивных особенностей будущего изделия. На этом же этапе закладываются такие параметры как: передаточное отношение, количество ступеней, расположение входного и выходного валов в пространстве.

На втором этапе следует определить межосевое расстояние. Исходные данные на каждый тип редуктора можно найти в каталоге. Следует помнить, что межосевое расстояние влияет на способность передать момент от двигателя к нагрузке.

Консольные и осевые нагрузки определяются уравнениями, а потом сравниваются со значениями в каталоге. В случае превышения расчетных нагрузок, на какой либо вал, редуктор выбирается на типоразмер выше.

Температурный режим определяется во время работы редуктора. Температура не должна превышать + 80° гр. при длительной работе редуктора с действующей нагрузкой.

Как выбрать редуктор?

Выбор редуктора должен производить квалифицированный сотрудник т.к. неправильные расчеты могут привести к поломке редуктора или сопутствующего оборудования. Грамотный выбор редуктора поможет избежать дальнейшие затраты на ремонт и покупку нового привода. Основными параметрами для выбора редуктора как было сказано выше, являются: тип редуктора, габарит или типоразмер, передаточное отношение, а также кинематическая схема.

Определить габарит редуктора можно с помощью каталога, где указаны максимальные значения крутящего момента для каждого типоразмера. Момент действующей нагрузки на редуктор определяется следующим выражением:

где:
M2 — выходной момент на валу редуктора (Н/М)
P1 — подводимая мощность на быстроходном валу редуктора (кВт)
Rd — динамический КПД редуктора (%)
n2 — частота вращения тихоходного вала (об/мин)

Частоту вращения тихоходного вала n2 можно определить, зная значения передаточного отношения редуктора i, а также значения скорости быстроходного вала n1.

где:
n1 — частота вращения быстроходного вала (об/мин)
n2 — частота вращения тихоходного вала (об/мин)
i — передаточное отношение редуктора

Еще одним важным фактором, который следует учитывать при подборе редуктора, является величина – сервис фактор (s/f). Сервис фактор sf – это отношение максимально допустимого момента M2 max указанного в каталоге к номинальному моменту M2 зависящего от мощности двигателя.

где:
M2 max — максимально допустимый момент (паспортное значение)
M2 — номинальный момент на валу редуктора (зависит от мощности двигателя)

Значение сервис фактора (s/f) напрямую связан с ресурсом редуктора и зависит от условий работы привода.

При работе редуктора с нормальной нагрузкой, где число стартов не превышает 60 пусков в час — сервис фактор может выбираться: sf = 1.

При средней нагрузке, где число стартов не превышает 150 пусков в час — сервис фактор выбирается: sf = 1,5.

При тяжелой ударной нагрузке с возможностью заклинивания вала редуктора сервис фактор выбирается: sf = 2 и более.

Передаточное отношение и как его определить?

Основное назначение любого редуктора понижение угловой скорости подводимой на его входной вал. Значения выходной скорости определятся передаточным отношением редуктора. Передаточное отношение редуктора — это отношение скорости входного вала к скорости выходного вала.

Основные типы редукторов

Тип редуктора определяется составом передач, порядком их размещения в направлении от ведущего – быстроходного вала к ведомому – тихоходному валу и положением колёс в пространстве. Редукторы классифицируют по следующим основным признакам:

1) по типу передачи – зубчатые, червячные, зубчато-червячные;
2) по числу ступеней – одноступенчатые, двухступенчатые, и т. д.;
3) по типу зубчатых колес – цилиндрические, конические, коническо-цилиндрические и т.д.;
4) по относительному расположению валов в пространстве – горизонтальные, вертикальные.

Исполнение редуктора определяется передаточным числом, формой концов валов и вариантом сборки.

Цилиндрические редукторы получили широкое распространение в машиностроении благодаря широкому диапазону передаваемых мощностей, долговечности, простоте изготовления.

Одноступенчатые цилиндрические редукторы горизонтальные рис. 2.8.1 и вертикальный рис.2.8.2 имеют, как правило, косозубое зацепление. Передаточное число таких редукторов u<8.

Рисунок 2.8.2 Одноступенчатый цилиндрический редуктор вертикальный

Двухступенчатые цилиндрические редукторы рис.2.8.3 – горизонтальный, рис. 2.8.4– вертикальный. Передаточное число u = 8…40

Рисунок 2.8.4 Двухступенчатый цилиндрический редуктор вертикальный

Трёхступенчатые цилиндрические редукторы. Эти редукторы выполняют преимущественно на базе горизонтальной схемы. Диапазон передаточных чисел u = 31,5…180.

Конические редукторы рис.2.8.5 применяют, когда необходимо передавать вращающий момент между валами со взаимно перпендикулярным расположением осей. Передаточное число таких редукторов u<=5 .

/>; />

Рисунок 2.8.5 Конические редукторы

Коническо-цилиндричекие редукторы рис.2.8.6 независимо от числа ступеней и компоновки выполняют с быстроходной конической ступенью. Передаточное число u = 8…31,5.

Рисунок 2.8.6 Коническо-цилиндричекие редукторы

Червячные редукторы вследствие низкого КПД и меньшего ресурса, чем у зубчатых редукторов, не рекомендуется применять их в машинах непрерывного действия.

Компоновочные возможности ограничены и сводятся к трём основным схемам редукторов: с нижним, верхним и боковым расположением червяка рис 2.8.7. Выбор схемы редуктора обычно диктуется удобством компоновки привода в целом. Диапазон передаточных чисел u = 8…80, рекомендуется u<=63 .

Рисунок 2.8.7 Червячные редукторы

Червячно-цилиндрический двухступенчатый редуктор рис.2.8.8 имеет червячную быстроходную ступень и одну червячно-цилиндрическую или две червячно- цилиндрические ступени с параметрами редуктора развёрнутой схемы. Редукторы имеют большое передаточное число и низкий уровень шума. Червяк обычно располагают внизу, что вызвано условиями смазывания зацепления, расположением подшипников червяка и условиями сборки.

Рисунок 2.8.8 Червячно-цилиндрический двухступенчатый редуктор

Мотор-редукторы представляют собой агрегат, в котором объединены электродвигатель и редуктор. Это делается с целью уменьшения габаритов привода и улучшения его внешнего вида.

Планетарные редукторы позволяют получить большое передаточное число при малых габаритах. По конструкции они сложнее вышеописанных редукторов. Наиболее распространен простой планетарный зубчатый редуктор рис. 2.8.9.

Рисунок 2.8.9 Планетарный редуктор

Волновые редукторы являются разновидностью планетарных редукторов. Для обозначения передач используются прописные буквы русского алфавита: Ц – цилиндрическая, К – коническая, Ч – червячная, П – планетарная, В – волновая.

Если в редукторе две или более одинаковых передач, то после буквы ставится соответствующая цифра. Пример: Ц (рис.2.8.1, 2.8.2); Ц2 (рис.2.8.3); КЦ (рис.2.8.6); Ч (рис.2.8.7); ЦЧ 9 (рис.2.8.8). Если все валы редуктора находятся в вертикальной плоскости, то к обозначению добавляется индекс В. Если ось тихоходного вала вертикальна, то добавляется индекс Т, если ось быстроходного вала вертикальна, то – индекс Б. КЦт , КБ Ц (рис.2.8.6).

Редукторы — продукция материально-технического назначения. Эти механизмы служат для изменения скорости вращения при передачи вращательного движения от одного вала к другому.

Мотор редуктор — представляет собой электродвигатель и редуктор, соединенные в единый агрегат (в некоторых странах его называют редукторным электродвигателем). Мотор-редуктор более компактен по сравнению с приводом на базе редуктора, его монтаж значительно проще, кроме того, уменьшается материалоемкость фундаментной рамы, а для механизма с насадным исполнением (с полым валом) не требуется никаких рамных конструкций. Большое количество конструкционных решений и типоразмеров дает возможность оснащения предприятий прецизионными редукторами приводов различных назначений, размеров и мощностей. Мотор редуктор, как универсальный элементы электропривода, находят свое применение практически во всех областях промышленности.

Виды редукторов

В современном оборудовании, как промышленном, так и бытовом, широко распространены механические редукторы. Они предназначены для изменения и передачи момента вращения от двигателя к исполнительным органам и отличаются по типу и конфигурациям в зависимости от выполняемых задач:

  • уменьшить частоту вращения и увеличить вращающий момент;
  • увеличить частоту вращения;
  • изменить направление вращения;
  • изменить угол оси выходного вала.

Основными характеристиками редукторов являются:

  • максимальный крутящий момент;
  • максимальная передаваемая мощность;
  • передаточное число;
  • максимальная скорость вращения (об/мин).
  • габариты, в т.ч. и присоединтиельные размеры;
  • расстояние от валов, до основных присоединительных поверхностей;
  • масса.

Редукторы, повышающие скорость вращения на выходе, называются мультипликаторами. К примеру, в классической 5-ти ступенчатой КПП в автомобиле 5 передача зачастую имеет передаточное соотношение меньше 1, т.е. частота на выходе выше.

Основные виды:

Редукторы с цилиндрическими передачами

Данный тип редукторов является наиболее распространенным в промышленности. Они способны передавать большие мощности и крутящие моменты. Их КПД самый высокий среди остальных разновидностей. Они просты и надежны в эксплуатации, обладают большим ресурсом и плавностью хода. Относительно дешевые в производстве, т.к. используют распространенные и стандартизированные детали и конструкционные материалы. Передаточное отношение небольшое.

Передачи различают с прямыми зубьями, с косыми зубьями, шевронные и передачи Новикова. Косозубые передачи наиболее распространены в силу большей нагрузочной способности и плавности хода.

По расположению осей валов в пространстве выделяют следующие типы:

  • с разнесенными осями;
  • соосные;
  • горизонтальные,
  • вертикальные.

По числу ступеней разделяют одно- двух- и многоступенчатые редукторы.

Однако у цилиндрических редукторов есть и свои ограничения. Основное заключается в том, что оптимальное передаточное число на одну ступень не превышает i ≤ 5. Для большего соотношения необходимо увеличивать количество ступеней, что, безусловно, повлечет усложнение, удорожание и увеличение массогабаритных параметров.

Конические редукторы

Конические редукторы преобразуют и передают вращающий момент между пересекающимися осями валов под определенным углом, отличным от 180. Как правило, это 90°. Как и цилиндрические, они имеют эвольвентное зацепление зубчатых колес. По параметрам нагрузочной способности несколько уступают цилиндрическим редукторам и сложнее в производстве.

Данные редукторы предпочтительнее цилиндрических в случаях, когда компоновка не позволяет использовать соосную или параллельную схему расположения валов.

Червячные редукторы

Передача вращающего момента происходит от червяка на приводном валу к зубчатому венцу червячного колеса выходного вала. Валы расположены перекрестно под 90°, но не пересекаются. Достоинствами таких редукторов являются высокая компактность, простота конструкции, высокое передаточное соотношение (до 84) и самоторможение. К недостаткам относятся низкий ресурс (работа осуществляется при постоянном скольжении профиля червяка о зубчатый венец колеса), дорогостоящие материалы червячного колеса, ограниченная мощность и повышенный нагрев.

Планетарные редукторы

Данный вид получил большое распространение в тяжелом машиностроении и в автомобилях. Конструкция обладает рядом преимуществ: большое передаточное соотношение и малые габариты (меньше, чем у цилиндрических и червячных). Основные действующие компоненты это: солнечная шестерня, коронная шестерня, сателлиты и водило. Данный тип редуктора бывает одно- и многоступенчатым. Наиболее часто встречается в бортовых редукторах грузовых автомобилей.

Волновые редукторы

Особенностью данного типа является очень высокое передаточное соотношение при небольших габаритах, но малый ресурс, низкая скорость и передаваемая мощность из-за волнового элемента. Основными конструктивными элементами являются: корпус с внутренними зубьями, гибкое колесо с зубьями, которое изготовлено в форме стакана и водило. Гибкое колесо иммеет на один или несколько зубьев меньше, чем корпус. Водило выполнено в форме эксцентрика или эллипса. Вращаясь на валу, оно за счет эксцентриситета прижимает гибкое колесо с одной строны к корпусу, при этом, противоположная часть выходит из зацепления. За один оборот водила гибкое колесо повернется на разницу в количества зубьев, тем самым обеспечивая редукцию. Основное применение данного типа – это области космонавтики, точных приборов и задач, где необходимы высокий момент и минимальные габариты.

Комбинированные редукторы

Для решения всевозможных задач в машиностроении набора характеристик редукторов определенного типа бывает недостаточно. Поэтому часто применяют схему комбинированных редукторов. Например: необходимо передать высокую мощность и вращающий момент, но валы должны быть расположены под углом 90°, для этого применяют коническо-цилиндрический редуктор, первая ступень которого коническая, остальные — цилиндрические.

Мотор-редукторы

Все описанные редукторы могут встречаться в исполнении мотор-редуктор. Данная разновидность отличается тем, что редуктор и электродвигатель объединены в единый силовой механизм. Это приводит к улучшению массогабаритных характеристик и повышение надежности узла.

Стоит подчеркнуть, что почти каждый современный сложный механизм имеет в своем составе редуктор, который преобразует вращающий момент от двигателя в момент, необходимый для работы исполнительного органа. И здесь выбор подходящей модели, ее надлежащая эксплуатация и обслуживание позволит полноценно использовать весь заложенный срок службы как редуктор, так и приводимый механизм.

Кинематические схемы цилиндрических редукторов

1. Классификация редукторов 1.1 Количество ступеней и расположение валов 1.2 Тип используемой передачи 1.2.1 Червячные редукторы 1.2.2 Червячные глобоидные редукторы 1.2.3 Цилиндрические редукторы 1.2.4 Конические редукторы 1.2.5 Коническо-цилиндрические редукторы 1.2.6 Насадные редукторы 1.2.7 Планетарные редукторы 1.3 Способы крепления редукторов 2. Смазка редукторов 3. Зацепления 4. Корпуса редукторов 5. Модернизация редукторов – стабильная тенденция

Редуктор представляет собой составной механизм приводов машин. Его основное назначение – уменьшение частоты вращения ведомого вала при одновременном увеличении крутящего момента. Конструкцией редуктора могут быть предусмотрены одна или несколько передач зацеплением.

1.Классификация редукторов

Редуктор общемашиностроительного назначения. Этот тип оборудования представляет собой самостоятельный агрегат, используемый в приводах машин. Его технические характеристики отвечают общим для разных применений требованиям. Конструктивно общемашиностроительные редукторы могут отличаться.

Специальные редукторы разработаны для автомобильной, авиационной и других узкоспециализированных отраслей. Из названия понятно, что агрегаты этой группы должны соответствовать специфике и параметрам конкретного применения.

Редукторы можно классифицировать по следующим признакам:

  • По типам передач и числу ступеней;
  • По расположению осей входного/выходного валов в пространстве и относительно друг друга;
  • По способу крепления.

Not Found

СОДЕРЖАНИЕ | СЛЕДУЮЩИЙ РАЗДЕЛ

9.1 Общие сведения.Назначение редукторов 9.2 Основные типы редукторов
В результате изучения студент должен знать:

— назначение, область применения; — основные типы редукторов.

9.1 Общие сведения.Назначение редукторов

– это механизм, состоящий из зубчатых или червячных передач, заключённый в отдельный закрытый корпус и работающий в масляной ванне.
Назначение редуктора
– понижение частоты вращения и соответственно повышение вращающего момента ведомого вала по сравнению с валом ведущим. Редукторы широко применяют в различных отраслях народного хозяйства, в связи с чем число разновидностей редукторов велико.

Редуктор состоит из корпуса (литого чугунного или сварного стального), в котором помещают элементы передачи – зубчатые колеса, валы, подшипники и т.д.

Корпуса редукторов должны быть прочными и жесткими. Для удобства сборки корпуса редукторов выполняют разъемными. Опорами валов редуктора, как правило, являются подшипники качения. Смазывание передач редукторов осуществляется погружением в масляную ванну, подшипников – разбрызгиванием или пластичной смазкой.

Редуктор проектируют для привода определенной машины. На кинематических схемах буквой Б обозначен входной (быстроходный) вал, буквой Т – выходной (тихоходный).

Основная энергетическая характеристика редуктора – допускаемый вращающий момент Т на его ведомом валу при постоянной нагрузке.

9.2 Основные типы редукторов

Тип редуктора определяется составом передач, порядком их размещения в направлении от ведущего – быстроходного вала к ведомому – тихоходному валу и положением колёс в пространстве. Редукторы классифицируют по следующим основным признакам:

1) по типу передачи – зубчатые, червячные, зубчато-червячные; 2) по числу ступеней – одноступенчатые, двухступенчатые, и т. д.; 3) по типу зубчатых колес – цилиндрические, конические, коническо-цилиндрические и т.д.; 4) по относительному расположению валов в пространстве – горизонтальные, вертикальные.

Исполнение редуктора определяется передаточным числом, формой концов валов и вариантом сборки.

Цилиндрические редукторы

получили широкое распространение в машиностроении благодаря широкому диапазону передаваемых мощностей, долговечности, простоте изготовления.

Одноступенчатые цилиндрические редукторы горизонтальные рис. 2.8.1 и вертикальный рис.2.8.2 имеют, как правило, косозубое зацепление. Передаточное число таких редукторов u

Рисунок 2.8.1 Одноступенчатые цилиндрические редукторы горизонтальные

Рисунок 2.8.2 Одноступенчатый цилиндрический редукторы вертикальный
Двухступенчатые цилиндрические редукторы
рис.2.8.3 – горизонтальный, рис. 2.8.4– вертикальный. Передаточное число u = 8…40

Рисунок 2.8.3 Двухступенчатый цилиндрический редуктор горизонтальный

Рисунок 2.8.4 Двухступенчатый цилиндрический редуктор вертикальный

Трёхступенчатые цилиндрические редукторы. Эти редукторы выполняют преимущественно на базе горизонтальной схемы. Диапазон передаточных чисел u = 31,5…180.

Конические редукторы рис.2.8.5 применяют, когда необходимо передавать вращающий момент между валами со взаимно перпендикулярным расположением осей. Передаточное число таких редукторов u

Рисунок 2.8.5 Конические редукторы
Коническо-цилиндричекие редукторы
рис.2.8.6 независимо от числа ступеней и компоновки выполняют с быстроходной конической ступенью. Передаточное число u = 8…31,5.

Рисунок 2.8.6 Коническо-цилиндричекие редукторы
Червячные редукторы
вследствие низкого КПД и меньшего ресурса, чем у зубчатых редукторов, не рекомендуется применять их в машинах непрерывного действия.

Компоновочные возможности ограничены и сводятся к трём основным схемам редукторов: с нижним, верхним и боковым расположением червяка рис 2.8.7. Выбор схемы редуктора обычно диктуется удобством компоновки привода в целом. Диапазон передаточных чисел u = 8…80, рекомендуется u

Рисунок 2.8.7 Червячные редукторы
Червячно-цилиндрический двухступенчатый редуктор
рис.2.8.8 имеет червячную быстроходную ступень и одну червячно-цилиндрическую или две червячно- цилиндрические ступени с параметрами редуктора развёрнутой схемы. Редукторы имеют большое передаточное число и низкий уровень шума. Червяк обычно располагают внизу, что вызвано условиями смазывания зацепления, расположением подшипников червяка и условиями сборки.

Рисунок 2.8.8 Червячно-цилиндрический двухступенчатый редуктор
Мотор-редукторы
представляют собой агрегат, в котором объединены электродвигатель и редуктор. Это делается с целью уменьшения габаритов привода и улучшения его внешнего вида.

Планетарные редукторы

позволяют получить большое передаточное число при малых габаритах. По конструкции они сложнее вышеописанных редукторов. Наиболее распространен простой планетарный зубчатый редуктор рис. 2.8.9.

Рисунок 2.8.9 Планетарный редуктор
Волновые редукторы
являются разновидностью планетарных редукторов. Для обозначения передач используются прописные буквы русского алфавита: Ц – цилиндрическая, К – коническая, Ч – червячная, П – планетарная, В – волновая.

Если в редукторе две или более одинаковых передач, то после буквы ставится соответствующая цифра. Пример: Ц (рис.2.8.1, 2.8.2); Ц2 (рис.2.8.3); КЦ (рис.2.8.6); Ч (рис.2.8.7); ЦЧ 9 (рис.2.8.8). Если все валы редуктора находятся в вертикальной плоскости, то к обозначению добавляется индекс В. Если ось тихоходного вала вертикальна, то добавляется индекс Т, если ось быстроходного вала вертикальна, то – индекс Б. КЦт , КБ Ц (рис.2.8.6).

Ответьте на контрольные вопросы

СОДЕРЖАНИЕ | СЛЕДУЮЩИЙ РАЗДЕЛ

404 Not Found
The requested URL /bottom.php was not found on this server.

Additionally, a 404 Not Found error was encountered while trying to use an ErrorDocument to handle the request.

1.2.1 Червячные редукторы

Червячный редуктор – наиболее распространенный тип редукторов. Привод имеет компактные размеры (в сравнении с цилиндрическими агрегатами). Передаточное отношение червячной пары может достигать 1-100 (иногда и выше).

Потенциал увеличения крутящего момента при снижении частоты вращения вала у червячных редукторов выше, чем у оборудования с другими типами передач. Передаточное число того же порядка можно получить при эксплуатации трехступенчатого цилиндрического редуктора. В червячных агрегатах для решения этой задачи достаточно одной ступени. Еще одно преимущество – простота и низкая стоимость червячных редукторов. Использование червячного зацепления позволяет снизить уровень шума передачи, обеспечить высокую плавность хода.

Функция самоторможения присутствует только в червячных редукторах. Ее принцип основан на торможении ведомого вала при отсутствии движения на ведущем валу (червяке). Самоторможение в передаче осуществляется в тот момент, когда угол подъема ведущего вала меньше или равен 3,5 градусам.

При выборе червячного редуктора следует учитывать тот факт, что при увеличении передаточного числа снижается КПД червячной передачи. Отсюда – потери энергии вследствие трения червяка об зубья колеса.

Ресурс червячных приводов составляет, в среднем, 10 тысяч часов.

1.2.2 Червячный глобоидный редуктор

Винт глобоидного червячного редуктора имеет выпуклую форму (в других червячных передачах он цилиндрический). Эта конструктивная особенность увеличивает передачу крутящего момента и мощность привода.

Глобоидные редукторы предназначены для использования в условиях, предполагающих высокую надежность, отсутствие обратного проскальзывания и динамических толчков на выходном валу. Чаще всего редукторы этого типа применяются в барабанных приводах лифтов: глобоидная пара адаптирована к переменным нагрузкам, возникающим при подъеме и торможении кабины, в состоянии поддерживать нормальную реверсивность при эксплуатации.

Таблица 2. Допустимые нагрузки для червячных глобоидных редукторов типа ЧГ

Типоразмеры Номинальное передаточное число Частота вращения червяка, об/мин
750 1000 1500
Рвх, кВт Твых, Н м Рвх, кВт Твых,Н·м Рвх, кВт Твых, Н·м
Чг-63 10 1,2 120 1,5 1,9 110
12,5 1,1 130 1,3 130 1,7 110
16 1,0 150 1,2 150 1,5 130
20 0,8 150 0,9 150 1,3 130
25 0,5 125 0,6 110 0,8 110
31,5 0,4 110 0,5 110 0,6 90
40 0,3 110 0,3 100 0,5 90
50 0,2 100 0,3 100 0,3 90
63 0,1 90 0,2 90 0,3 80
Чг-80 10 2,4 250 2,8 220 3,1 170
12,5 2,0 260 2,4 240 2,6 180
16 1,6 260 1,9 240 2,1 180
20 1,5 300 1,7 260 1,8 200
25 1,0 250 1,1 220 1,5 190
31,5 0,7 220 0,8 200 1,1 180
40 0,6 220 0,7 200 0,9 180
50 0,5 210 0,5 180 0,6 160
63 0,3 200 0,4 170 0,5 150
Чг-100 10 4,3 460 4,7 380 6,3 350
12,5 3,8 500 4,0 400 5,5 380
16 3,0 500 3,6 450 4,6 400
20 2,7 550 3,2 500 3,9 420
25 2,0 500 2,3 450 3,0 400
31,5 1,4 420 1,6 380 2,1 350
40 1,2 420 1,3 380 1,8 350
50 0,9 400 1,0 350 1,3 320
63 0,7 380 0,8 320 1,1 300
Чг-125 10 8,4 900 10,4 850 12,3 700
12,5 7,1 950 8,9 900 10,0 700
16 5,6 950 7,0 900 8,5 750
20 5,3 1100 6,3 1000 7,8 850
25 4,0 1000 4,6 900 5,2 700
31,5 2,9 900 3,4 800 3,9 650
40 2,4 900 2,8 800 3,2 650
50 1,7 800 2,1 750 2,6 650
63 1,4 750 1,7 700 2,1 600
Чг-160 10 16,7 1850 20,3 1700 28,3 1600
12,5 13,9 1900 16,3 1700 22,8 1600
16 11,0 1900 13,7 1800 18,6 1650
20 9,7 2050 11,9 1900 16,5 1800
25 7,6 1950 8,6 1700 11,2 1500
31,5 5,7 1800 6,4 1550 8,2 1350
40 4,6 1800 5,1 1550 6,6 1350
50 3,6 1650 4,0 1450 5,0 1250
63 2,8 1550 3,4 1450 4,1 1200

1.2.3 Цилиндрические редукторы

В цилиндрических редукторах устанавливаются цилиндрические зубчатые передачи. Комплектация таких приводов может отличаться положением входного/выходного валов и количеством ступеней. Одноступенчатые цилиндрические агрегаты классифицируются только по расположению валов. Передаточные числа варьируются в диапазоне 1,6-6,3.

Схемы исполнения цилиндрических пар:

  • развернутая узкая;
  • развернутая;
  • раздвоенная;
  • соосная.

Наиболее распространена развернутая схема. Она позволяет выпускать унифицированные колеса, валы и шестерни, которые подходят для производства редукторов разных типоразмеров. Этот фактор является определяющим для серийного производства, т.к. способствует снижению себестоимости выпускаемой продукции.

С той же целью выбирается левое направление зуба шестерни и правое направление колеса для всех ступеней редуктора. При индивидуальной комплектации единичного редуктора целесообразнее использовать следующую схему: левое направление зуба шестерни на первой ступени, правое – на второй ступени. Такая комплектация снизит осевую нагрузку на опоры.

Форма редукторов, проектируемых по развернутой схеме, удлиненная. Вес такого агрегата будет на 15-20% больше приводов, сконструированных по раздвоенной схеме.

Раздвоенная схема применима для тихоходной и быстроходной ступеней. Во втором варианте она наиболее рациональна, так как промежуточный вал может быть изготовлен по принципу вала-шестерни, а быстроходный вал становится «плавающим».

При соосной схеме оси быстроходного и тихоходного валов совпадают. Вес и габариты редуктора, собранного по соосной схеме, аналогичны моделям с развернутой схемой. Стоимость обоих типов агрегатов практически одинакова.

Одна из основных технических характеристик соосного редуктора – увеличенная мощность быстроходной ступени, что достигается за счет снижения нагрузки на нее. Однако конструктивно такие агрегаты более сложные.

Ресурс цилиндрического редуктора – 25 тысяч часов и более.

Таблица 3. Допустимые нагрузки для цилиндрических редукторов ЦУ (одноступенчатых горизонтальных)

Типоразмеры Номинальный вращающий момент на выходном валу, Нм Номинальная радиальная сила, Н
входной вал выходной вал
ЦУ-100 250 500 2000
ЦУ-160 1000 1000 4000
ЦУ-200 2000 2000 5600
ЦУ-250 4000 3000 8000

Таблица 4. Технические параметры цилиндрических редукторов Ц2С (двухступенчатых соосных)

Типоразмеры Номинальные передаточные отношения Номинальный вращающий момент на выходном валу, Нм Номинальная радиальная сила, Н КПД
входной вал выходной вал
Ц2С-63 8; 10; 12,5 125 500 2800 0,98

Мотор-редуктор цилиндрический соосный Цилиндрическо-червячные двухступенчатые редукторы

Конструктивные особенности

Основой любого редуктора является зубчатое зацепление, передающее вращательный момент и изменяющее число оборотов вала. Для цилиндрических зацеплений характерна возможность вращаться в обе стороны. При необходимости ведомый вал с колесом подключается к двигателю и становится ведущим. Они в данной конструкции расположены параллельно, горизонтально и вертикально. Устройство цилиндрических редукторов может быть самое разное, но оно обязательно включает в свою конструкцию:

  • ведущий;
  • ведомый вал;
  • шестерню;
  • колесо;
  • подшипники;
  • корпус;
  • крышки;
  • систему смазки.

В простейшем одноступенчатом редукторе одна пара находится в зацеплении – шестерня и колесо. Если ступеней 2 и больше, соответственно увеличивается количество деталей. Появляются промежуточные оси. Для изменения направления вращения, в кинематическую схему включают паразитку, промежуточную шестерню с количеством зубьев как у ведущей.

Корпус и крышка отливаются из чугуна или делаются сварными из низкоуглеродистого листа толщиной 4 – 10 мм в зависимости от габаритов и мощности узла. Сварными делают маленькие редуктора. Остальные имеют крепкий литой корпус.

Характеристика цилиндрических редукторов

Количество зацеплений, тип зуба и взаимное расположение валов для всех видов оборудования описывает ГОСТ Редукторы цилиндрические. В нем указаны типоразмеры всех деталей, которые могут применяться в цилиндрических редукторах при различных количествах ступеней. Максимальное передаточное число одной пары 6,5. Общее многоступенчатого редуктора может быть до 70.

Больше чем у цилиндрического редуктора может быть передаточное число у червячной передачи,оно может достигать 80. При этом они компактные, но используются редко из-за низкого КПД. У цилиндрических одноступенчатых редукторов КПД 99 – 98%, самый высокий из всех видов передач.Отличаются червячные и цилиндрические редукторы расположением валов. Если у цилиндрических они параллельные, то червяк располагается к колесу под углом. Следовательно валы ведущий и ведомый выходят из перпендикулярно расположенных боковых стенок корпуса.

Цилиндрические редуктора самые шумные, при соприкосновении зубьев происходит удар поверхности одну о другую. Это исключает сильное трение и перегрев.

Для смазки достаточно залить масло в поддон, чтобы нижние шестерни в него частично погрузились. При вращении зубья захватывают масло и разбрызгивают его на другие детали.

Проектирование и порядок расчета

Расчет будущего редуктора начинается с определения передаточного момента и подборки его из нормированных пар. После этого уточняются диаметры деталей и межосевое расстояние валов. Составляется кинематическая схема, определяется оптимальная форма корпуса и крышки, номера подшипников. В сборочный чертеж входит кинематическая схема двухступенчатого редуктора, система смазки и способы ее контроля, типы подшипников и места их установки.

ГОСТ 16531-83 описывает все возможные виды и типоразмеры зубчатых колес, которые могут применяться в цилиндрических редукторах с указанием модуля, количества зубьев и диаметра. По размеру шестерни подбирается вал. Его прочность рассчитывается с учетом вращательного момента на скручивание и изгиб. Определяется минимальный размер, умножается на коэффициент прочности. Затем выбирается ближайший больший нормализованный размер вала. Шпонка рассчитывается только на срез и подбирается аналогично.

По диаметру вала выбирается подшипник. Его тип определяется направлением зуба. При косозубой передаче ставят упорные, более дорогие. Прямозубая передача не нагружает их в осевом направлении, и однорядные шарикоподшипники работают по несколько тысяч часов.

Схема сборки указывается на чертеже внизу и подробно расписывается в технологической документации, которая выдается в производство вместе с чертежами. На главном чертеже с общим видом в таблице указываются технические характеристики редуктора, которые затем переносятся в паспорт:

  • количество ступеней;
  • передаточное число;
  • число оборотов ведущего вала;
  • мощность на выходе;
  • КПД;
  • габариты;
  • вес.

Дополнительно могут указываться вертикальное расположение зацепления, направление вращение вала и способ установки: фланцевый или на лапах.

1.2.5 Коническо-цилиндрические редукторы

Данный тип механизмов представляет собой гибрид цилиндрического одноступенчатого и конического редукторов. Соответственно, этой группе оборудования присущи все достоинства и недостатки агрегатов обоих типов.

Все коническо-цилиндрические редукторы имеют быстроходную коническую ступень. Такая конструктивная особенность объясняется невысокой нагрузочной способностью и, соответственно, большими габаритами агрегата. С целью уменьшения размеров привода и используется быстроходная коническая ступень.

Коническая передача может использоваться в тихоходных и промежуточных ступенях, что оправдано необходимостью снижения ее чувствительности к погрешностям при производстве и установке, минимизацией их влияния на механизм в целом.

Направление зуба в косозубой цилиндрической паре должно быть выбрано с учетом возможности вычитания осевых сил на промежуточных валах.

Таблица 5. Коэффициент режима эксплуатации коническо-цилиндрических редукторов (двухступенчатых и трехступенчатых)

Характер режима нагрузки Суточная продолжительность эксплуатации
3 часа 8 часов 24 часа
Спокойный 1,25 1,0 0,8
Умеренные толчки 1,0 0,8 0,65
Сильные толчки 0,55 0,65 0,5

Смазка

Нормальная работа редуктора обеспечивается только при условии применения сорта масла, указанного в паспорте. При удалении из масла посторонних частиц от начального износа зубчатых колёс следует после первых двух недель работы остановить редуктор, слить масло и промыть передачи тёплым маслом. Масло следует профильтровать и залить в редуктор. Смена масла проводится один раз через 3-6 месяцев эксплуатации редуктора, при планово-предупредительном ремонте агрегата.

Температура застывания применяемой смазки должна быть ниже минимальной температуры окружающей среды. Температура масляной ванны цилиндрических и конически-цилиндрических редукторов при непрерывном режиме работы не должна превышать 60 °С. Планово-предупредительный осмотр редуктора следует проводить не реже одного раза в 3-6 месяцев.

При осмотре необходимо обратить внимание на износ зубьев передачи. При этом необходимо замерять величину износа, проверять состояние поверхности зуба. Если при осмотре зубчатых колёс и шестерен обнаружены дефекты: трещины у корня зуба; осповидный износ рабочей поверхности зубьев – значительный абразивный износ; большое количество задиров – зубчатые колёса и шестерни подлежат замене.

Во время планово-предупредительных осмотров цилиндрических редукторов с подшипниками скольжения необходимо проводить контроль перекоса осей. При перекосе осей нагрузка концентрируется на одном из концов зуба, что вызывает быстрый износ. Контроль перекоса проводят путём замера зазора между зубьями шестерни и колеса. Разница между зазорами с1 и с2 , замеренными с двух противоположных концов зуба, даст величину перекоса (рисунок 6.5).

Рисунок 6.5 – Способ контроля перекоса осей

Наибольшая допускаемая разница боковых зазоров зубчатых передач приведена в таблице 6.12.

Таблица 6.12 – Наибольшая допускаемая разница боковых зазоров, мкм
Ширина колеса, мм до 55 55-110 110-160 160-220 220-320 320-450 450-630
Степень точности 7 17 19 21 24 28 34 40
8 21 24 26 30 36 42 50
9 26 30 34 38 45 52 60

Фундаментные болты затягивают равномерно, поочерёдно, понемногу подтягивая все болты. При установке редуктора нужно предусмотреть возможность сбора сливаемого из редуктора масла. В редукторах с централизованной системой смазки перед сборкой необходимо очистить, продуть и промыть маслоотводящую систему. Резьбовые и фланцевые соединения необходимо уплотнить. Редукторы, подшипники которых смазываются при помощи специальных каналов, должны быть установлены по уровню в двух взаимно перпендикулярных направлениях по контрольной площадке крышки редуктора.

Измерение бокового зазора проводят прокатыванием двух свинцовых проволочек между рабочими профилями зубьев (рисунок 6.6, рисунок 6.7).

Рисунок 6.6 – Схема прокатывания пластинки или проволочек

Рисунок 6.7 – Проверка бокового зазора прокатыванием проволочек или пластинки из свинца

При укладке толщина проволочек или пластинки должна быть примерно равной 2,0-2,5 величинам бокового зазора. Толщина прокатанных материалов замеряется микрометром.

Необходимо следить за тем, чтобы при открытых люках внутрь редуктора не проникали пыль, грязь и посторонние предметы, поэтому не рекомендуется класть болты, ключи и прочий инструмент на крышку редуктора при ремонтах и осмотрах.

В процессе планово предупредительного осмотра необходимо проводить проверку перекоса и смещения выходных валов редуктора. Если фактические величины перекоса и смещения их осей велики – необходимо провести регулировку всей установки.

Признаки браковки и нормы износа зубчатых колёс:

  • трещины усталости у основания зуба, поломка зуба;
  • повреждение рабочей поверхности зубьев усталостным выкрашиванием более чем на 30%, при глубине ямок выкрашивания более 10% толщины зуба;
  • трещины на ступице, ободе или диске;
  • износ слоя цементации свыше 60% толщины для зубчатых колёс с цементированными зубьями;
  • износ зуба по толщине более указанного в таблице 6.13, таблице 6.14.
Таблица 6.13 – Предельно допустимый износ зубчатых колёс
Режим работы Предельный износ в % от номинальной толщины зуба на начальной окружности при ремонте
передача мощности окружная скорость, м/с текущем капитальном
В одном направлении без ударной нагрузки до 2 20 10
2-5 15 6
свыше 5 10 5
Реверсивная при ударной нагрузке до 2 15 5
2-5 10 5
Таблица 6.14 – Нормы предельно допустимого износа для зубчатых колёс редукторов и рабочих машин
Вид и тип зубчатой передачи Износ зуба в % от толщины
Малые нагрузки и толчки 40
Открытые передачи со стальными и чугунными колёсами 30
Средние нагрузки и толчки 25
Зубчатые колёса редукторов и других передач, работающие при окружной скорости до 5 м/с 20
Зубчатые колёса механизма подъёма кранов, большие нагрузки и толчки 15
Прямозубые колёса реверсивных передач, работающие при окружной скорости от 5 до 10 м/с, и непрямозубые – от 5 до 15 м/с 13
Зубчатые колёса механизмов подъёма кранов, транспортирующих жидкий металл 10

Повторная установка шестерен при ремонтах допускается в случаях, если износ по профилю зуба не превышает 50% предельно допустимого. Возможна установка шестерен с большим износом, если гарантируется, что износ до следующего капитального ремонта не превысит предельно допустимых размеров. Виды износа зубчатых колес приведены в таблице 6.15. Допустимые величины износа зубьев колёс зубчатых передач по боковому зазору приведены в таблице 6.16.

Таблица 6.15 – Виды и причины износа зубчатых колёс
Вид износа Причина износа
Абразивный износ Результат попадания между зубьями абразивных включений
Начальный износ Сглаживание рабочих поверхностей зубьев вследствие пластической деформации и истирания микронеровностей
Пластическая деформация Износ зубчатых колес, изготовленных из мягких марок стали, при высоких нагрузках и повышенном коэффициенте трения
Заедание Износ тяжелонагруженных высокоскоростных и среднескоростных зубчатых передач
Отслаивание частиц металла Характерный вид повреждения зубчатых колёс с упрочнённым поверхностным слоем
Выкрашивание Результат неравомерных нагрузок на контактную поверхность зуба
Таблица 6.16 – Допустимый износ зубьев колёс зубчатых передач по боковому зазору
Механизм Боковой зазор, мм
осмотр перед текущим ремонтом осмотр при капитальном ремонте
редукторы зубчатые
Ответственные (наклона конвертера, механизмы подъёма) 0,25m 0,17m
Вспомогательные 0,35m 0,25m
открытые зубчатые передачи
Поворота, передвижения 0,65m 0,45m
Передвижения, установленные в условиях влияния абразивных материалов 0,95m 0,65m

Примечание: m – модуль зуба в мм.

1.2.6 Насадные редукторы

Насадными редукторами называются агрегаты с полым выходным валом. Они монтируются непосредственно на вал – без дополнительных соединений и передач. Преимущество насадных редукторов заключается в более компактных габаритах и сравнительно невысоком весе.

Насадный способ монтажа, как правило, применим к червячным и некоторым другим типам редукторов. Исключение составляет цилиндрическая соосная группа оборудования, конструктивные особенности которой затрудняют такую установку.

При резкой динамике нагрузки на выходной вал (чаще всего при нештатных ситуациях) отсутствие соединительной муфты может стать причиной преждевременного выхода из строя приводного оборудования. Поэтому эксплуатация редуктора требует создания условий эксплуатации при равномерной нагрузке. Как вариант – дополнительная защита привода.

Применение цилиндрических редукторов

Назначение редуктора – понижение числа оборотов двигателя и увеличение мощности на выходном валу. Сборка цилиндрического редуктора не представляет сложности. По центру отверстий проходит разъем корпуса и крышки. Подшипники насаживаются на валы, устанавливаются в заготовленные гнезда и подпираются снаружи крышками.

Колеса и шестерни крепятся на валы с помощью шпонок.

Для регулировки межосевого расстояния необходимо с большой точностью делать расточку корпуса.

Техобслуживание редукторов простое. Надо регулярно доливать масло, периодически менять его. Детали, расположенные внутри, рассчитаны на длительную эксплуатацию в течение как минимум 10 лет.

Применяются редуктора в различных отраслях промышленности. Отдельные типы крупного оборудования способны выдержать любые погодные условия. Их устанавливают в карьерах и на открытых площадках, на козловых кранах.

Прокатное и кузнечно-прессовое оборудование не сможет работать без редукторов. В этой отрасли востребовано много разновидностей редукторов. Прямозубые стоят на кранах. Мощные шевронные вращают кривошипные прессы, вальцы, манипуляторы, подающие металл.

Прокатные т-правильные станы работают исключительно благодаря клетям, передающим вращение двигателя на валки и рабочие узлы.

Под каждым капотом прячется коробка скоростей. На каждом станке имеется редуктор или несколько. Маленькие передачи установлены в электроинструменте и регулируют скорость вращения шпинделя дрели, болгарки и фрезера.

1.2.7 Планетарные редукторы

Планетарные (дифференциальные) редукторы состоят из центральной шестерни (солнечной), расположенной в центре редуктора, вспомогательных шестерней одинакового размера (сателлитов), установленных вокруг центральной шестерни, и фиксатора (водила), обеспечивающего их надежное крепление. Конструкцией планетарного редуктора также предусмотрена кольцевая шестерня, внешне напоминающая зубчатое колесо. Ее предназначение – обеспечение сцепления с сателлитами. Центральная шестерня является ведущим элементов, сателлиты – ведомыми. Кольцевая шестерня всегда неподвижна.

Конструктивно исполнения планетарных редукторов могут отличаться. Модели классифицируются по количеству ступеней (одно-, двух- и трехступенчатые), кинематической схеме планетарной передачи. Тип подшипников также отличается. Подшипники качения предназначены для режимов эксплуатации на низкой скорости. В свою очередь, подшипники скольжения рассчитаны на режим высоких скоростей. Основная сфера использования планетарных редукторов – машиностроение.

Планетарные агрегаты МПО классифицируются как универсальное приводное оборудование. Они широко используются в приводах перемешивающих механизмов медицинской, химической, микробиологической промышленностях, а также в приводах общепромышленного назначения. Редукторы серии МПО могут эксплуатироваться в режиме 24 часа в сутки при постоянной и переменной нагрузках.

К планетарным редукторам предъявляются жесткие требования. Производство такого оборудования требует высокой точности, чтобы зубцы плотно соприкасались между собой, но при этом легко приводились в движение.

Таблица 6. Технические параметры планетарных редукторов Пз (зубчатые одноступенчатые)

Типоразмер Радиус водила, мм Передаточные числа Вращающий момент на выходном валу, Н·м Консольная сила, Н КПД Частота вращения входного вала
входной вал выходной вал максимум минимум
Пз-31,5 32,35 8, 10 125 80 140 0,96 3000 500
Пз-40 40 6,3 250 120 200 0,98 3000 500
8, 10, 12,5 0,97
Пз-50 50 6,3 500 170 280 0,98 3000 500
8, 10, 12,5 0,97
Пз-63 63 6,3 1000 240 400 0,98 3000 500
8, 10, 12,5 0,97
Пз-80 80 6,3, 8, 10, 12,5 2000 340 560 0,97 1500 500
Пз-100 100 6,3, 8, 10, 12,5 4000 480 800 0,97 1500 500
Пз-125 125 6,3, 8, 10, 12,5 8000 680 1130 0,97 1500 500
Пз-160 160 6,3 16000 960 1600 0,97 1000 500
8, 10, 12,5 1500
Пз-200 200 6,3, 8, 10, 12,5 31500 1340 2240 0,97 1000 500

Виды цилиндрических редукторов

Цилиндрические редукторы разнообразны по конструкции, размерам и мощности, они делятся на виды по нескольким характеристикам:

  • тип крепления;
  • расположение валов;
  • количество ступеней;
  • нарезка зуба.

К характеристикам могут относиться виды подшипников и тип соединения валов.

Редукторы цилиндрические одноступенчатые могут крепиться к двигателю и корпусу рабочего узла фланцами. Конструкция компактная, с минимальными затратами материалов.В основном они устанавливаются на подошву с выступами по периметру или на лапки с отверстиями под анкерные болты. Небольшие по габариту узлы могут устанавливаться на сварной каркас. Для габаритных агрегатов делается специальный фундамент.

Расположение валов

Входной и выходной валы могут располагаться горизонтально, вертикально, параллельно друг другу, но в разных плоскостях для многоступенчатых узлов. При наличии только одного зацепления, валы находятся в одной плоскости, строго вертикальной или горизонтальной. Они редко выводятся в одну сторону, только при возможности компактного расположения двигателя и рабочего узла. У двухступенчатого цилиндрического редуктора межосевое расстояние больше и можно монтировать двигатель со стороны исполнительного механизма.

Редукторы цилиндрические могут выпускать с вертикальным расположением валов. Их удобно устанавливать на машины, но верхнее зацепление и подшипники смазываются слабо. Для длительной работы с большими нагрузками они не подходят.

Корпус редуктора цилиндрического горизонтального габаритный, занимает много места. Он меньше греется, выдерживает нагрузки и вибрацию, устойчив.В моделях от 3 и более ступеней, валы располагаются горизонтально. Смазка достает до всех подшипников. В многорядных конструкциях делается дополнительно орошение сверху, с маслопровода, установленного в крышку.

В характеристики редуктора входит и направление вращения выходного вала. По часовой стрелке считается нормальным и в паспорте не указывается.Левое вращение отражается в характеристиках. При проектировании редуктора оно имеет знак «–».

Классификация по количеству зацеплений

Основной технической характеристикой цилиндрических редукторов является их деление по количеству ступеней. Простейшие одноступенчатые модели имеют максимальное передаточное число 6,5, малую мощность, КПД 99%. Они не греются, свободно вращаются в обратную сторону. Их можно использовать как понижающие.

На небольших механизмах с небольшой мощностью удобно устанавливать мотор-редуктор. Это собранные в одном корпусе электродвигатель и одноступенчатый редуктор. На изготовление вспомогательных элементов и площадок для крепления расходуется значительно меньше материала, чем для двух отдельных узлов. Надежная передача вращения от двигателя. Простой способ соединения с рабочим узлом.

У двухступенчатого цилиндрического редуктора указывается кинематическая схема зацепления. Она может быть развернутой, когда на промежуточном валу по бокам установлены 2 колеса. Аналогично ведущий вал передает крутящий момент двумя одинаковыми шестернями. Компоновка с двойным зацеплением характерна для сильно нагруженных моделей с наклонной нарезкой зубьев. КПД двухступенчатых моделей 97 – 98%.

Вертикальные двухступенчатые модели компактные, часто имеют фланцевое соединение. Устанавливаются на рабочий механизм вместе с двигателем.

У редукторов цилиндрических трехступенчатых передаточное число может достигать 70. В технической документации указывается передаточное отношение общее и каждой пары.Расположение валов может быть двурядным. Трехступенчатые редукторы устанавливают в основном на больших станках, ножницах, подъемных механизмах, где требуется большое усилие и маленькая скорость. КПД трехступенчатых редукторов 96%.

Нарезка зуба

Цилиндрические редукторы различают по наклону зуба:

  • прямозубые;
  • косозубые;
  • шевронные.

Шестерня и колесо с прямым зубомотносительно простая в изготовлении. Они быстроходные с высоким КПД, минимально нагружают подшипники. Основной недостаток – высокий уровень шума при работе.Одинаково хорошо работают в прямом и обратном направлении, когда ведущим становится колесо.

Цилиндрические косозубые редукторы имеют зуб, нарезанный с наклоном. Это увеличивает линию контакта и передаваемое усилие. Зубья заходят в зацепление постепенно. Работает он тихо, плавно.

От наклонного расположения зуба возникает дополнительная осевая нагрузка на подшипники. Их приходится устанавливать упорные, более дорогие и часто менять. Чтобы компенсировать осевые нагрузки, колеса ставят попарно с разным направлением наклона.

Косозубые цилиндрические редукторы компактнее прямозубых с аналогичными характеристиками.Одновременно в зацеплении находится большее количество зубьев. От трения детали греются. Кроме смазки в многоступенчатых моделях делают дополнительно систему охлаждения.

Устанавливают редуктора с косозубым зацеплением на механизмы, требующие большого усилия с длительным непрерывным циклом работы.

Зацепление с наклонным зубом хорошо работает в одном направлении. Обратно прокручивается с большим усилием. Изготовление деталей сложное и трудоемкое, требует высокой точности.

Шевронный зуб представляет собой косой, нарезанный в разных направлениях. Обычно нарезка производится фрезами для косозубых колес. По центру обода делается проточка для выхода инструмента. Нарезка производится сначала в одну сторону, затем деталь переставляется, и вторая полоса на ободе нарезается в другую сторону. Зубья сходятся вершинами в центре шестерни.

Шевронное зацепление работает тихо. Осевая нагрузка равномерно распределяется в обе стороны и компенсируется.

Подшипники работают в нормальном режиме. Двойной наклон зуба делает передачу мощной.

В зацеплении одновременно участвует несколько зубьев. Подогнать с высокой точность эвольвенты на обеих взаимодействующих деталях невозможно. Возникает трение и нагрев.

Шевронные колеса изготавливать сложно. Необходима высокая точность фрезеровки и пересечение условных линий в центре обода. Нарезка производится в 2 приема с перестановкой и тонкой регулировкой. В обратном направлении шеврон проворачивается с большим усилием.

Шевронные редуктора используют в агрегатах с большими нагрузками и короткими циклами работы. Их устанавливают на кузнечно-прессовое, подъемное оборудование, на механизмы, где требуется тормоз.

Клети

Многоступенчатые цилиндрические редукторы с несколькими выходными валами, вращающимися синхронно от одного двигателя и ведущего вала, называют клетями. Их устанавливают на агрегаты с несколькими исполнительными механизмами, работу которых необходимо синхронизировать. Они имеют сложную кинематическую схему с передачей крутящего момента от одной шестерни 2 колесам. Для возможности работать параллельно, используют соосные валы, один из которых полый.

Устанавливают клети на прокатных и правильных станах, где одновременно должны синхронно вращаться гибочные и правильные валки.

Коробки скоростей

Разновидность цилиндрического редуктора с подвижным промежуточным валом является широко известной коробкой скоростей. При изменении положения вала одни пары выходят из зацепления, другие начинают взаимодействовать. В результате изменяется передаточное число, скорость вращения на выходе.

Коробки скоростей делаются с прямым зубом. Косозубые встречаются редко, когда большие нагрузки на исполнительный механизм.

Смазка редукторов

С целью профилактики преждевременного износа комплектующих редуктора и сокращения потерь мощности в результате трения используется смазка подшипников и зацеплений.

В редукторах небольшой мощности и невысокой скорости зацепления смазка производится методом разбрызгивания либо с использованием масляной ванны. В то же масло, которое заливается в корпус, частично погружаются червяк, колесо (зубчатое или червячное) и разбрызгивающее кольцо.

Для смазки быстроходного оборудования высокой мощности масло в зону зацепления подается насосом из масляной ванны. Для подшипников используется смазка жидкой или густой консистенции.

Пуск редуктора

Перед пуском редуктора в эксплуатацию надо, если возможно, провернуть зацепление от руки раньше, чем включать двигатель. Если редуктор перегревается, необходимо проверить уровень масла. Уровень масла должен быть в пределах, оговоренных в технической документации. Если уровень масла в пределах допустимого, необходимо проверить правильность монтажа редуктора.

Перегрев подшипников редуктора происходит по следующим причинам:

  • дополнительная нагрузка от оседания фундамента или перекоса муфт;
  • при засорении смазочных каналов;
  • чрезмерно высокая вязкость масла;
  • при больших или малых зазорах в подшипниках.

Корпус и крышка редуктора снаружи должны систематически очищаться от пыли, грязи, масла. Рассеивание тепла от корпуса зависит от теплопередачи через наружную поверхность.

Корпуса редукторов

Главные требования к корпусу редуктора – жесткость и прочность, исключающие вероятность перекоса валов. В современном производстве редукторов выпускаются два типа корпусов – разъемные и неразъемные.

Конструкция разъемного корпуса включает в себя основание и съемную крышку. Отдельные модели вертикальных цилиндрических редукторов имеют разъемы по 2-3 плоскостям. Чтобы предотвратить протекание масла, разъемы корпуса редуктора обрабатывают герметиком. Устанавливать прокладки между крышкой и основанием не рекомендуется, так как при фиксации крепежных болтов они деформируются. Как следствие, посадка подшипников может быть нарушена.

Неразъемный корпус чаще используется для червячных редукторов и других типов оборудования, имеющих легкий вес. В такой конструкции предусмотрена съемная крышка.

Для производства корпусов редукторов используется, главным образом, чугун марок СЧ 10-15. Листовая сталь применяется реже, как правило, при комплектации габаритного приводного оборудования по индивидуальному заказу. У стального сварного корпуса толщина стенок примерно на треть меньше, чем у чугунных редукторов. В последнее время для производства корпусов все чаще используются алюминиевые сплавы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *