Какой формулой выражается закон джоуля ленца
Перейти к содержимому

Какой формулой выражается закон джоуля ленца

Закон Джоуля-Ленца: определение, формулы

Мы ежедневно пользуемся электронагревательными приборами, не задумываясь, откуда берётся тепло. Разумеется, вы знаете, что тепловую энергию вырабатывает электричество. Но как это происходит, а тем более, как оценить количество выделяемого тепла, знают не все. На данный вопрос отвечает закон Джоуля-Ленца, обнародованный в позапрошлом столетии.

В 1841 году усилия английского физика Джоуля, а в 1842 г. исследования русского учёного Ленца увенчались открытием закона, применение которого позволяет количественно оценить результаты теплового действия электрического тока [ 1 ]. С тех пор изобретено множество приборов, в основе которых лежит тепловое действие тока. Некоторые из них, изображены на рис. 1.

Тепловые приборы

Рис. 1. Тепловые приборы

Определение и формула

Тепловой закон можно сформулировать и записать в следующей редакции: «Количество тепла, выработанного током, прямо пропорционально квадрату приложенного к данному участку цепи тока, сопротивления проводника и промежутка времени, в течение которого электричество действовало на проводник».

Обозначим символом Q количество выделяемого тепла, а символами I, R и Δt – силу тока, сопротивление и промежуток времени, соответственно. Тогда формула закона Джоуля-Ленца будет иметь вид: Q = I 2 *R*Δt

Согласно законам Ома I=U/R, откуда R = U/I. Подставляя выражения в формулу Джоуля-Ленца получим: Q = U 2 /R * Δt ⇒ Q = U*I*Δt.

Выведенные нами формулы – различные формы записи закона Джоуля-Ленца. Зная такие параметры как напряжение или силу тока, можно легко рассчитать количество тепла, выделяемого на участке цепи, обладающем сопротивлением R.

Дифференциальная форма

Чтобы перейти к дифференциальной форме закона, проанализируем утверждение Джоуля-Ленца применительно к электронной теории. Приращение энергии электрона ΔW за счёт работы электрических сил поля равно разности энергий электрона в конце пробега (m/2)*(u=υmax) 2 и в начале пробега (mu 2 )/2 , то есть

формула приращение энергии электрона

Здесь u скорость хаотического движение (векторная величина), а υmax – максимальная скорость электрического заряда в данный момент времени.

Поскольку установлено, что скорость хаотического движения с одинаковой вероятностью совпадает с максимальной (по направлению и в противоположном направлении), то выражение 2*u*υmax в среднем равно нулю. Тогда полная энергия, выделяющаяся при столкновениях электронов с атомами, образующими узлы кристаллической решётки, составляет:

Формула полной энергии

Это и есть закон Джоуля-Ленца, записанный в дифференциальной форме. Здесь γ – согласующий коэффициент, E – напряжённость поля.

Интегральная форма

Предположим, что проводник имеет цилиндрическую форму с сечением S. Пусть длина этого проводника составляет l. Тогда мощность P, выделяемая в объёме V= lS составляет:

Формула мощности P выделяемой в объеме

гдеR – полное сопротивление проводника.

Учитывая, чтоU = I×R, из последней формулы имеем:

  • P = U×I;
  • P = I 2 R;
  • P = U 2 /R.

Если величина тока со временем меняется, то количество теплоты вычисляется по формуле:

Формула количества теплоты

Данное выражение, а также вышеперечисленные формулы, которые можно переписать в таком же виде, принято называть интегральной формой закона Джоуля-Ленца.

Формулы очень удобны при вычислении мощности тока в нагревательных элементах. Если известно сопротивление такого элемента, то зная напряжение бытовой сети легко определить мощность прибора, например, электрочайника или паяльника.

Физический смысл

Вспомним, как электрический ток протекает по металлическому проводнику. Как только электрическая цепь замкнётся, то под действием ЭДС движение свободных электронов упорядочивается, и они устремляются к положительному полюсу источника питания. Однако на их пути встречаются стройные ряды кристаллических решёток, атомы которых создают препятствия упорядоченному движению, то есть оказывают сопротивление.

На преодоление сопротивления уходит часть энергии движущихся электронов. В соответствии с фундаментальным законом сохранения энергии, она не может бесследно исчезнуть. Она-то и превращается в тепло, вызывающее нагревание проводника. Накапливаемая тепловая энергия излучается в окружающее пространство или нагревает другие предметы, соприкасающиеся с проводником.

На рисунке 2 изображёна схема опыта, демонстрирующего закон теплового действия тока, разогревающего участок провода в электрической цепи.

Тепловое действие тока

Рис. 2. Тепловое действие тока

Явление нагревания проводников было известно практически с момента получения электротока, но исследователи не могли тогда объяснить его природу, и тем более, предложить способ оценки количества выделяемого тепла. Эту проблему решает закон Джоуля-Ленца, которым мы пользуемся по сегодняшний день.

Практическая польза закона Джоуля-Ленца

При сильном нагревании можно наблюдать излучение видимого спектра света, что происходит, например, в лампочке накаливания. Слабо нагретые тела тоже излучают тепловую энергию, но в диапазоне инфракрасного излучения, которого мы не видим, но можем ощутить своими тепловыми рецепторами.

Допускать сильное нагревание проводников нельзя, так как чрезмерная температура разрушает структуру металла, проще говоря – плавит его. Это может привести к выводу из строя электрооборудования, а также стать причиной пожара. Для того, чтобы не допустить критических параметров нагревания необходимо делать расчёты тепловых элементов, пользуясь формулами, описывающими закон Джоуля-Ленца.

Проанализировав выражение U 2 /R убеждаемся, что когда сопротивление стремится к нулю, то количество выделенного тепла стремится к бесконечности. Такая ситуация возникает при коротких замыканиях. В это основная опасность КЗ.

В борьбе с короткими замыканиями используют:

  • автоматические выключатели:
  • электронные защитные блоки;
  • плавкие предохранители;
  • другие защитные устройства.

Применение и практический смысл

Непосредственное превращение электричества в тепловую энергию нельзя назвать экономически выгодным. Однако, с точки зрения удобства и доступности современного человечества к источникам электроэнергии различные нагревательные приборы продолжают массово применяться как в быту, так и на производстве.

Перечислим некоторые из них:

  • электрочайники;
  • утюги;
  • фены;
  • варочные плиты;
  • паяльники;
  • сварочные аппараты и многое другое.

На рисунке 3 изображены бытовые нагревательные приборы, которыми мы часто пользуемся.

Бытовые нагревательные приборы

Рис. 3. Бытовые нагревательные приборы

Использование тепловых мощностей в химической, металлургической и в других промышленных отраслях тесно связно с использованием электрической энергии.

Без знания физического закона Джоуля-Ленца было бы невозможно сконструировать безопасный нагревательный прибор. Для этого нужны расчёты, которые невозможно сделать без применения рассмотренных нами формул. На основе расчётов происходит выбор материалов с нужным удельным сопротивлением, влияющим на нагревательную способность устройств.

Закон Джоуля-Ленца без преувеличения можно назвать гениальным. Это один из тех законов, которые повлияли на развитие электротехники.

Работа электрического тока. Закон Джоуля-Ленца.

Работа электрического тока Закон ДжоуляЛенца

Для определения работы, которая совершается током, проходящим по некоторому участку цепи, нужно воспользоваться определением напряжения: . Значит,

где А — работа тока; q — электрический заряд, который прошел за определенное время через исследуемый участок цепи. Подставив в последнее равенство формулу q = It, имеем:

Работа электрического тока на участке цепи является произведением напряжения на концах это­го участка на силу тока и на время, на протяжении которого совершалась работа.

Закон Джоуля-Ленца .

Закон Джоуля — Ленца гласит: количество теплоты, которое выделяется в проводнике на участке электрической цепи с сопротивлением R при протекании по нему постоянного тока I в течение времени t равно произведению квадрата тока на сопротивление и время:

Закон был установлен в 1841 г. английским физиком Дж. П. Джоулем, а в 1842 г. подтверж­ден точными опытами русского ученого Э. X. Ленца. Само же явление нагрева проводника при прохождении по нему тока было открыто еще в 1800 г. французским ученым А. Фуркруа, которо­му удалось раскалить железную спираль, пропустив через нее электрический ток.

Из закона Джоуля — Ленца видно, что при последовательном соединении проводников, поскольку ток в цепи всюду одинаков, максимальное количество тепла будет выделяться на про­воднике с наибольшим сопротивлением. Это применяется в технике, например, для распыления металлов.

Работа электрического тока Закон ДжоуляЛенца

При параллельном соединении каждый проводник находятся под одинаковым напряжением, но токи в них разные. Из формулы (Q = I 2 Rt) видно, что, так как, согласно закону Ома , то

Работа электрического тока Закон ДжоуляЛенца

Следовательно, на проводнике с меньшим сопротивлением будет выделяться больше тепла.

Если в формуле (А = IUt) выразить U через IR, воспользовавшись законом Ома, получим Закон Джоуля — Ленца. Это лишний раз подтверждает тот факт, что работа тока расходуется на выделение тепла на активном сопротивлении в цепи.

Закон Джоуля-Ленца

Электричество — неотъемлемый признак нашей эпохи. Абсолютно всё вокруг завязано на нём. Любой современный человек, даже без технического образования, знает, что электрический ток, текущий по проводам, способен в некоторых случаях нагревать их, зачастую до очень высоких температур. Казалось бы, это заведомо всем известно и не стоит упоминания. Однако, как объяснить это явление? Почему и как происходит нагрев проводника?

Опыты Ленца

Перенесемся в 19 век-эпоху накопления знаний и подготовки к технологическому прыжку 20 века. Эпоха, когда по всему миру различные учёные и просто изобретатели-самоучки чуть ли не ежедневно открывают что-то новое, зачастую тратя огромное количество времени на исследования и, при этом, не представляя конечный результат.

Один из таких людей, русский учёный Эмилий Христианович Ленц, увлекался электричеством, на тогдашнем примитивном уровне, пытаясь рассчитывать электрические цепи. В 1832 году Эмилий Ленц «застрял» с расчётами, так как параметры его смоделированной цепи «источник энергии — проводник — потребитель энергии» сильно разнились от опыта к опыту. Зимой 1832-1833 года учёный обнаружил, что причиной нестабильности является кусочек платиновой проволоки, принесённый им с холода. Отогревая или охлаждая проводник, Ленц также заметил что существует некая зависимость между силой тока, электрическим сопротивлением и температурой проводника.

Закон Джоуля-Ленца

При определённых параметрах электрической цепи проводник быстро оттаивал и даже слегка нагревался. Измерительных приборов в те времена практически никаких не существовало — невозможно было точно измерить ни силу тока, ни сопротивление. Но это был русский физик, и он проявил смекалку. Если это зависимость, то почему бы ей не быть обратимой?

Для того чтобы измерить количество тепла, выделяемого проводником, учёный сконструировал простейший «нагреватель» — стеклянная ёмкость, в которой находился спиртосодержащий раствор и погружённый в него платиновый проводник-спираль. Подавая различные величины электрического тока на проволоку, Ленц замерял время, за которое раствор нагревался до определённой температуры. Источники электрического тока в те времена были слишком слабы, чтобы разогреть раствор до серьёзной температуры, потому визуально определить количество испарившегося раствора не представлялось возможным. Из-за этого процесс исследования очень затянулся — тысячи вариантов подбора параметров источника питания, проводника, долгие замеры и последующий анализ.

Закон Джоуля-Ленца

В итоге, спустя десятилетие, в 1843 году Эмилий Ленц выставил на всеобщее обозрение научного сообщества результат своих опытов в виде закона. Однако, оказалось, что его опередили! Пару лет назад английский физик Джеймс Прескотт Джоуль уже проводил аналогичные опыты и также представил общественности свои результаты. Но, тщательно проверив все работы Джеймса Джоуля, русский учёный выяснил что собственные опыты гораздо точнее, наработан больший объём исследований, потому, русской науке есть чем дополнить английское открытие.

Научное сообщество рассмотрело оба результата исследований и объединила их в одно, тем самым закон Джоуля переименовали в закон Джоуля-Ленца. Закон утверждает, что количество теплоты, выделяемое проводником при протекании по нему электрического тока , равно произведению силы этого тока в квадрате, сопротивлению проводника и времени, за которое по проводнику течёт ток. Или формулой:

Q — количество выделяемого тепла (Джоули)

I — сила тока, протекающего через проводник (Амперы)

R — сопротивление проводника (Омы)

t — время прохождения тока через проводник (Секунды)

Почему греется проводник

Как же объясняется нагрев проводника? Почему он именно греется, а не остаётся нейтральным или охлаждается? Нагрев происходит из-за того, что свободные электроны, перемещающиеся в проводнике под действием электрического поля, бомбардируют атомы молекул металла, тем самым передавая им собственную энергию, которая переходит в тепловую. Если изъясняться совсем просто: преодолевая материал проводника, электрический ток как бы «трётся», соударяется электронами о молекулы проводника. Ну а , как известно, любое трение сопровождается нагревом. Следовательно, проводник будет нагреваться пока по нему бежит электрический ток.

нихромовая нагретая спираль

Из формулы также следует — чем выше удельное сопротивление проводника и чем выше сила тока протекающего по нему, тем выше будет нагрев . Например, если последовательно соединить проводник-медь (удельное сопротивление 0,018 Ом·мм²/м) и проводник-алюминий (0,027 Ом·мм²/м), то при протекании через цепь электрического тока алюминий будет нагреваться сильнее чем медь из-за более высокого сопротивления. Поэтому, кстати, не рекомендуется в быту делать скрутки медных и алюминиевых проводов друг с другом — будет неравномерный нагрев в месте скрутки. В итоге — подгорание с последующим пропаданием контакта.

Применение закона Джоуля-Ленца в жизни

Открытие закона Джоуля-Ленца имело огромные последствия для практического применения электрического тока. Уже в 19 веке стало возможным создать более точные измерительные приборы, основанные на сокращении проволочной спирали при её нагреве протекающим током определённой величины — первые стрелочные вольтметры и амперметры. Появились первые прототипы электрических обогревателей, тостеров, плавильных печей – использовался проводник с высоким удельным сопротивлением, что позволяло получить довольно высокую температуру.

Были изобретены плавкие предохранители, биметаллические прерыватели цепи (аналоги современных тепловых реле защиты), основанные на разнице нагрева проводников с разным удельным сопротивлением. Ну и, конечно же, обнаружив что при определённой силе тока проводник с высоким удельным сопротивлением способен нагреться докрасна , данный эффект использовали в качестве источника света. Появились первые лампочки.

Проводник (угольная палочка, бамбуковая нить, платиновая проволока и т.д.) помещали в стеклянную колбу, откачивали воздух для замедления процесса окисления и получали незатухаемый, чистый и стабильный источник света – электрическую лампочку

лампа эдисона

Заключение

Таки образом, можно сказать что на законе Джоуля-Ленца держится чуть ли не вся электрика и электротехника. Открыв этот закон, появилась возможность уже заранее предсказать некоторые будущие проблемы в освоении электричества. Например, из-за нагрева проводника передача электрического тока на большое расстояние сопровождается потерями этого тока на тепло. Соответственно, чтобы компенсировать эти потери нужно занизить передаваемый ток, компенсируя это высоким напряжением. А уже на оконечном потребителе, понижать напряжение и получать более высокий ток.

Закон Джоуля-Ленца неотступно следует из одной эпохи технологического развития в другую. Даже сегодня мы постоянно наблюдаем его в быту – закон проявляется всюду, и не всегда люди ему рады. Сильно греющийся процессор персонального компьютера, пропадание света из-за обгоревшей скрутки «медь-алюминий»,выбитая вставка-предохранитель, выгоревшая из-за высокой нагрузки электропроводка – всё это тот самый закон Джоуля-Ленца.

Раз уж заговорили про ДжОУля )) Читайте статья про ОУ — Операционный усилитель.

Закон Джоуля-Ленца и его применение

Современный человек привык к тому факту, что включив в розетку утюг, настольную лампу либо обычный кипятильник, техника сразу начнет отдавать тепловую энергию и свет. По какому же закону физики происходит данное действие? Объяснить это удалось Джеймсу Джоулю и Эмилю Ленцу. Результат их исследований получил название закона Джоуля-Ленца. На практике он помог достичь больших открытий в электромеханике.

Физики Джоуль и Ленц

Формулировка закона Джоуля-Ленца

Правило было обобщено и сформулировано на основе трудов двух физиков — британского и русского. Джоуль и Ленц свой закон вывели практически одновременно, но независимо друг от друга, поэтому он и был назван именами обоих ученых.

Формулировка закона хорошо иллюстрирует следующее: если на участок цепи пустить электричество, то провод начнет нагреваться. В бытовых условиях тепловое действие тока наблюдается в лампах накаливания и всех электроприборах. Если подключить устройство со спиралью на конце участка цепи в розетку, то она нагреется, и выделит тепло. Например, подключенный к электричеству сварочный аппарат начнет плавить электрод, электрический чайник или кипятильник нагреют воду, а настольная лампа наполнит комнату светом.

Кратко закон Джеймса Джоуля и Эмиля Ленца можно сформулировать так: количество выделяемой теплоты при нагревании полупроводника либо проводника прямо пропорционально определенному количеству времени, за которое происходит воздействие тока, плюс сопротивлению и квадрату рабочей силы электрического тока.

Закон Джоуля-Ленца

Физический смысл закона

Закон Джоуля-Ленца, с помощью которого определение количества тепла, выделяющегося при воздействии силы тока в проводнике, осуществляется достаточно просто, подтверждает также, что это количество напрямую зависит от сопротивления. Сам нагрев происходит в результате того, что свободные электроны, перемещаясь под действием электрополя, бомбардируют атомы молекул материала проводника. При этом они передают им собственную кинетическую энергию, преобразующуюся в тепловую.

Чем выше сила тока, тем большее количество электронов проходит через сечение проводника, и тем чаще происходят столкновения между ними и атомами. Соответственно, проводнику передается большое количество энергии, и он сильно нагревается.

В проводнике с большим сечением столкновений частиц будет намного меньше, следовательно, выделится меньше тепла. С учетом того, что между удельным сопротивлением любого проводника и его сечением существует обратно пропорциональная зависимость, можно сказать, что чем выше сопротивление проводника, тем сильнее он нагревается.

Эксперимент, подтверждающий закон Джоуля-Ленца

Как видим, руководствуясь законом Джоуля-Ленца, можно сделать два вывода:

  1. С увеличением сопротивления проводника, будет увеличиваться и количество выделяемой теплоэнергии. Иными словами, количество теплоты прямо пропорционально сопротивлению.
  2. Выделившееся количество теплоты в проводнике за время прохождения тока, зависит от мощности последнего. Иными словами, если увеличивается мощность тока, то количество свободных электронов, проходящих через проводник за единицу времени, тоже будет увеличиваться.

Согласно закону сохранения энергии в физике, в проводнике под воздействием тока происходит преобразование кинетической энергии свободных заряженных частиц в тепловую внутреннюю энергию.

Уравнения закона в различных формах

Формулы, выведенные для закона Джоуля-Ленца, наглядно демонстрируют зависимость количества теплоты от сопротивления и мощности тока. Согласно этому закону, любой участок локальной цепи, пребывающий под воздействием электроэнергии, должен выделять тепло.

Преобразование электроэнергии в тепло

Уравнение в интегральной форме

При отсутствии на участке цепи каких-либо механических или химических процессов, требующих затрат электрической энергии, теплота, выделенная проводником, будет равна работе тока. То есть, Q = A.

Формула для определения работы тока

Формулу для количества теплоты можно записать в таком виде:

Формула для количества теплоты

С учетом того, что уравнение для напряжения участка цепи можно записывать через силу тока и сопротивление (закон Ома U = I×R), формула для количества теплоты имеет вид:

Закон Джоуля-Ленца в интегральной форме

С помощью этой формулы закон Джоуля-Ленца выражается в интегральной форме.

Математически ее еще можно выразить так:

Интегральная формула

Уравнение в дифференциальной форме

Иногда бывает так, что величина силы тока остается неизвестной, однако существуют точные данные о том, какое на участке цепи напряжение. В этом случае также стоит воспользоваться законом Ома. Исходя из того, что I = U/R, можно представить формулу Джоуля-Ленца в дифференциальной форме:

Дифференциальная формула

Следовательно, можно использовать два уравнения для определения количества тепла, выделяемого проводником, пребывающим под воздействием электротока. Но их применение возможно лишь для тех случаев, когда работа и мощность электрического тока расходуются исключительно на выделение тепла, а других потребителей энергии не существует. Единицей измерения выделенного тепла является джоуль: 1 Дж = 1 В × 1 А × 1 с.

Практическое применение закона в повседневной жизни человека
Закон Джоуля-Ленца наглядно применяется на практике при работе бытовых электрических приборов. Как всем известно, чтобы нагреть электрочайник, воспользоваться феном, утюгом или паяльником, необходимо превратить электричество в тепло. Свечение лампы накаливания происходит из-за наличия вольфрамовой нити, которая при высоком напряжении тока способна осветить все вокруг.

Электронагревательные приборы

Стоит отметить, что получение теплоэнергии от электричества достаточно выгодно, так как помогает избежать энергопотерь. Достаточно лишь уменьшить силу тока, чтобы выровнять количество поступающего тепла от прибора. Также это повышает электробезопасность и регулирует нагрузку на сетевое напряжение.

Но нельзя допускать, чтобы проводник нагревался очень сильно. Под воздействием высокой температуры разрушается структура металла или, если говорить просто, он начинает плавиться. Это может стать причиной короткого замыкания, что в свою очередь приводит к выводу из строя элекрооборудования или даже пожару. Чтобы избежать коротких замыканий используются защитные блоки, предохранители и автоматические выключатели.

Применение закона на практике делает жизнь человека очень удобной, поэтому точно можно сделать вывод, что это в своем роде гениальное достижение, на котором держится вся электротехника. На сегодняшний день практически каждый бытовой прибор в любом доме работает на электричестве, и эта работа основывается на взаимосвязи силы тока и тепловой энергии. Главное, проводить правильные расчеты, чтобы не допускать перегрева деталей в устройстве.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *