Кто изобрел полупроводники
Перейти к содержимому

Кто изобрел полупроводники

История развития полупроводников

1947 год. В современном понимании полупроводниковая техника стала бурно развиваться в середине XX века. Многие выдающиеся ученые внесли свой вклад в данное направление, однако создателями первого транзистоа, в 1947 году, стали американцы Дж. Бардин, У. Бреттейн и У. Шокли. Их открытие стало началом полупроводниковой эры, родившей огромное количество типов диодов и транзисторов, а позднее — интегральных микросхем.

История полупроводников

1948-1950 годы. Не только в США, но и в других странах шли научные исследования в области полупроводников. Так физик В.Е.Лошкарев еще в 1946 году открыл биполярную диффузию неравновесных носителей тока в полупроводниках.Разработка инженером А.В.Красиловым и его группой германиевых диодов для радиолокационных станций. Во Фрязино (Моск. обл.) в НИИ-160 (НИИ «Исток»). А.В.Красиловым и С.Г.Мадоян впервые наблюдался транзисторный эффект.

Создатели отечественного транзистора А.В.Красилов и С.Г.Мадоян опубликовали первую в СССР статью о транзисторах под названием «Кристаллический триод». Лабораторные образцы германиевых транзисторов были разработаны Б.М.Вулом, А.В.Ржановым, В.С.Вавиловым и др. (ФИАН), В.М.Тучкевичем, Д.Н.Наследовым (ЛФТИ), С.Г.Калашниковым, Н.А.Пениным и др. (ИРЭ АН СССР).

1955 год. Изобретатель транзистора Уильям Шокли (William Shockley) основал в Санта–Кларе компанию Shockley Semiconductor Laboratories и привлек в нее 12 молодых ученых, занимавшихся в разных фирмах германиевыми и кремниевыми транзисторами. К сожалению коллектив просуществовал не долго, буквально через два года 8 ученых покинули компанию.

История полупроводников

1956 год. Уильям Шокли, Джон Бардин и Уолтер Браттейн были удостоены Нобелевской премии по физике «за исследования полупроводников и открытие транзисторного эффекта». На церемонии презентации Э.Г. Рудберг, член Шведской королевской академии наук, назвал их достижение «образцом предвидения, остроумия и настойчивости в достижении цели».

1957 год. Ученые, покинувшие компанию Shockley Semiconductor Laboratories, объединяют личные средства и приступают к разработке технологии массового производства кремниевых транзисторов по методу двойной диффузии и химического травления. Эта технология позволяла одновременно получать на одной пластине сразу сотни транзисторов.

Имена большинства этих людей стали в дальнейшем знаковыми для электронной отрасли: Гордон Мур (Gordon E. Moore), Шелдон Робертс (C.Sheldon Roberts), Евгений Клайнер (Eugene Kleiner), Роберт Нойс (Robert N. Noyce), Виктор Гринич (Victor H. Grinich), Джулиус Бланк (Julius Blank), Джин Хоерни (Jean A. Hoerni) и Джей Ласт (Jay T. Last). Для серьезной работы собранных средств было совершенно недостаточно и тогда в качестве инвестора выступила компания Fairchild Camera and Instrument и 1 октября 1957 года была основана компания FAIRCHILD SEMICONDUCTOR. А уже через полгода FAIRCHILD SEMICONDUCTOR получила первую прибыль — компания IBM закупила 100 транзисторов по цене $150 за штуку.

История полупроводников

1958 год. К тому времени разработками полупроводников независимо занимались несколько компаний. Ученых объединял один вопрос: «Как в минимум места вместить максимум компонентов?». Роберт Нойс из Fairchild Semiconductor Corporation и Джек Килби, работающий в Texas Instruments изобрели практически идентичную модель интегральной схемы. Разница состояла в том, что Килби воспользовался германием, а Нойс предпочёл кремний.

1959 год. Роберт Нойс и Джек Килби отдельно друг от друга получили патенты на свои изобретения — началось противостояние двух компаний, которое закончилось мирным договором и созданием совместной лицензии на производство чипов.

История полупроводников

60-е годы. Fairchild Semiconductor Corporation пустила чипы в свободную продажу, их сразу стали использовать в производстве калькуляторов и компьютеров вместо отдельных транзисторов, что позволило значительно уменьшить размер и увеличить производительность. Вообще, начало 60-х это сильный подъем в полупроводниковой отрасли. Многие инженеры и ученые, стоявшие у истоков создания полупроводников начинают основывать собственные фирмы. Так Джин Хоерни, Евгений Клайнер, Джей Ласт и Шелдон Робертс в 1961 году основали компанию Amelco, из которой в последствии «выросли» Intersil, Maxim и Ixys. В 1967 Чарли Спорк уходит в National Semiconductor. В 1968 году Гордон Мур и Роберт Нойс основали Intel. В том же году Виктор Гринич основывает собственную компанию Escort Memory Systems.

История полупроводников

В СССР в 1963 году создан Центр микроэлектроники в г. Зеленограде. Инженер Ф.А.Щиголь разработал планарный транзистор 2Т312 и его бескорпусной аналог 2Т319, ставший основным активным элементом гибридных схем. В 1964 году на заводе «Ангстрем» при НИИ точной технологии созданы первые интегральные схемы ИС-«Тропа» с 20 элементами на кристалле, выполняющие функцию транзисторной логики с резистивными связями. В НИИМЭ в Зеленограде создана технология и начат выпуск первых планарных транзисторов «Плоскость». Под руководством Б.В.Малина в НИИ-35 (ныне НИИ «Пульсар») была создана первая серия кремниевых интегральных схем ТС-100 (степень интеграции — 37 элементов на кристалле).

В 1966 году в НИИ «Пульсар» начал работать первый экспериментальный цех по производству планарных интегральных схем. В НИИМЭ под руководством доктора наук К.А.Валиева начат выпуск логических и линейных интегральных схем. В 1968 НИИ «Пульсар» выпустил партию первых гибридных тонкопленочных ИС с планарными бескорпусными транзисторами типов КД910, КД911, КТ318, предназначенных для телевидения, радиовещания и связи. В НИИ МЭ разработаны цифровые и линейные ИС массового применения (серия 155). В 1969 году физик Ж.И.Алферов сформулировал и практически реализовал свои идеи управления электронными и световыми потоками в классических гетероструктурах на основе системы арсенид галлия-арсенид алюминия.

История полупроводников

70-е годы. Последующее десятилетие отметилось дальнейшим ростом рынка электронных компонентов. Строились заводы по производству микросхем, образовывались новые компании. Старые компании постепенно перепрофилировались в соответствии с новыми требованиями времени, переходя от производства ламп к производству полупроводников, номенклатура которых постоянно расширяется — это аналоговые и цифровые микросхемы, диоды, ВЧ транзисторы и тиристоры.

Так например, кампания ANALOG DEVICES, начав в 1965 году со штатом в 45 человек, активно развиваясь, к 1974 году увеличила число сотрудников до 894, а в 1979 году стала публичной, выпустив на рынок свои акции. Компания MOTOROLA, начиная свой бизнес в 30-х годах с производство автомобильных радиоприемников, в 1974 году выпускает на рынок микроконтроллер MC6800, который на долгие годы становится №1 в автомобильной и бытовой электронике.

Что касается СССР, к сожалению не было развития в сторну массового производства, однако наука на месте не стояла и к началу 1970 года в стране насчитывалось 69 серий интегральных схем, из которых 7 серий – по МОП технологии, 32 серии – по биполярной технологии. В 1973 – созданы интегральные схемы для наручных часов со степенью интеграции 1500 транзисторов на кристалл размером 2×2 мм2. Под руководством Э.Е Иванова на заводе «Ангстрем» за пять месяцев был разработан и выпущен калькулятор на основе собственных БИС, а в 1974 году в научном центре на заводе «Ангстрем» под руководством В.Л. Дшхуняна созданы первые отечественные микропроцессоры.

В 1975 году организован промышленный выпуск цифровых ИС серий 100 и 500 с быстродействием 2 нс для ЭВМ «Эльбрус-2», создана БИС ЗУ динамического типа емкостью 4 Кбит.К середине 70-х была достигнута степень интеграции 20 000 транзисторов на кристалл, а к концу десятилетия создана первая однокристальная микро-ЭВМ, эквивалентная мини-ЭВМ.

История полупроводников

70-е годы были отмечены еще одним знаковым событием. К тому времени стало очевидно, что при постоянном росте сложности интегральных схем задача их промышленной разработки без создания средств компьютерной автоматизации будет попросту нереализуема. Появились инструменты автоматизации, которые сейчас объединены в рамках EDA (Electronic Design Automation).

Поначалу они были представлены средствами CAE (Computer Aided Engineering) — для разработчика принципиальных схем и средствами CAD (Computer Aided Design) — для инженера-конструктора. Самой серьезной проблемой для разработчиков ранних ИС было отсутствие возможности создания физического прототипа разрабатываемого устройства.

Ошибки, допущенные при проектировании принципиальной схемы устройства, обнаруживались только после изготовления интегральной схемы. При обнаружении ошибки нужно было менять проект, заново создавать комплект фотошаблонов и повторять весь производственный цикл. Для решения этой проблемы в 70-е годы в университете Беркли (Berkeley), который входил в число лидеров разработки средств компьютерного инжиниринга (CAE), была разработана программа SPICE (Simulation Program with Integrated Circuit Emphasis). Предназначалась она для моделирования ИС на электрическом уровне и позволяла проверять правильность работы схемы на уровне виртуальной компьютерной модели.

Эта программа и по сей день используется для моделирования аналоговых схем. По мере распространения цифровых схем, для проверки правильности функционирования стали разрабатывать и использовать средства логического моделирования. Одной из первых таких программ была система Hi-Lo.

История полупроводников

80-е годы. Десятилетие 80-х, несмотря на спад в электронной промышленности США, также отмечены успехами в этой области. Под руководством Гордона Кэмпбелла создается первая 64k (8096х8) EEPROM с единственным напряжением питания +5 В. 80-е годы стали временем «второй волны» в мировой электронной промышленности. Именно тогда появились такие компании как Cypress, Seeq, Sierra, Maxim, Atmel, Xilinx, Linear Technology «вышедшие» в большинстве своем из компаний «первой волны» — NatSemi, Intel, Signetics, AMD.

В Советском Союзе в 1980 году заводом «Микрон» изготовлена 100 000 000 интегральная схема. В 1983 году в НИИМЭ организован промышленный выпуск базовых матричных кристаллов БМК И-200 и БМК И-300 для отечественных ЭВМ. В 1984 в НИИТТ был разработан первый персональный компьютер ДВК-1, а на заводе «Ангстрем» он стал выпускаться серийно. В 1985 году в НИИМЭ получены тестовые образцы кристаллов ИС с топологической нормой 0,5 мкм. с использованием электронно-лучевой литографии.

Во второй половине 80-х годов создан первый 32-разрядный микропроцессор и налажен выпуск СБИС памяти емкостью 1 М. Что каксается САПР, то в начале 80-х годов компании Daisy, Valid и Mentor Graphics разработали свои системы на базе рабочих станций (Sun, Apollo), в рамках которых объединялись ввод принципиальной схемы, система моделирования и средства конструкторского проектирования. Таким образом, произошло объединение средств САЕ и CAD. В 1985 году эти фирмы с большим успехом вышли на мировой рынок. Это и было рождением индустрии EDA.

90-е годы. Это десятилетие характеризуется дальнейшим наращиванием объемов производства полупроводников, происходит все большая степень интеграции микросхем. Бурный рост персональной компьютерной техники приводит к разработкам сложных специализированных устройств. Крупные корпорации выводят свое производство в Китай и страны Юго-Восточной Азии. Совсем по-другому обстоят дела в нашей стране. Государственное финансирование снизилось до минимума.

Ряд ведущих предприятий электроники — на грани закрытия, другие после акционирования утратили производственный профиль деятельности. Эффективно работающие предприятия составляют всего несколько процентов от общего количества. К середине 90-х годов российская электроника имела годовые объемы вложений 150 млн. долларов, а мировой рынок оценивается в 210 млрд. долларов. В России только на заводах «Ангстрем» и «Микрон» в Зеленограде можно производить СБИС с топологической нормой 1,2 мкм.

В 1997 Правительством создана холдинговая компания «Российская электроника», в которую вошли 32 предприятия и научно-исследовательских институтов бывшей электронной промышленности. На заводе «Микрон» введена производственная линия по выпуску СБИС с проектными нормами 0,8 мкм. на пластинах 150 мм. В НИИМЭ разработана элементная база БиКМОП ИС на основе самосовмещенной технологии. В 1998 году на СП «Корона» начато промышленное производство СБИС на пластинах кремния диаметром 150 мм с топологическими нормами 0,8 мкм. И пожалуй самое замечательное событие произошло на порого нового тысячелетия.

История полупроводников

2000-е В 2000 году академик Ж.И.Алферов удостоен Нобелевской премии, за исследования начатые еще в 1970 году — за основополагающие работы в области информационных и коммуникационных технологий, в частности за открытие явления суперинжекции в гетероструктурах, открытие идеальных гетероструктур арсенид алюминия-арсенид галлия, создание полупроводниковых лазеров на двойных гетероструктурах, создание первых биполярных гетеротранзисторов, солнечных батарей на гетероструктурах.

В настоящее время главенствует направление микроминиатюризации полупроводниковых приборов. Последние достижения таковы: в США, в 2006 году создан транзистор из одиночной молекулы углерода. И уже в том же, 2006 году, ученым из IBM удалось впервые в мире создать полнофункциональную интегральную микросхему на основе углеродной нанотрубки, способную работать на терагерцевых частотах.

Вполне вероятно, что развитие наноэлектроники будет сваязано с сопоставимой по масштабу оптимизацией, аналогичной уменьшению микроэлектронной компонентной базы в 60-е годы минувшего столетия. Возможно, что на основе интегрированных наноэлектронных чипов возникнет совершенно новая элементная база, которая будет отличаться высокой компактностью, низким энергопотреблением и невиданным ранее быстродействием.

История полупроводников — главной инновации эпохи: от опытов Фарадея до первого транзистора

Мы живем в эпоху, сущность которой определяют цифровые технологии и электроника. И краеугольный камень этого мира — миниатюрная микросхема, состоящая из кремниевых транзисторов. А они, в свою очередь, были бы невозможны без полупроводников.

Микросхемы, транзисторы и полупроводники можно найти почти в любом устройстве сложнее вентилятора, начиная со стиральных машин и заканчивая космическими спутниками и аппаратами ИВЛ. Поэтому освоение полупроводников можно без сомнений назвать главным изобретением XX века. Рассказываем историю рождения технологии, сформировавшей нашу реальность.

Что такое полупроводники и почему они наше всё

Для начала немного физики. Полупроводники — это вещества с особыми свойствами проводимости электричества. На этих свойствах основана вся современная электроника — именно они позволяют модулировать, усиливать и направлять ток и обмениваться электросигналами.

Но сам по себе полупроводник — это всего лишь материал. Для того, чтобы использовать его особенности, инженеры разработали транзисторы — сложные миниатюрные устройства, управляющие током и преобразующие его. Главный элемент транзистора — p-n-переход (positive-negative), в котором соприкасаются два полупроводника. А из комбинаций транзисторов состоят микросхемы, которые используют обмен сигналами между ними для вычислений.

Чаще всего в качестве полупроводников для транзисторов используют кремний — это самый удобный, дешевый и универсальный материал. Кремний для изготовления полупроводника должен быть очень чистым и состоять из одного кристалла. Поэтому материал для полупроводников выращивают в лабораториях, «вытягивая» расплавленное вещество.

Свойствами полупроводников обладают многие другие элементы и вещества, например германий или сапфир, но в подавляющем большинстве случаев сегодня используется кремний. Для того, чтобы усилить особые свойства полупроводников, они обогащаются добавками — например, мышьяком. Добавление примесей — отдельная непростая задача, которую можно решить множеством способов.

Первые догадки

История покорения полупроводников началась в 1833 году, когда физик Майкл Фарадей заметил, что электропроводность сульфида серебра повышается при нагревании. Другие металлы реагируют обратным образом — чем выше температура, тем хуже через них проходит ток. Через пять лет Антуан Анри Беккерель заметил, что некоторые материалы меняют электропроводность под воздействием света.

В 1874 году Карл Фердинанд Браун обнаружил, что некоторые вещества изменяют электрическое сопротивление в зависимости от направления, величины и продолжительности тока. Это открытие привело к разработке технологии «выпрямления», то есть преобразования переменного тока в постоянный — именно такой механизм лежит в основании радиотехники. Примерно в то же время Артур Шустер сообщил о схожих результатах исследований контакта между проводами из чистой и окисленной меди — последняя здесь действует как полупроводник.

По сути, четыре эти открытия описывают основные свойства полупроводников. Но сущность этих свойств осталась для физиков XIX века загадкой — тогдашняя наука была не способна объяснить их. Исследовать полупроводники удалось лишь в 1920-1940-х годах, когда ученые смогли объяснить их устройство материалов на атомарном уровне.

Германий меняет мир

Электроника, то есть совокупность технологий, позволяющих использовать электрический ток для вычислений и обработки информации, появилась еще в 1930-х годах. До середины 1950-х основным компонентом электронного оборудования были вакуумные лампы. Именно их использовали первые компьютеры, созданные в годы Второй Мировой войны для военных целей.

Главным недостатком вакуумных ламп была чрезвычайная громоздкость. Вакуумная лампа примерно такого же размера, как лампочка накаливания. А транзистор, который выполняет ту же роль, крошечный: первая в истории серийная интегральная микросхема Intel 4004, выпущенная в 1971 году, была 5 сантиметров в длину и вмещала 2300 транзисторов. Поэтому ламповые компьютеры занимали по несколько комнат, но действовали очень медленно.

Кроме того, лампы потребляли гигантские объемы энергии и выделяли огромное количество тепла. Для того, чтобы электроника развивалась дальше, нужно было создать гораздо более экономичный электронный компонент — то есть транзистор.

Первый патент на концепцию полупроводникового транзистора, в котором использовался сульфид меди, еще в 1926 году подал польско-американский изобретатель Юлиус Лилиенфельд. Однако ему так и не удалось воплотить свое гипотетическое изобретение в жизнь — идея была реализована лишь 20 лет спустя.

Транзистор создали ученые из лабораторий корпорации Bell. Они начали изучать потенциал p-n перехода полупроводников еще в середине 1930-х. Однако из-за Второй Мировой войны почти всем передовым американским физикам пришлось пойти работать на армейские проекты, где разрабатывали радары и ядерное оружие. Исследования остановились на несколько лет, и возобновились после разгрома стран Оси.

Первый рабочий транзистор был создан в конце 1947 года. В качестве полупроводника в нем был использован германий — его научились очищать и выращивать раньше, чем кремний. Транзистор разработала группа инженеров во главе с Уильямом Шокли, Уолтером Браттейном и Джоном Бардином. В 1950 году Шокли получил патент на оригинальный транзистор, а Браттейн и Бардин — на его трехэлектродную версию. В 1956 году все трое были награждены Нобелевской премией по физике. Бардин стал единственным человеком, получившим эту премию дважды — в 1972 году он вместе с двумя другими физиками был награжден ей за разработку теории сверхпроводимости.

Открытие транзисторов породило совершенно новую индустрию, причем главным их покупателем стали военные, а чуть позже и НАСА. Лидером отрасли, помимо Bell, стала компания Philco, транзисторы которой первые годы были даже быстрее. Но уже в 1955 году группа ученых из Bell совершила еще одну мини-революцию, создав диффузионный транзистор — он отличался особым способом добавления усиливающих примесей а вещество-полупроводник.

Военные требуют кремния

Германиевые транзисторы стали огромным прорывом. Тем не менее, у них было как минимум два существенных недостатка — они сильно нагревались и не могли работать на высоких температурах. Забегая вперед, отметим, что и для современных интегральных микросхем германий не подходит. Физики знали, что гораздо более удобным полупроводником является кремний. Об этом было известно и военным, которые требовали разработать универсальные и жаропрочные кремниевые транзисторы.

Квалифицированных ученых в США в те годы было очень мало — с 1946 по 1948 год американские университеты выпустили всего 416 физиков и 378 математиков. Фундаментальная наука в стране как отрасль только зарождалась — до Второй Мировой государство почти не финансировало ученых, и им приходилось заниматься сугубо практическими и быстро коммерциализируемыми исследованиями для нужд промышленности, а почти все прорывные теоретические открытия совершались в Европе. Именно Вторая Мировая война, в начале которой Америка заметно отставала в технологиях от Германии, побудила Вашингтон создать первые федеральные программы поддержки фундаментальных исследований.

Количество ученых в США вскоре возросло во много раз, что быстро сделало их мировым лидером во многих отраслях науки. Однако этот эффект проявился лишь через десятилетие. А в 1950-х инновационными исследованиями могли заниматься всего несколько сотен человек на всю огромную страну. Потеряв группу специалистов, компания могла утратить инновацию Поэтому главным механизмом конкуренции стало переманивание ученых.

В 1952 году компания Texas Instruments «схантила» у Bell химика Гордона Тила. В 1954 году он помог техасским инженерам создать первый кремниевый транзистор. Это открытие стало большим сюрпризом. Тил произвел огромный фурор на одной из научных конференций по радиоэлектронике сухой репликой: «несмотря на то, что коллеги рассказывали вам о безрадостных перспективах кремниевых транзисторов, у меня в кармане лежит несколько таких». А затем показал преимущества своего изобретения, сунув усилитель работающего музыкального проигрывателя в кипящее масло — при этом музыка не остановилась. Именно этот транзистор можно считать прямым предком подавляющего большинства микросхем, окружающих нас.

Эти новые кремниевые транзисторы от Texas Instruments были адаптированы для использования в военной аппаратуре: бортовых радарах, средствах связи и навигационном оборудовании. К концу 1950-х они сделали Texas Instruments лидером отрасли и главным получателем военных госзаказов в сфере электроники. Очень вовремя — из-за Холодной войны в ВПК потекли огромные деньги. Их продажи выросли с нескольких сотен тысяч долларов в 1954 году до более чем 80 миллионов долларов в 1960 году.

В следующей статье мы расскажем о создании микрочипа, рождении современной Кремниевой долины, а также о состоянии полупроводниковой индустрии сегодня.

Кто и в каком году открыл полупроводники

Олег Владимирович ЛОСЕВ — основоположник полупроводниковых приборов. Сделал в 20-е годы в Н. Новгороде три основополагающих открытия современной электроники: он открыл полупроводимость («p-n переход»), усилительные свойства полупроводниковых приборов, электролюминесценцию (на Западе явление электролюминесценции в двадцатые годы называли «светом Лосева» — Lossew Licht). На основе этих открытий изобрёл, соответственно, первые полупроводниковые приборы — диоды, транзистор (13.01.1922) и светодиод. На изобретениях Лосева основаны принципы действия, соответственно, трёх из пяти «китов» современной электроники — полупроводников, транзисторов и светодиодов (остальные два — лазеры и оптическое волокно) . Умер от голода в 1942 в блокадном Ленинграде, работая научным сотрудником Ленинградского физико-технического института к стыду руководства института (директор — А. Иоффе) , распределявшего военные пайки, благополучно пережившего блокаду и достигшего всех мыслимых формальных вершин советской науки за счёт открытий Лосева. Видимо, после изобретения колеса ничто так не меняло мир, как открытие полупроводников. Глядя на экраны и нажимая на кнопки множества окружающих вас электронных устройств, стоит вспомнить, что все телефоны, телевизоры, все компьютеры работают на принципах, открытых О. В. Лосевым.

Великолепные истории

Благодаря забытому ныне физику Олегу Лосеву у СССР был шанс создать полупроводниковые технологии намного раньше, чем США. В списке государств — лидеров в области полупроводниковых технологий Россия не значится. Между тем анализ истории науки однозначно свидетельствует в пользу того, что при более удачном стечении обстоятельств у Советского Союза были отличные шансы опередить остальной мир в этой технологической гонке.

В этом году исполнилось 91 год со дня создания первого в мире полупроводникового прибора, усиливавшего и генерировавшего электромагнитные колебания. Автором этого важнейшего изобретения был наш соотечественник, девятнадцатилетний сотрудник Нижегородской радиолаборатории Олег Владимирович Лосев.

Его многочисленные открытия намного опередили время и, как это, к сожалению, часто случалось в истории науки, были практически забыты к моменту начала бурного развития полупроводниковой электроники. А вот мы сейчас вспомним о них .

Физик Олег Владимирович Лосев известен миру благодаря двум своим открытиям : он первый в мире показал, что полупроводниковый кристалл может усиливать и генерировать высокочастотные радиосигналы; он открыл электролюминесценцию полупроводников, т.е. испускание ими света при протекании электрического тока.

К сожалению, ученый не получил своевременно объективной оценки своих заслуг со стороны соотечественников. А ведь именно его работы подготовили открытие «транзисторного эффекта», за что профессор Иллинойского университета Джон Бардин в 1956 г. получил свою первую Нобелевскую премию.

Да и в основе достижений наших отечественных ленинских и нобелевских лауреатов 1964 г. Николая Басова и Александра Прохорова и нобелевского лауреата 2001 г. Жореса Алфёрова лежат результаты фундаменталъно-прикладных исследований и разработок скромного подвижника науки ж техники — О.В.Лосева.

Однако не много найдется людей, кто хоть вскользь прилюдно упомянул бы имя своего скромного предшественника. Пожалуй, только его старший коллега Б.А. Остроумов на сессии ВНТОРЭС в 1952 г. выступил с большим докладом «Советский приоритет в деле создания кристаллических электронных реле по работам О.В.Лосева» . По этому докладу сессия предложила издать труды Лосева, доработать его научное наследие и внедрять полупроводники в практику. И уже в 1954 г. Был организован Институт полупроводников АН СССР, директором которого стал один из бывших научных руководителей О.В.Лосева — академик А. Ф. Иоффе.

Олег Лосев родился в Твери 10 мая 1903 г. По воспоминаниям друзей и знакомых Олега, отец его был конторский служащий на вагоностроительном заводе, мать — домохозяйка.

О тверских его близких родственниках и знакомых пока сведении нет. Точно неизвестно как учился Олег вообще, но известно, что его очень интересовала физика, а его учитель физики Вадим Леонидович Лёвшин (1896-1969) — впоследствии академик, лауреат Сталинской премии 1951 г. — привил своему ученику интерес к научным исследованиям. «Заболел» радиотехникой Олег Лосев в 1916 г., после одной из первых лекций нового начальника Тверской радиостанции внешних сношений, штабс-капитана Владимира Лещинского. Тогда же он познакомился и с его помощником — поручиком Михаилом Бонч-Бруевичем и профессором Рижского политехникума Владимиром Лебединским. Последний часто приезжал в Тверь, чтобы поддерживать своих талантливых учеников и единомышленников в их новаторских устремлениях. Стал частым гостем на радиостанции и школьник Олег Лосев.

Тверская радиостанция внешних сношений появилась в Твери в 1914 году, т.е. в начале первой мировой войны для обеспечения оперативной связи России с её союзниками Англией и Францией. Тверская станция была приёмной и соединялась прямым проводом с обеими российскими столицами, где в Царском селе (под Петербургом) и на Ходынском поле (в Москве) также в спешном порядке были построены две однотипные стокиловаттные передающие станции искрового телеграфа. На территории станции были и два деревянных барака. Аппаратура радиостанции питалась от аккумуляторных батарей, для заряда которых в техническом оснащении станции был предусмотрен бензодвижок с динамо-машиной. Потому электроосвещение на станции действовало только тогда, когда подзаряжался аккумулятор. Кроме того, собственно аппаратура станции была весьма ненадёжна, и, прежде всего, из-за невысокого качества тогдашних, к тому же, и очень дорогих французских радиоламп. Однако ещё хуже были лампы отечественного производства – «лампы Папалекси», которые в небольших количествах выпускались питерским заводом РОБТиТ под наблюдением самого разработчика.

Собственная радиолаборатория для исследований, экспериментов и изготовления собственных пустотных (катодных) реле — так тогда назывались радиолампы — хотя бы для нужд собственной радиостанции на Тверской радиостанции появилась по инициативе Бонч-Бруевича. Для этого он выпросил в физическом кабинете гимназии ненужный там вакуумный насос, кое-что из оборудования где-то ещё выпросил во временное пользование, на собственные деньги купил у местного аптекаря разнокалиберных стеклянных и резиновых трубок ртути для пароструйного насоса Ленгмюра, а в магазине скупил едва ли ни все осветительные электролампочки. Это потом ему удалось тоже выпросить на питерском заводе «Светлана» моток бракованной вольфрамовой проволоки, а на первых порах в качестве нитей накала в своих первых пустотных реле он использовал нити накала осветительных электроламп.

Когда в 1915 г. был изготовлен первый образец пустотного реле, Бонч-Бруевич собрал на своем столе макет испытательного радиоприёмника и подключил к нему свою первую самодельную радиолампу. Однако баллон опытного образца плохо держал даже не очень глубокий вакуум, потому лампа могла работать только при непрерывной откачке воздуха из нее, т.е. при непрерывной работе насосов, а для вращения электромоторов требовался ток.

Первую небольшую партию ламп Бонч-Бруевич сумел изготовить к осени 1915 г. Правда, это были пока газонаполненные приборы, но с весны 1916 г. тверские умельцы наладили изготовление двуцокольных вакуумных ламп со стальными электродами, которые по всем параметрам превзошли французские лампы промышленного производства. Так, если французская лампа имела рабочий ресурс 10 часов и стоила 250 рублей, то тверская лампа при ресурсе 4 недели стоила лишь 32 рубля. Это уже была та самая «бабушка» последующих конструкций радиоламп Бонч-Бруевича.

Кустарное изготовление радиоламп — дело трудоёмкое, хлопотное и небезопасное, но личный состав станции понимал важность этого дела, потому в лаборатории с энтузиазмом трудились все свободные в данное время от своей вахты и службы. Так что Олегу Лосеву приходилось видеть на Тверской радиостанции не только керосиновые лампы, но и не раз наблюдать, как ловко манипулируют раскалёнными докрасна в керосиновых горелках стеклянными пузырями, одновременно ногами, посредством кузнечных мехов, нагнетая воздух в свои горелки.

Став заядлым радиолюбителем, и Олег Лосев устроил дома радиолабораторию. Занимаясь дома всякими поделками, он не чурался и мальчишеских шалостей. Так, например, он иногда звонил по телефону какому-нибудь наугад выбранному абоненту и, услышав его ответ, прикладывал к микрофону какую-нибудь очередную изготовленную им электрическую пищалку или гуделку и представлял себе, как при этом «радуется» на другом конце провода случайный и незнакомый «собеседник».

После Октябрьской революции Тверская радиостанция потеряла своё военное значение и вместе с шестью другими крупнейшими станциями была передана в апреле 1918 г. из Военного ведомства в ведение Наркомата почт и телеграфа.

Слух о легендарной «внештатной» радиолаборатории докатился в Москву до самого Ленина. 19 июня 1918 г. коллегия Наркомпочтеля приняла постановление об организации тверской радиолаборатории (ТРЛ) с мастерской со штатом 59 человек при Тверской радиостанции для разработки и изготовления различных радиотехнических приборов и, прежде всего, необходимого количества катодных реле, т.е. радиоламп. Управляющим лабораторией 26 июня стал начальник станции В.М. Лещинский. Ведущим работникам Тверской радиостанции и радиолаборатории при ней были установлены высокие оклады и предоставлены хорошие продовольственные пайки. Однако остальные производственно-бытовые условия в ТРЛ не изменились, потому и возник вопрос о необходимости передислокации ТРЛ в другое место и даже в другой город. Вариантов было много, но выбор пал на Нижний Новгород, поскольку там для размещения радиолаборатории было предложено большое каменное трёхэтажное здание с подвалом, двором и надворными постройками, как и в Твери — на крутом берегу Волги.

С убытием ТРЛ в Нижний Новгород, опустела Тверская радиостанция и «осиротел» Олег Лосев, но увлечений своих не растерял, а потому, летом 1920 г., окончив Тверское училище, решил поступать в Москве в институт связи. А в Москве в сентябре того же года проходил 1-й Всероссийский радиотехнический съезд. Конечно, пропустить такое событие Лосев не мог. Он сумел пробраться на съезд, где и встретил своих старых знакомых: Лещинского В. М., Бонч-Бруевича М.А. и Лебединского.

В. К. Лебединский и пригласил Лосева на работу в НРЛ. Молодой радиолюбитель перед соблазном не устоял и вскоре появился в Нижнем. Новгороде на Откосе в заветном доме № 8. Здесь и привелось Лосеву заниматься исследованием самых ненадёжных и самых капризных элементов тогдашних безламповых приёмников — кристаллических детекторов.

Возможности для экспериментов были безграничными, только меняй кристаллы да материал иглы. Главное – цель. И тут оказалось, что недостаток знаний не всегда недостаток – нередко из-за этого и появляются открытия, была бы удача. Приступая к исследованиям, О. В. Лосев исходил из принципиально ошибочной посылки, что поскольку «некоторые контакты… между металлом и кристаллом не подчиняются закону Ома, вполне вероятно, что в колебательном контуре, подключенном к такому контакту, могут возникнуть незатухающие колебания». (В то время уже было известно, что для самовозбуждения одной лишь нелинейности вольтамперной характеристики недостаточно; обязателен падающий участок – да Лосев этого не знал!)

Удивительно, но у некоторых кристаллов он обнаружил искомые активные точки, обеспечивающие генерацию высокочастотных сигналов. Особенно эффективной оказалась пара «цинкит – угольное острие», которая при напряжениях менее 10 В позволяла получать радиосигналы с длиной волны вплоть до 68 м. Понятно, что сбивая генерацию, можно было реализовать и усилительный режим.

Статья О. В. Лосева о детекторе-генераторе и детекторе-усилителе появилась в ТиТбп в июне 1922 г. К чести Лосева отметим, что в ней он разъясняет обязательность наличия падающего участка вольтамперной характеристики контакта. Разъясняет очень подробно, рассматривая вопрос и качественно и аналитически. По тону чувствуется, что разъясняет не только читателю, но прежде всего самому себе. Это характерно и для его последующих статей. В них он всегда не только исследователь, по и прилежный студент курсов самообразования.

Замечательно, что рядом с Лосевым оказался В. К. Лебединский, который отчетливее, чем его молодой сотрудник, понял, что сделано открытие . Профессор сходу попытался дать объяснение наблюдаемому явлению, занялся этим и сам первооткрыватель, но ничего путного тогдашняя фундаментальная наука подсказать им не могла. В конце концов Лосев довольствовался лишь гипотезой: при достаточно большом токе в зоне контакта возникает некий электронный разряд наподобие вольтовой дуги, но без разогрева. Этот разряд и закорачивает высокое сопротивление контакта, обеспечивая генерацию. Похоже, вплоть до конца 1920-х гг. ему казалось, что процесс протекает в атмосфере над поверхностью кристалла. (По современным представлениям имело место сочетание лавинного пробоя с тиристорным эффектом.)

Конечно же В. К. Лебединский и М. А. Бонч-Бруевич обратили внимание на невоспроизводимость эффекта и на то, что, немного поработав, детекторы-генераторы «скисали», поэтому о какой-либо конкуренции с ламповой электроникой как генеральным направлением не могло быть и речи, но практическая значимость открытия была огромной.

И уже 13 января 1922 г. Лосев в детекторе из цинкита обнаружил активные свойства, т.е. способность кристаллов в определённых условиях усиливать и генерировать электрические колебания, а п остроенный Лосевым в 1922 г. радиоприёмник с генерирующим диодом – «кристадин» — принёс молодому учёному и изобретателю всемирную известность .

Регенеративный приемник “Кристадин”

В те годы радиолюбительство начало принимать массовый характер. Вышло постановление правительства о его развитии, названное «законом о свободе эфира».

Электронных ламп не хватало, и они были дороги, да им еще требовался и специальный источник электропитания, а схема Лосева могла работать от трех-четырех батареек для карманного фонарика!

В серии последующих статей Олег Владимирович описал методику быстрого отыскивания активных точек на поверхности цинкита, заменил угольное острие металлической иглой, дал рецепты по обработке самих кристаллов и, разумеется, предложил целый ряд практических схем радиоприемников. И на все эти технические решения получил патенты (всего 7), начиная с «Детекторного приемника-гетеродина», заявленного в декабре 1923 г.

Кто-то придумал звучное и вполне обоснованное название такому, полностью твердотельному приемнику – кристадин, образованное из сочетания кристалл + гетеродин. Очень скоро, используя детекторы-генераторы, радиолюбители начали делать и радиопередатчики, пригодные для связи на несколько километров. Это был подлинный триумф , популярные брошюры о кристадине расходились массовыми тиражами, а когда их перевели на английский и немецкий, О. В. Лосев получил широкое европейское признание. В письмах «оттуда» его величали не иначе как профессором, да и в НРЛ его карьера удалась: с первоначальной должности «служителя» (что-то вроде мальчика на побегушках) он шагнул в лаборанты, женился (неудачно) и почти перестал голодать.

Зарубежные научные журналы называли кристадин Лосева «сенсационный изобретением», а самого девятнадцатилетнего учёного – «профессором». После изобретения «Кристадина» Лосев стал едва ли ни «богом» радиолюбителей. В период с 1924 и по 1928 годы он получил от радиолюбителей более 700 писем и ни одно из них не оставил без ответа.

Устройство Лосева позволило не только принимать радиосигналы на больших расстояниях, но и передавать их. Молодому исследователю удалось получить пятнадцатикратное усиление сигнала в головных телефонах (наушниках) по сравнению с обычным детекторным приемником. Радиолюбители, высоко оценившие изобретение Лосева, писали в различные журналы, что «при помощи цинкитного детектора в Томске, например, можно слышать Москву, Нижний и даже заграничные станции». По лосевской брошюре «Кристадин» создавали свои первые приемники тысячи энтузиастов радиосвязи. Более того, кристадины можно было просто купить как в России (по цене 1 руб. 20 коп.), так и за рубежом.

Продолжая исследования, Лосев в 1923 г. на карборундовом детекторе обнаружил ещё одну разновидность активности кристаллов: холодное безинерционное свечение, т.е. способность полупроводников генерировать электромагнитные излучения в световом диапазоне волн.

Раньше такого явления он не наблюдал, но прежде и использовались другие материалы. Карборунд (карбид кремния) был испробован впервые.

Лосев повторил опыт — и снова полупрозрачный кристалл под тонким стальным острием засветился. Так, было сделано одно из перспективнейших открытий электроникиэлектролюминесценция полупроводникового перехода. Обнаружил Лосев явление случайно или тому были научные предпосылки, сейчас судить трудно. Так или иначе, но молодой талантливый исследователь не прошел мимо необычного явления, не отнес его в разряд случайных помех, напротив, обратил самое пристальное внимание, угадал, что оно базируется на еще неизвестном экспериментальной физике принципе. В мировой физике это явление получило название «электролюминесценция» или просто – «свечение Лосева» .

Практическое использование эффекта свечения Лосева началось в конце пятидесятых годов. Этому способствовало освоение полупроводниковых приборов: диодов, транзисторов, тиристоров. Не полупроводниковыми оставались только элементы отображения информации — громоздкие и ненадежные. Поэтому во всех развитых в научно-техническом отношении странах велась интенсивная разработка полупроводниковых светоизлучающих приборов

А в 1927-1928 годах Олег Владимирович сделал и третье своё открытие: емкостный фотоэффект в полупроводниках, т.е. способность кристаллов преобразовывать световую энергию в электрическую (принцип действия солнечных батарей).

В то время ещё никто не мог дать научного объяснения физическим явлениям, открытым Лосевым в полупроводниках, хотя впервые такую попытку тогда и предпринял коллега и друг Лосева — Георгий Александрович Остроумов (1898-1985), прибывший на работу в НРЛ из Казани в 1923 г вместе со своим старшим братом Борисом Александровичем Остроумовым (1687-1979). Однако попытка эта успехом не увенчалась, поскольку тогдашняя физика ещё не располагала научными фактами и знаниями, которые необходимы были для разработки этой теории. Знания такие появились только в конце второй мировой война, а кристаллический гетеродин Лосева (кристадин) подготовил открытие транзисторного эффекта в 1947 г. американскими учёными Бардиным и Браттейном . Американец Дестрио продолжал исследования «свечения Лосева». Кстати, все зарубежные учёные признавали приоритет открытий Лосева в области полупроводников и, кажется, лишь один Коллац имел своё особое мнение.

Повзрослевший Лосев стал не только более сосредоточенным, но и менее общительным. Во время работы ничто ему не мешало и не могло отвлекать от дела. Когда же ему приходилось что-то мастерить, т.е. работать больше руками, чем головой, он почти всегда что-нибудь тихонько напевал или насвистывал. По воспоминаниям его коллег, физик Лосев был и Лосевым-романтиком. Однако на эти увлечения у него не оставалось времени: главным в его жизни была работа, работа и работа. К тому же он был и студентом-заочником Нижегородского университета, который он закончил, сдал все экзамены, но из-за какой-то формальности диплома не получил. Хотя, кажется, это его мало беспокоило. Может, по молодости, по житейской неопытности он считал, что главное — это реальные дела, а вовсе не канцелярская справка с печатью. А может, и в силу своей глубокой убеждённости, он, как физик, не мог смириться с тем, что реальным миром управляет не сущность вещей и явлений, а бюрократическое крючкотворство на основе юридических условностей.

Бурное развитие радиотехники во второй половине 20-х годов минувшего века потребовало коренной перестройки всего радиодела в стране. Так, летом 1928 г. в Ленинграде на специальном совещании представителей соответствующих ведомств было вынесено решение объединить НРЛ с ленинградской ЦРЛ (Центральной радиолабораторией), назначить научным руководителем объединённой ЦРД М.А.Бонч-Бруевича и поручить ему установить тематику исследовательских работ в соответствии с новыми научно-техническими требованиями. Сотрудникам НРЛ было предложено переехать в Ленинград для продолжения работы в ЦРЛ. К тому времени О.В. Лосев уже был женат, но его жена¬ Татьяна Чайкина не захотела оставлять Нижний Новгород. В Ленинград Лосев уехал один.

В ЦРЛ О.В.Лосев продолжал свои исследования, начатые в НРЛ.

25 марта 1931 г. лаборант 1-го разряда Лосев был переведён в вакуумную лабораторию Б.А. Остроумова. В эту же лабораторию была «влита» и группа сотрудников, которая разрабатывала тему, достаточно близкую к теме исследований Лосева (меднозакисные выпрямители, детекторы, вентильные фотоэлементы и т.д.). Одно время в этой группе работал и Дмитрий Маляров. Ведущим исполнителем этой темы была В.Н. Лепешинская, а её научным руководителем и стал сам Б.А.Остроумов. Значит, его научное общение с Лосевым еще в НРЛ не пропало даром, а о работах Лосева он как-то при случае рассказал А.Ф. Иоффе (1880-1960).

Академик проявил к Лосеву живой интерес и стал привлекать его к исследованиям в области квантовой теории излучений. Под его руководством Лосев работал в целевом институте № 9 и в ГФТИ и продолжал серьезные исследования на переднем крае науки. Без вузовского диплома Лосев часто числился в документах просто лаборантом. Так Олег Владимирович поступил на работу в 1-й Ленинградский медицинский институт, где ему на кафедре физики предложили должность ассистента. Однако Б.А.Остроумов, ставший 15 июня 1937 г. кандидатом физико-математических наук без защиты диссертации и профессором, проявил живое участие в судьбе Лосева.

Не забыл о нём и академик Иоффе А.Ф. По его представлению в 1938 г. Учёный совет Ленинградского политехнического института присудил Олегу Владимировичу Лосеву учёную степень, кандидата физико-математических наук и тоже без защиты диссертации. С получением кандидатского диплома. О.В.Лосев обрёл право на педагогическую работу и с осени 1938 г. стал преподавать физику студентам-медикам, не оставляя и научной работы.

Когда началась Отечественная война и немецкие войска подошли к Ленинграду, О.В.Лосев решил эвакуировать только родителей, но удалось ему отправить к родственникам в только отца: мать не могла оставить своего сына одного в прифронтовом городе.

Лосев продолжал работу на кафедре физики. Там он разработал систему противопожарной сигнализации, электрический стимулятор сердечной деятельности и портативный обнаружитель металлических предметов (пуль и осколков) в ранах.

Очень скоро прифронтовой Ленинград превратился в блокадный, и Лосев стал донором. В начале января 1942 г. от голода умерла, его мать, и Олег Владимирович пожалел, что в свое время отказался от эвакуации. А через несколько дней — 22 января 1942 года — в госпитале мединститута от истощения умер и сам О.В. Лосев. 16 февраля 1942-го от голода умер его друг и коллега по НРЛ и ЦРЛ Д.Е. Маляров, тоже успевший внести свой вклад в создание совместно с Н.Ф. Алексеевым в 1939 г. всемирно известного многорезонаторного магнетрона — прибора для генерирования мощных колебаний СВЧ.

О.В. Лосев, на десятилетия опередивший современную ему физику , занимался не только фундаментальной стороной науки, но и пытался доводить результаты своих исследований до практического применения, что подтверждается его 15-ю авторскими свидетельствами на изобретения, среди которых два — на «кристадины». Он разработал 6 конструкций радиоприёмников, в том числе и один ламповый.

В автобиографии 1939 г. О.В. Лосев назвал имя своего предшественника, отметив, что усилительные свойства кристаллических (галеновых) детекторов впервые обнаружил не он, а некий иностранный учёный ещё в 1910 г. Так что свою заслугу Лосев видел в основном в изобретении кристадинных приёмников, которые и произвели в мире фурор.

Кристадины Лосева на длине волны 24 метра работали на нескольких радиостанциях Наркомпочтеля, за что их автор был дважды — в 1922 и в 1925 годах — удостоен премий НКПТ.
А в 1931 г. Лосев получил премию за «свечение Лосева» и фотоэффект.
С 1931 по 1934 годы О.В.Лосев трижды выступал с докладами о своих работах на Всесоюзных конференциях в Ленинграде, Киеве и Одессе.
Также в автобиографии 1939 г. Лосев подтвердил, что с открытием усилительных свойств кристаллов, появилась реальная возможность создания полупроводникового аналога лампового триода, что и реализовали американские учёные Барцин и Браттейн в 1947 г.

Почему работы Лосева не включены в знаменитые исторические очерки по истории твердотельных усилителей — это очень интересный вопрос. Ведь кристадиновые радиоприемники и детекторы Лосева в середине 20−х годов демонстрировались на основных европейских радиотехнических выставках.

Есть такой биографический справочник — «Физики» (автор Ю. А. Храмов), он вышел в 1983 году в издательстве «Наука». Это самое полное собрание автобиографий отечественных и зарубежных ученых, изданное в нашей стране. Имени Олега Лосева в этом справочнике нет. Ну что же, справочник не может вместить всех, вошли только самые достойные. Но в той же самой книге содержится раздел «Хронология физики», где приведен перечень «основных физических фактов и открытий» и среди них: «1922 г. — О. В. Лосев открыл генерацию электромагнитных колебаний высокой частоты контактом металл-полупроводник».

Таким образом, в этой книге работа Лосева признана одной из самых важных в физике XX века, но места для его автобиографии не нашлось. В чем тут дело? Ответ очень прост: все советские физики послереволюционного периода заносились в справочник по рангу — включались только члены-корреспонденты и академики. Лаборанту же Лосеву дозволялось делать открытия, но не греться в лучах славы. При этом имя Лосева и значение его работ было хорошо известно сильным мира сего. В подтверждение этих слов процитируем выдержку из письма академика Абрама Иоффе Паулю Эренфесту (16 мая 1930 г.): «В научном отношении у меня ряд успехов. Так, Лосев получил в карборунде и других кристаллах свечение под действием электронов в 2−6 вольт. Граница свечения в спектре ограничена».

В 1947 году (к тридцатилетию Октябрьской революции) в нескольких выпусках журнала «Успехи физических наук» были опубликованы обзоры развития советской физики за тридцать лет, такие как: «Советские исследования по электронным полупроводникам», «Советская радиофизика за 30 лет», «Советская электроника за 30 лет». О Лосеве и его исследованиях кристадина упоминается лишь в одном обзоре (Б. И. Давыдова) — в части, посвященной фотоэффекту, отмечается: «В заключение нужно еще упомянуть работы О. В. Лосева по свечению кристаллического карборунда и по ‘обратимому’ вентильному фотоэффекту в нем (1931−1940)». И ничего сверх этого. (Отметим, к слову, что большинство результатов, которые в тех обзорах оценивались как «выдающиеся», сегодня никто и не вспоминает.)

Есть одно очень символическое совпадение: Лосев умер от голода в 1942 году в блокадном Ленинграде, а его работа по кремнию оказалась потерянной, и в том же 1942 году в США компании Sylvania и Western Electric начали промышленное производство кремниевых (а чуть позже и германиевых) точечных диодов, которые использовались в качестве детекторов-смесителей в радиолокаторах. Через несколько лет работы в этой области привели к созданию транзистора. Смерть Лосева совпала по времени с рождением кремниевой технологии .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *