Отражение в зеркале.
Добрый вечер! Здравствуйте, уважаемые дамы и господа! Пятница! В эфире капитал-шоу «Поле чудес»! И как обычно, под аплодисменты зрительного зала я приглашаю в студию тройку игроков. А вот и задание на этот тур:
Вопрос: Отражение в зеркале. (Слово из 7 букв)
Автолик (7 букв)
Если этот ответ не подходит, пожалуйста воспользуйтесь формой поиска.
Постараемся найти среди 775 682 формулировок по 141 989 словам .
Отражение света.
Темы кодификатора ЕГЭ: закон отражения света, построение изображений в плоском зеркале.
Когда световой луч падает на границу раздела двух сред, происходит отражение света: луч изменяет направление своего хода и возвращается в исходную среду.
На рис. 1 изображены падающий луч , отражённый луч , а также перпендикуляр , проведённый к отражающей поверхности в точке падения .
![]() |
Рис. 1. Закон отражения |
Угол называется углом падения. Обратите внимание и запомните: угол падения отсчитывается от перпендикуляра к отражающей поверхности, а не от самой поверхности! Точно так же угол отражения — это угол , образованный отражённым лучом и перпендикуляром к поверхности.
Закон отражения.
Сейчас мы сформулируем один из самых древних законов физики. Он был известен грекам ещё в античности!
Закон отражения.
1) Падающий луч, отражённый луч и перпендикуляр к отражающей поверхности, проведённый в точке падения, лежат в одной плоскости.
2) Угол отражения равен углу падения.
Таким образом, , что и показано на рис. 1 .
Закон отражения имеет одно простое, но очень важное геометрическое следствие. Давайте посмотрим на рис. 2 . Пусть из точки исходит световой луч. Построим точку , симметричную точке относительно отражающей поверхности .
![]() |
Рис. 2. Отражённый луч выходит из точки |
Из симметрии точек и ясно, что . Кроме того, . Поэтому , и, следовательно, точки лежат на одной прямой! Отражённый луч как бы выходит из точки , симметричной точке относительно отражающей поверхности. Данный факт нам чрезвычайно пригодится в самом скором времени.
Закон отражения описывает ход отдельных световых лучей — узких пучков света. Но во многих случаях пучок является достаточно широким, то есть состоит из множества параллельных лучей. Картина отражения широкого пучка света будет зависеть от свойств отражающей поверхности.
Если поверхность является неровной, то после отражения параллельность лучей нарушится. В качестве примера на рис. 3 показано отражение от волнообразной поверхности. Отражённые лучи, как видим, идут в самых разных направлениях.
![]() |
Рис. 3. Отражение от волнообразной поверхности |
Но что значит «неровная» поверхность? Какие поверхности являются «ровными»? Ответ таков: поверхность считается неровной, если размеры её неровностей не меньше длины световых волн. Так, на рис. 3 характерный размер неровностей на несколько порядков превышает величину длин волн видимого света.
Поверхность с микроскопическими неровностями, соизмеримыми с длинами волн видимого света, называется матовой. В результате отражения параллельного пучка от матовой поверхности получается рассеянный свет — лучи такого света идут во всевозможных направлениях. (Именно поэтому мы видим окружающие предметы: они отражают рассеянный свет, который мы и наблюдаем с любого ракурса.)
Само отражение от матовой поверхности называется поэтому рассеянным или диффузным. (Латинское слово diffusio как раз и означает распространение, растекание, рассеивание.)
Если же размер неровностей поверхности меньше длины световой волны, то такая поверхность называется зеркальной. При отражении от зеркальной поверхности параллельность пучка сохраняется: отражённые лучи также идут параллельно (рис. 4 )
![]() |
Рис. 4. Отражение от зеркальной поверхности |
Приблизительно зеркальной является гладкая поверхность воды, стекла или отполированного металла. Отражение от зеркальной поверхности называется соответственно зеркальным. Нас будет интересовать простой, но важный частный случай зеркального отражения — отражение в плоском зеркале.
Плоское зеркало.
Плоское зеркало — это часть плоскости, зеркально отражающая свет. Плоское зеркало — привычная вещь; таких зеркал несколько в вашем доме. Но теперь мы сможем разобраться, почему, смотрясь в зеркало, вы видите в нём отражение себя и находящихся рядом с вами предметов.
Точечный источник света на рис. 5 испускает лучи в разных направлениях; давайте возьмём два близких луча, падающих на плоское зеркало. Мы уже знаем, что отражённые лучи пойдут так, будто они исходят из точки , симметричной точке относительно плоскости зеркала.
![]() |
Рис. 5. Изображение источника света в плоском зеркале |
Самое интересное начинается, когда расходящиеся отражённые лучи попадают к нам в глаз. Особенность нашего сознания состоит в том, что мозг достраивает расходящийся пучок, продолжая его за зеркало до пересечения в точке . Нам кажется, что отражённые лучи исходят из точки — мы видим там светящуюся точку!
Эта точка служит изображением источника света Конечно, в реальности ничего за зеркалом не светится, никакая энергия там не сосредоточена — это иллюзия, обман зрения, порождение нашего сознания. Поэтому точка называется мнимым изображением источника . В точке пересекаются не сами световые лучи, а их мысленные продолжения «в зазеркалье».
Ясно, что изображение будет существовать независимо от размеров зеркала и от того, находится ли источник непосредственно над зеркалом или нет (рис. 6 ). Важно только, что-бы отражённые от зеркала лучи попадали в глаз — а уж глаз сам сформирует изображение источника.
![]() |
Рис. 6. Источник не над зеркалом: изображение есть всё равно |
От расположения источника и размеров зеркала зависит область видения — пространственная область, из которой видно изображение источника. Область видения задаётся краями и зеркала . Построение области видения изображения ясно из рис. 7 ; искомая область видения выделена серым фоном.
![]() |
Рис. 7. Область видения изображения источника S |
Как построить изображение произвольного предмета в плоском зеркале? Для этого достаточно найти изображение каждой точки этого предмета. Но мы знаем, что изображение точки симметрично самой точке относительно зеркала. Следовательно, изображение предмета в плоском зеркале симметрично предмету относительно плоскости зеркала (рис. 8 ).
![]() |
Рис. 8. Изображение предмета AB в плоском зеркале |
Расположение предмета относительно зеркала и размеры самого зеркала не влияют на изображение (рис. 9 ).
Закон отражения света: определение, формула, применение
Закон отражения света имеет следующее определение: угол отражения равен углу падения. Падающий и отраженный лучи и перпендикуляр к поверхности зеркала в точке падения лежат в одной плоскости. Более подробно о физическом смысле закона и о том на базе чего он был сформулирован читайте далее в этой статье.
Небольшое вступление.
Если вы не знаете, что находится по ту сторону зеркала, спросите физика! Он скажет вам, что вы найдете там не перевернутую копию нашего мира, а другой, столь же загадочный мир физики. Он произнесет множество благозвучных физических названий, таких как видимый образ, закон отражения и луч света.
Хотя сегодня мы не можем представить себе жизнь без зеркал, или плоских стеклянных зеркал, их история не особенно длинна. Однако само явление отражения, благодаря которому зеркала могут существовать и работать, известно уже много веков и не менее увлекательно, чем они сами.
Явление отражения света
Проведите наблюдение, которое позволит вам понять механизм формирования изображения при отражении световых лучей, как вы это наблюдаете на поверхности зеркала или поверхности воды.
Что вам понадобится?
- зеркало без рамы;
- фонарик с сильным светом (он может быть встроенным в телефон);
- расчёска;
- лист бумаги;
- линейка;
- карандаш;
- широкий пластырь или серебристая изоляционная лента.
Инструкция.
- Нанесите ленту на зубья расчески так, чтобы в середине остались один или два зазора.
- На листе бумаги проведите линию, перпендикулярную длинному краю бумаги.
- На тот же край листа бумаги, лежащего на столе, вертикально положите отражающую сторону зеркала.
- Положите расческу на стол вдоль длинного края бумаги напротив зеркала так, чтобы кончики зубцов были перпендикулярны столешнице.
- Осветите расческу, чтобы один или два луча света прошли через незапечатанные щели.
- Осветите зеркало так, чтобы свет фонарика падал на точку, где нарисованная линия пересекается с поверхностью зеркала.
- Изменяйте угол освещения зеркала, располагая расческу под разными углами к листу бумаги – всегда держите фонарик так, чтобы свет падал на расческу перпендикулярно.
- Что происходит с лучом света, отраженным от зеркала?
Подведём итог эксперимента.
Для того чтобы избежать двусмысленности в описании наблюдаемого нами явления, следует сначала выучить определения нескольких терминов.
В физике все гладкие поверхности, отражающие свет, называются зеркалами. Линия, перпендикулярная поверхности зеркала, называется нормалью. Свет фонаря падал в точку, где перпендикуляр (нормаль) пересекался с поверхностью зеркала. Угол между падающим лучом и перпендикуляром называется углом падения. Падающий луч отражается от поверхности зеркала, и получается отраженный луч. Угол между отраженным лучом и перпендикуляром называется углом отражения.
Наблюдения показали, что изменение угла, под которым свет фонаря падает на зеркало после прохождения через расчёску, влечет за собой изменение угла, под которым отражается падающий свет. Когда угол падения увеличивается, угол его отражения также увеличивается; когда он уменьшается, угол отражения также уменьшается.
Закона отражения света
Изменяя угол падения, мы одновременно изменяем угол отражения. Угол падения и угол отражения вместе с перпендикуляром лежат в одной плоскости и равны друг другу.
Иллюстрация закона отражения света
Формулировка закона и его формула.
Закон отражения света гласит так: угол отражения равен углу падения. Падающий и отраженный лучи и перпендикуляр к поверхности зеркала в точке падения лежат в одной плоскости.
В виде формулы закон отражения света записывается следующим образом: ∠ α = ∠ β.
Применение
Закон отражения используется во многих оптических системах. Повседневное значение имеют применения, описанные ниже.
Закон отражения используется для всех типов зеркал (плоские зеркала, вогнутые зеркала, выпуклые зеркала, параболические зеркала) и их применения (например, фары, фонари, косметические зеркала).
Он также используется для светоотражателей, которые должны быть установлены, например, на велосипедах. Они имеют гладкие стеклянные или пластиковые поверхности снаружи и множество маленьких призм внутри, на которых свет отражается таким образом, что выходит в том же направлении, откуда вошел. Поэтому велосипеды, находящиеся точно по направлению движения автомобиля, могут быть распознаны в темноте гораздо раньше, чем это было бы возможно без дополнительного оснащения светоотражателями.
Также закон отражения должен соблюдаться и в других местах. Гладкая поверхность воды отражает свет. И в тоже время, отражение тел видно на поверхности воды.
В помещениях, освещаемых сфокусированными прожекторами – например, на сцене театра – установка больших стеклопакетов может быть запрещена строительными нормами. Это связано с тем, что стекла воспринимаются только в том случае, если глаз смотрит на отраженный луч света. Для всех остальных людей существует опасность столкнуться со стеклом. В музеях, где много стеклянных витрин с точечным освещением, можно неоднократно наблюдать, как гости ударяются головой о стеклянную обшивку, потому что не заметили само стекло. Поэтому комнаты с большим количеством стеклянных витрин должны иметь рассеянное освещение.
Обратимость световых лучей
Световые пути обычно обратимы. Что это значит, показано на двух рисунках на рис. 2 на простом примере.
В левом изображении на рис. 2 свет исходит слева и отражается от зеркала. Читая угловую шкалу, можно увидеть, что закон отражения выполняется.
Рис. 2. Демонстрационный эксперимент по обратимости световых лучей
В правом изображении на рис. 2 луч света падает на зеркало точно с того направления, в котором луч света был отражен ранее. Вы видите, что теперь отраженный луч света проходит точно там же, где раньше проходил луч падающего света: поэтому путь света является обратимым.
Обратимость светового пути является важным основным принципом геометрической оптики, а также применима к гораздо более сложным явлениям, например, к преломлению света на воде.
Как называется эффект бесконечности двух зеркал, направленных друг на друга?
Меня зовут Оксана. Всю жизнь ненавидела свое имя, в 14 лет при получении паспорта хотела сменить его на Ксения. Вся родня впала в истерику, так как меня назвали в честь покойной прабабушки, мол, это память, неуважение, всё такое. Не сменила. Прошло девять лет. Имя Оксана все так же чужое мне и режет слух, но у меня уже имеется куча документов: два диплома, права, загран с открытыми визами. Вроде смирилась. А недавно продавали прабабушкин дом и нашли её документы. Мою прабабушку звали Ксения.