Плазма, свойства, виды, получение и применение
Плазма – это четвертое агрегатное состояние вещества, образуемое сильно нагретым ионизированным газом, состоящим из электронов и ионов.
Плазма, определение, понятие, характеристики:
Плазма (от греч. πλάσμα «вылепленное», «оформленное») – это четвертое агрегатное состояние вещества, образуемое сильно нагретым ионизированным газом, состоящим из электронов и ионов. В ее состав могут входить не только ионы и электроны, но и атомы, молекулы и любые другие заряженные частицы с положительными и отрицательными зарядами (например, кварк-глюонная плазма). Причем количество положительно и отрицательно заряженных частиц примерно одинаково. Они движутся коллективно, а не попарно, как в классическом газе , существенно увеличивая проводимость вещества и его зависимость от электромагнитных полей. Сама же по себе плазма квазинейтральна – сумма заряда его любого объема максимально приближено к нулю.
Плазма, которая содержит электроны и положительные ионы, называют электронно-ионной плазмой. Если в плазме рядом с заряженными частицами имеются и нейтральные молекулы, то ее называют частично ионизированной. Плазма, состоящая только из заряженных частиц, называется полностью ионизированной.
Чтобы система с заряженными частицами стала плазмой, им требуется расположиться на минимальном расстоянии друг от друга и взаимодействовать между собой. Когда такие эффекты становятся коллективными и их достаточно много, наступает требуемое состояние. Для него (такого состояния) характерна температура от 8000 градусов Кельвина. Из-за постоянного движения частиц плазма становится отличным проводником электрического тока . А используя магнитные поля можно сконцентрировать ее в струю и контролировать дальнейшее движение.
В земных условиях плазменное состояние вещества довольно редко и необычно. Но в масштабах всей Вселенной плазма – наиболее распространенное агрегатное состояние вещества. Из нее состоят Солнце, звезды, верхние слои атмосферы и радиационные пояса Земли . Северные сияния также являются результатом процессов, происходящих в плазме.
Наиболее типичные формы плазмы:
Наиболее типичные формы плазмы представлены ниже в таблице:
– вещество внутри люминесцентных (в том числе компактных ) и неоновых ламп,
– плазменные ракетные двигатели,
– газоразрядная корона озонового генератора,
– управляемый термоядерный синтез,
– электрическая дуга в дуговой лампе и в дуговой сварке,
– дуговой разряд от трансформатора Теслы,
– воздействие на вещество лазерным излучением
– огни святого Эльма,
– космическое пространство (пространство между планетами, звездами и галактиками),
Виды плазмы. Классификация плазмы:
Плазма может быть:
– искусственной и естественной.
Примеры естественной плазмы: планетарная туманность, межпланетная плазма, ионосфера Земли, хромосфера Солнца и звезд, солнечный протуберанец, солнечная спикула, солнечный ветер, солнечная корона, фотосфера Солнца и звезд, хромосферная вспышка, молния.
– высокотемпературной (температура миллион градусов Kельвина и выше) и низкотемпературной (температура меньше миллиона градусов Kельвина).
У низкотемпературной плазмы средняя энергия электронов меньше характерного потенциала ионизации атома (<10 эВ). Она (низкотемпературная плазма), как правило, представляет собой частично ионизированный газ, т. е. число нейтральных атомов и молекул значительно превышает число заряженных частиц – электронов и ионов. Для низкотемпературной плазмы характерна малая степень ионизации – до 1 %.
Если в низкотемпературной плазме содержится много макроскопических твердых частичек (размером от долей до сотен микрометров) с большим электрическим зарядом, которые либо самопроизвольно образуются в плазме в результате различных процессов, либо вводятся в плазму извне, то она называется пылевой плазмой. Пылевая плазма является частным случаем низкотемпературной плазмы.
Низкотемпературную плазму называют еще технологичной плазмой, так как она внедряется в технологические процессы. Такой плазмой травят и модифицируют свойства поверхностей (создавая алмазные пленки, нитридируя металлы, меняя смачиваемость), очищают газы и жидкости .
Низкотемпературная плазма в соответствии с физическими свойствами может быть стационарной, нестационарной, квазистационарной, равновесной, неравновесной, идеальной, неидеальной.
Примеры низкотемпературной плазмы и ее источники: пламя, искра, различные виды лазеров, катодный взрыв, катодное пятно, катодный факел, плазмотрон , плазменная горелка, фоторезонансная плазма, термоэмиссионный преобразователь, МГД-генератор.
Высокотемпературная плазма также называется еще горячей плазмой. Горячая плазма почти всегда полностью ионизирована (степень ионизации
Вещество в состоянии высокотемпературной плазмы имеет высокую ионизацию и электропроводность, что позволяет использовать ее в управляемом термоядерном синтезе .
– полностью ионизированной и частично ионизированной.
Отношение числа ионизованных атомов к полному их числу в единице объёма называют степенью ионизации плазмы. Степень ионизации плазмы в большой степени обуславливает её свойства, в том числе электрические и электромагнитные.
Степень ионизации определяется по следующей формуле:
где α – степень ионизации, ni – концентрация ионов, а na – концентрация нейтральных атомов.
Очевидно, что максимальное значение α равно 1 (или 100 %). Плазму со степенью ионизации 1 (или 100 %) называют полностью ионизованной плазмой.
Субстанции со степенью ионизации менее 1 (или менее 100 %), называют частично ионизированной плазмой;
– идеальной и неидеальной. Данные виды характерны только для низкотемпературной плазмы.
Когда в условной сфере собирается возможный максимум взаимодействующих частиц, плазма становится идеальной. Если же диссипативные процессы имеют место, идеальность нарушается.
Так, если в сфере радиуса Дебая (rD) находится много заряженных частиц и для нее выполняется условие: N ≈ 4π·n·r 3 D / 3 ≫1, плазма называется идеальной плазмой,
где rD – радиус Дебая, n – концентрация всех частиц плазмы, N – параметр идеальности.
При N ⩽ 1 говорят о неидеальной плазме.
В идеальной плазме потенциальная энергия взаимодействия частиц мала по сравнению с их тепловой энергией;
– равновесной и неравновесной. Данные виды характерны только для низкотемпературной плазмы.
Равновесной плазмой называется низкотемпературная плазма, если её компоненты находятся в состоянии термодинамического равновесия, т. е. температура электронов, ионов и нейтральных частиц совпадает. Равновесная плазма обычно имеет температуру больше нескольких тысяч градусов Kельвина.
Примерами равновесной плазмы могут быть ионосфера Земли, пламя, угольная дуга, плазменная горелка, молния, оптический разряд, фотосфера Солнца, МГД- генератор , термоэмиссионный преобразователь.
В неравновесной плазме температура электронов существенно превышает температуру других компонентов. Это происходит из-за различия в массах нейтральных частиц, ионов и электронов, которое затрудняет процесс обмена энергией.
Плазменные субстанции, создаваемые искусственным путем, изначально не имеют термодинамического равновесия. Равновесие появляется лишь при существенном разогреве вещества, а значит увеличении количества хаотических столкновений частиц друг с другом, что возможно лишь при уменьшении переносимой ими энергии ;
– стационарной, нестационарной и квазистационарной. Данные виды характерны только для низкотемпературной плазмы.
Стационарная низкотемпературная плазма обладает большим временем жизни по сравнению с временами релаксации в ней. Нестационарная (импульсная) низкотемпературная плазма живёт ограниченное время, определяемое как временем установления равновесия в плазме, так и внешними условиями. Низкотемпературная плазма, время жизни которой превышает характерное время переходных процессов, называется квазистационарной плазмой. Примером квазистационарной плазмы является газоразрядная плазма;
– классической и вырожденной. Классической плазмой, называют такую, где расстояние между частицами много больше длины де-Бройля. В такой плазме частицы можно рассматривать как точечные заряды.
Вырожденная плазма – плазма, в которой сравнима длина де-Бройля с расстоянием между частицами. В такой плазме необходимо учитывать квантовые эффекты взаимодействия между частицами;
– однокомпонентной и многокомпонентной (в зависимости от наполняемых ее ионов);
– кварк-глюонной. Кварк-глюонная плазма – андронная среда с перемешанными цветными зарядами (кварками, антикварками и глюонами), образуется, когда сталкиваются тяжелые ультрарелятивистские частицы в среде с высокой энергетической плотностью;
– криогенной. Криогенная плазма – это плазма, охлаждённая до низких (криогенных) температур. Например, путем погружения в ванну с жидким азотом или гелием ;
– газоразрядной. Газоразрядная плазма – плазма, возникающая при газовом разряде;
– плазмой твердых тел. Плазму твердых тел формируют электроны и дырки полупроводников при компенсации их зарядов ионами кристаллических решеток;
– лазерной. Лазерная плазма возникает от оптического пробоя, создаваемого мощным лазерным излучением при облучении вещества.
Существуют и другие подвиды плазменной субстанции.
Свойства плазмы:
Основное свойство плазменной субстанции заключается в ее высокой электрической проводимости, существенно превосходящей показатели в других агрегатных состояниях.
На плазму оказывает влияние электромагнитное поле, позволяющее сформировать нужную форму, количество слоев и плотность. Заряженные частицы движутся вдоль и поперек направления электромагнитного поля, их движение бывает поступательным или вращательным. Данное свойство плазмы называется также взаимодействие плазмы с внешним электромагнитным полем или электромагнитное свойство плазмы.
Плазма светится, обладает нулевым полным зарядом и высокой частотой , приводящей к вибрации.
Несмотря на высокую электрическую проводимость она (плазма) квазинейтральна – частицы с положительным и отрицательным зарядами имеют практически равную объемную плотность.
Чтобы сохранить свойства плазмы, с ней не должны контактировать более холодные и плотные среды.
Для частиц плазмы характерно т.н. коллективное взаимодействие. Оно означает, что заряженные частицы плазмы, в силу наличия электромагнитных зарядов, взаимодействуют одновременно с целой системой близкорасположенных заряженных частиц, а не попарно, как обычном газе .
Условия – критерии признания плазмой системы с заряженными частицами:
Любая система с заряженными частицами соответствует определению плазмы при наличии следующих условий-критериев:
– достаточной плотности наполняющих ее электронов, ионов и других структурных единиц вещества, чтобы каждая из них взаимодействовала с целой системой близкорасположенных заряженных частиц. Для коллективного взаимодействия заряженных частиц их расположение должно быть максимально близким и находиться в сфере влияния (сфере радиусом Дебая).
Условие считается выполненным, если число заряженных частиц в сфере влияния (сфера радиусом Дебая) достаточно для возникновения коллективных эффектов.
Математически это условие можно выразить так:
r 3 D·N ≫ 1, где r 3 D – сфера радиусом Дебая, N – концентрация заряженных частиц;
– приоритета внутренних взаимодействий. Это означает, что радиус дебаевского экранирования должен быть мал по сравнению с характерным размером плазмы. Условие выполняется, когда поверхностные эффекты в сравнении со значительными внутренними эффектами плазмы становятся ничтожно малы и ими пренебрегают.
Математически это условие можно выразить так:
rD / L ≪ 1, где rD –радиус Дебая, L – характерный размер плазмы;
– появления плазменной частоты . Данный критерий означает, что среднее время между столкновениями частиц велико по сравнению с периодом плазменных колебаний. Условие выполняется при возникновении плазменных колебаний, превосходящих молекулярно-кинетические.
Параметры плазмы:
У четвертого состояния вещества выделяют следующие параметры:
– концентрацию входящих в нее частиц.
В плазме все составляющие ее компоненты хаотически движутся. Чтобы измерить их концентрацию в единице объема, сначала разделяют входящие в нее частицы по группам (электроны, ионы, остальные нейтральные), потом по сортам сами ионы, и находят значения для каждого вида отдельно (ne, ni и na), где ne – концентрация свободных электронов, ni – концентрация ионов, na – концентрация нейтральных атомов;
– степень и кратность ионизации.
Для того, чтобы превратить вещество в плазму его необходимо ионизировать. Степень ионизации пропорциональна числу атомов, отдавших или поглотивших электроны, и больше всего зависит от температуры. Отношение числа ионизованных атомов к полному их числу в единице объёма называют степенью ионизации плазмы. Степень ионизации плазмы в большой степени обуславливает её свойства, в том числе электрические и электромагнитные.
Степень ионизации определяется по следующей формуле:
где α – степень ионизации, ni – концентрация ионов, а na – концентрация нейтральных атомов.
α – это безразмерный параметр, показывающий, сколько атомов вещества смогли отдать или поглотить электроны. Понятно, что αmax = 1 (100%), а усредненный заряд его ионов, называемый также кратностью ионизации (Z) будет находиться в пределах ne = <Z> ni, где ne – концентрация свободных электронов.
При αmaxплазма полностью ионизирована, что характерно в основном для «горячей» субстанции – высокотемпературной плазмы.
– температуру. Разные вещества переходят в состояние плазмы при разной температуре, что объясняется строением внешних электронных оболочек атомов вещества: чем легче атом отдает электрон, тем ниже температура перехода в плазменное состояние.
Отличие плазмы от газа:
Плазма – своеобразная производная газа, получаемая при его ионизации. Однако у них существуют определенные отличия.
Прежде всего, это наличие электрической проводимости. У обычного газа (например, воздуха) она стремится к нулю. Большинство газов – хорошие изоляторы, пока не повергнуты дополнительным воздействиям. Плазма же является отличным проводником.
Из-за чрезвычайно малого электрического поля плазменная субстанция зависима от магнитных полей, что не характерно для газов. Это приводит к филаментированию и расслоению. А преобладание электрических и магнитных сил над гравитационными создает коллективные эффекты внутренних столкновений частиц в веществе.
В газах составляющие их частицы идентичны. Их тепловое движение осуществляется на небольшие расстояния за счет гравитационного притяжения. Структура плазмы состоит из электронов, ионов и нейтральных частиц, отличных своим зарядом и независимых между собой. У них может быть разная скорость и температура. В итоге появляются волны и неустойчивость.
Взаимодействие составляющих в газах двухчастичное (очень редко трехчастичное). В плазме оно коллективное: близкое расположение частиц дает возможность всем группам взаимодействовать сразу и со всеми.
При столкновениях частиц в газах скорости движения молекул распределяются согласно теории Максвелла. По ней только у немногих из них они относительно высокие. В плазме такое движение происходит под действием электрических полей, и оно бывает не только максвелловским. Нередко наличие больших скоростей приводит к двухтемпературным распределениям и появлению убегающих электронов.
Для исчерпывающего описания четвертого состояния не подходят гладкие математические функции и вероятностный подход. Поэтому применяют несколько математических моделей (как правило, не менее трех). Обычно это флюидная, жидкостная и Particle-In-Cell (метод частиц в ячейках). Но информация, полученная даже таким образом, бывает неполной и требует дальнейших уточнений.
Получение (создание) плазмы:
В лабораторных условиях существует несколько способов получения плазмы. Первый способ заключается в сильном нагреве выбранного вещества, а конкретная температура перехода в состояние плазмы зависит от строения электронных оболочек его атомов. Чем проще электронам покинуть свои орбиты, тем меньший нагрев потребуется веществу для трансформации в плазменное состояние. Воздействию же могут быть подвергнуты любые субстанции: твердые, жидкие, газообразные.
Однако чаще всего плазму создают при помощи электрических полей, ускоряющих электроны, которые в свою очередь ионизируют атомы и нагревают саму плазменную субстанцию. Например, через газ пропускают электрический ток, создают разность потенциалов на концах электродов, помещенных в газ . Изменяя параметры тока, можно контролировать степень ионизации плазмы. Следует учесть, что газоразрядная плазма хотя и нагревается за счет тока, но одновременно быстро охлаждается при взаимодействии с незаряженными частицами окружающего газа.
Также требуемое – плазменное состояние вещества можно создать радиоактивным облучением, сильным сжатием, лазерным облучением, резонансным излучением и пр. способами.
Применение плазмы:
В природе противодействующая солнечному ветру магнитосферная плазма Земли защищает земной шар от разрушительного влияния космоса. Субстанция ионосферы образует полярные сияния, молнии и коронные разряды.
Открытие четвертого состояния вещества способствовало и развитию многих народнохозяйственных отраслей. Свойства ионосферы отражать радиоволны помогли наладить дальнюю связь, передавать данные на большие расстояния.
Лабораторные газовые разряды позволили создать газоразрядные источники света ( люминесцентные и другие лампы ), усовершенствованные телевизионные панели и мультимедийные экраны.
Контролируемой магнитным полем плазменной струей стали обрабатывать, резать и сваривать материалы.
Явление плазменного разряда помогло построить многочисленные коммутирующие устройства, плазмотроны и даже специфические космические двигатели . Появилось плазменное напыление и новые возможности выполнения хирургических операций.
Также ученые создали тороидальную камеру с опоясывающими электрическими магнитами, способную удерживать субстанцию. В ней происходит контролируемый термоядерный синтез. Для этого электрическим магнитным полем удерживается ионизированный газ, находящийся под высокой температурой (дейтерий-тритиевая плазма). Такая технология может использоваться при построении современных электростанций , более экологичных и безопасных в сравнении с атомными аналогами.
Вездесущая плазма
Полтораста лет назад почти все химики и многие физики считали, что материя состоит лишь из атомов и молекул, которые объединяются в более-менее упорядоченные или же совсем неупорядоченные комбинации. Мало кто сомневался, что все или почти все вещества способны существовать в трех разных фазах — твердой, жидкой и газообразной, которые они принимают в зависимости от внешних условий. Но гипотезы о возможности других состояний вещества уже высказывались.
Эту универсальную модель подтверждали и научные наблюдения, и тысячелетия опыта обыденной жизни. В конце концов, каждый знает, что вода при охлаждении превращается в лед, а при нагревании закипает и испаряется. Свинец и железо тоже можно перевести и в жидкость, и в газ, их надо лишь нагреть посильнее. С конца XVIII века исследователи замораживали газы в жидкости, и выглядело вполне правдоподобным, что любой сжиженный газ в принципе можно заставить затвердеть. В общем, простая и понятная картина трех состояний вещества вроде бы не требовала ни поправок, ни дополнений.
Ученые того времени немало удивились бы, узнав, что твердое, жидкое и газообразное состояния атомно-молекулярного вещества сохраняются лишь при относительно низких температурах, не превышающих 10000°, да и в этой зоне не исчерпывают всех возможных структур (пример — жидкие кристаллы). Нелегко было бы и поверить, что на их долю приходится не больше 0,01% от общей массы нынешней Вселенной. Сейчас-то мы знаем, что материя реализует себя во множестве экзотических форм. Некоторые из них (например, вырожденный электронный газ и нейтронное вещество) существуют лишь внутри сверхплотных космических тел (белых карликов и нейтронных звезд), а некоторые (такие как кварк-глюонная жидкость) родились и исчезли в краткий миг вскоре после Большого взрыва. Однако интересно, что предположение о существовании первого из состояний, выходящих за рамки классической триады, было высказано все в том же ХIХ столетии, причем в самом его начале. В предмет научного исследования оно превратилось много позже, в 1920-х. Тогда же и получило свое название — плазма.
Во второй половине 70-х годов XIX века член Лондонского королевского общества Уильям Крукс, весьма успешный метеоролог и химик (он открыл таллий и чрезвычайно точно определил его атомный вес), заинтересовался газовыми разрядами в вакуумных трубках. К тому времени было известно, что отрицательный электрод испускает эманацию неизвестной природы, которую немецкий физик Ойген Голдштейн в 1876 году назвал катодными лучами. После множества опытов Крукс решил, что эти лучи есть не что иное, как частицы газа, которые после столкновения с катодом приобрели отрицательный заряд и стали двигаться в направлении анода. Эти заряженные частицы он назвал «лучистой материей», radiant matter.
Следует признать, что в таком объяснении природы катодных лучей Крукс не был оригинален. Еще в 1871 году сходную гипотезу высказал крупный британский инженер-электротехник Кромвелл Флитвуд Варли, один из руководителей работ по прокладке первого трансатлантического телеграфного кабеля. Однако результаты экспериментов с катодными лучами привели Крукса к очень глубокой мысли: среда, в которой они распространяются, – это уже не газ, а нечто совершенно иное. 22 августа 1879 года на сессии Британской ассоциации в поддержку науки Крукс заявил, что разряды в разреженных газах «так непохожи на все происходящее в воздухе или любом газе при обычном давлении, что в этом случае мы имеем дело с веществом в четвертом состоянии, которое по свойствам отличается от обычного газа в такой же степени, что и газ от жидкости».
Нередко пишут, что именно Крукс первым додумался до четвертого состояния вещества. В действительности эта мысль гораздо раньше осенила Майкла Фарадея. В 1819 году, за 60 лет до Крукса, Фарадей предположил, что вещество может пребывать в твердом, жидком, газообразном и лучистом состояниях, radiant state of matter. В своем докладе Крукс прямо сказал, что пользуется терминами, заимствованными у Фарадея, но потомки об этом почему-то забыли. Однако фарадеевская идея была все-таки умозрительной гипотезой, а Крукс обосновал ее экспериментальными данными.
Катодные лучи интенсивно изучали и после Крукса. В 1895 году эти эксперименты привели Вильяма Рёнтгена к открытию нового вида электромагнитного излучения, а в начале ХХ века обернулись изобретением первых радиоламп. Но круксовская гипотеза четвертого состояния вещества не вызвала интереса у физиков — скорее всего потому, что в 1897 году Джозеф Джон Томсон доказал, что катодные лучи представляют собой не заряженные атомы газа, а очень легкие частицы, которые он назвал электронами. Это открытие, казалось, сделало гипотезу Крукса ненужной.
Однако она возродилась, как феникс из пепла. Во второй половине 1920-х будущий нобелевский лауреат по химии Ирвинг Ленгмюр, работавший в лаборатории корпорации General Electric, вплотную занялся исследованием газовых разрядов. Тогда уже знали, что в пространстве между анодом и катодом атомы газа теряют электроны и превращаются в положительно заряженные ионы. Осознав, что подобный газ имеет множество особых свойств, Ленгмюр решил наделить его собственным именем. По какой-то странной ассоциации он выбрал слово «плазма», которое до этого использовали лишь в минералогии (это еще одно название зеленого халцедона) и в биологии (жидкая основа крови, а также молочная сыворотка). В своем новом качестве термин «плазма» впервые появился в статье Ленгмюра «Колебания в ионизованных газах», опубликованной в 1928 году. Лет тридцать этим термином мало кто пользовался, но потом он прочно вошел в научный обиход.
Классическая плазма — это ионно-электронный газ, возможно, разбавленный нейтральными частицами (строго говоря, там всегда присутствуют фотоны, но при умеренных температурах их можно не учитывать). Если степень ионизации не слишком мала (как правило, вполне достаточно одного процента), этот газ демонстрирует множество специфических качеств, которыми не обладают обычные газы. Впрочем, можно изготовить плазму, в которой свободных электронов не будет вовсе, а их обязанности возьмут на себя отрицательные ионы.
Для простоты рассмотрим лишь электронно-ионную плазму. Ее частицы притягиваются или отталкиваются в соответствии с законом Кулона, причем это взаимодействие проявляется на больших расстояниях. Именно этим они отличаются от атомов и молекул нейтрального газа, которые чувствуют друг друга лишь на очень малых дистанциях. Поскольку плазменные частицы пребывают в свободном полете, они легко смещаются под действием электрических сил. Для того чтобы плазма находилась в состоянии равновесия, необходимо, чтобы пространственные заряды электронов и ионов полностью компенсировали друг друга. Если это условие не выполняется, в плазме возникают электрические токи, которые восстанавливают равновесие (например, если в какой-то области образуется избыток положительных ионов, туда мгновенно устремятся электроны). Поэтому в равновесной плазме плотности частиц разных знаков практически одинаковы. Это важнейшее свойство называется квазинейтральностью.
Практически всегда атомы или молекулы обычного газа участвуют только в парных взаимодействиях — сталкиваются друг с другом и разлетаются в стороны. Иное дело плазма. Поскольку ее частицы связаны дальнодействующими кулоновскими силами, каждая из них находится в поле ближних и дальних соседей. Это означает, что взаимодействие между частицами плазмы не парное, а множественное — как говорят физики, коллективное. Отсюда следует стандартное определение плазмы — квазинейтральная система большого числа разноименных заряженных частиц, демонстрирующих коллективное поведение.
Плазма отличается от нейтрального газа и реакцией на внешние электрические и магнитные поля (обычный газ их практически не замечает). Частицы плазмы, напротив, чувствуют сколь угодно слабые поля и немедленно приходят в движение, порождая объемные заряды и электрические токи. Еще одна важнейшая особенность равновесной плазмы — зарядовое экранирование. Возьмем частицу плазмы, скажем, положительный ион. Он притягивает электроны, которые формируют облако отрицательного заряда. Поле такого иона ведет себя в соответствии с законом Кулона лишь в его окрестности, а на расстояниях, превышающих определенную критическую величину, очень быстро стремится к нулю. Этот параметр называется дебаевским радиусом экранирования — в честь голландского физика Питера Дебая, который описал этот механизм в 1923 году.
Легко понять, что плазма сохраняет квазинейтральность, лишь если ее линейные размеры по всем измерениям сильно превышают дебаевский радиус. Стоит отметить, что этот параметр возрастает при нагреве плазмы и падает по мере увеличения ее плотности. В плазме газовых разрядов по порядку величины он равен 0,1 мм, в земной ионосфере — 1 мм, в солнечном ядре — 0,01 нм.
В наши дни плазма используется в великом множестве технологий. Одни из них известны каждому (газосветные лампы, плазменные дисплеи), другие представляют интерес для узких специалистов (производство сверхпрочных защитных пленочных покрытий, изготовление микрочипов, дезинфекция). Однако наибольшие надежды на плазму возлагают в связи с работами по осуществлению управляемых термоядерных реакций. Это и понятно. Чтобы ядра водорода слились в ядра гелия, их надо сблизить на расстояние порядка одной стомиллиардной доли сантиметра — а там уже заработают ядерные силы. Такое сближение возможно лишь при температурах в десятки и сотни миллионов градусов — в этом случае кинетической энергии положительно заряженных ядер хватит для преодоления электростатического отталкивания. Поэтому для управляемого термоядерного синтеза необходима высокотемпературная водородная плазма.
Правда, плазма на основе обычного водорода здесь не поможет. Такие реакции происходят в недрах звезд, но для земной энергетики они бесполезны, поскольку слишком мала интенсивность энерговыделения. Лучше всего использовать плазму из смеси тяжелых изотопов водорода дейтерия и трития в пропорции 1:1 (чисто дейтериевая плазма тоже приемлема, хотя даст меньше энергии и потребует более высоких температур для поджига).
Однако для запуска реакции одного нагрева маловато. Во-первых, плазма обязана быть достаточно плотной; во-вторых, попавшие в зону реакции частицы не должны покидать ее слишком быстро — иначе потеря энергии превысит ее выделение. Эти требования можно представить в виде критерия, который в 1955 году предложил английский физик Джон Лоусон. В соответствии с этой формулой произведение плотности плазмы на среднее время удержания частиц должно быть выше некоторой величины, определяемой температурой, составом термоядерного топлива и ожидаемым коэффициентом полезного действия реактора.
Легко увидеть, что существуют два пути выполнения критерия Лоусона. Можно сократить время удержания до наносекунд за счет сжатия плазмы, скажем, до 100–200 г/см 3 (поскольку плазма при этом не успевает разлететься, этот метод удержания называют инерционным). Физики отрабатывают эту стратегию с середины 1960-х годов; сейчас ее наиболее совершенной версией занимается Ливерморская национальная лаборатория. В этом году там начнут эксперименты по компрессии миниатюрных капсул из бериллия (диаметр 1,8 мм), заполненных дейтериево-тритиевой смесью, с помощью 192 ультрафиолетовых лазерных пучков. Руководители проекта полагают, что не позднее 2012 года они смогут не только поджечь термоядерную реакцию, но и получить положительный выход энергии. Возможно, аналогичная программа в рамках проекта HiPER (High Power Laser Energy Research) в ближайшие годы будет запущена и в Европе. Однако даже если эксперименты в Ливерморе полностью оправдают возлагаемые на них ожидания, дистанция до создания настоящего термоядерного реактора с инерционным удержанием плазмы все равно останется очень большой. Дело в том, что для создания прототипа электростанции необходима очень скорострельная система сверхмощных лазеров. Она должна обеспечить такую частоту вспышек, зажигающих дейтериево-тритиевые мишени, которая в тысячи раз превысит возможности ливерморской системы, делающей не более 5–10 выстрелов в секунду. Сейчас активно обсуждаются различные возможности создания таких лазерных пушек, но до их практической реализации еще очень далеко.
Альтернативно можно работать с разреженной плазмой (плотностью в нанограммы на кубический сантиметр), удерживая ее в зоне реакции не менее нескольких секунд. В таких экспериментах вот уже более полувека применяют различные магнитные ловушки, которые удерживают плазму в заданном объеме за счет наложения нескольких магнитных полей. Самыми перспективными считают токамаки — замкнутые магнитные ловушки в форме тора, впервые предложенные А. Д. Сахаровым и И. Е. Таммом в 1950 году. В настоящее время в различных странах работает с дюжину таких установок, крупнейшие из которых позволили приблизиться к выполнению критерия Лоусона. Международный экспериментальный термоядерный реактор, знаменитый ITER, который построят в поселке Кадараш неподалеку от французского города Экс-ан-Прованс, — тоже токамак. Если все пойдет по плану, ITER позволит впервые получить плазму, удовлетворяющую лоусоновскому критерию, и поджечь в ней термоядерную реакцию.
«За последние два десятка лет мы добились огромного прогресса в понимании процессов, которые происходят внутри магнитных плазменных ловушек, в частности — токамаков. В целом мы уже знаем, как движутся частицы плазмы, как возникают неустойчивые состояния плазменных потоков и до какой степени увеличивать давление плазмы, чтобы ее все-таки можно было удержать магнитным полем. Были также созданы новые высокоточные методы плазменной диагностики, то есть измерения различных параметров плазмы, — рассказал «ПМ» профессор ядерной физики и ядерных технологий Массачусетского технологического института Йен Хатчинсон, который свыше 30 лет занимается токамаками. — К настоящему времени в крупнейших токамаках достигнуты мощности выделения тепловой энергии в дейтериево-тритиевой плазме порядка 10 мегаватт на протяжении одной-двух секунд. ITER превзойдет эти показатели на пару порядков. Если мы не ошибаемся в расчетах, он сможет выдавать не менее 500 мегаватт в течение нескольких минут. Если уж совсем повезет, энергия будет генерироваться вообще без ограничения времени, в стабильном режиме».
Волны в плазме
Коллективный характер внутриплазменных явлений приводит к тому, что эта среда гораздо более склонна к возбуждению различных волн, нежели нейтральный газ. Простейшие из них изучали еще Ленгмюр с его коллегой Леви Тонксом (более того, анализ этих колебаний сильно укрепил Ленгмюра в мысли, что он имеет дело с новым состоянием вещества). Пусть в каком-то участке равновесной плазмы немного изменилась электронная плотность — иначе говоря, группа соседних электронов сдвинулась из прежнего положения. Тут же возникнут электрические силы, возвращающие удравшие электроны в начальную позицию, которую те по инерции чуть-чуть проскочат. В итоге появится очаг колебаний, которые станут распространяться по плазме в виде продольных волн (в очень холодной плазме они могут быть и стоячими). Эти волны так и называются — ленгмюровскими.
Открытые Ленгмюром колебания накладывают ограничение на частоту электромагнитных волн, которые могут проходить через плазму. Она должна превышать ленгмюровскую частоту, в противном случае электромагнитная волна затухнет в плазме или же отразится, как свет от зеркала. Это и происходит с радиоволнами с длиной волны свыше примерно 20 м, которые не проходят сквозь земную ионосферу.
В намагниченной плазме могут рождаться и поперечные волны. Впервые их существование в 1942 году предсказал шведский астрофизик Ханнес Альфвен (в эксперименте их обнаружили 17 годами позже). Альфвеновские волны распространяются вдоль силовых линий внешнего магнитного поля, которые вибрируют, как натянутые струны (плазменные частицы, ионы и электроны, смещаются перпендикулярно этим линиям). Интересно, что скорость таких волн определяется только плотностью плазмы и напряженностью магнитного поля, однако не зависит от частоты. Волны Альфвена исполняют немалую роль в космических плазменных процессах — считается, например, что именно они обеспечивают аномальный нагрев солнечной короны, которая в сотни раз горячее солнечной атмосферы. Им сродни и свистящие атмосферики, волновые хвосты грозовых разрядов, которые создают радиопомехи. В плазме возникают и волны более сложной структуры, обладающие как продольными, так и поперечными компонентами.
Профессор Хатчинсон также подчеркнул, что ученые сейчас хорошо понимают характер процессов, которые должны происходить внутри этого огромного токамака: «Мы даже знаем условия, при которых плазма подавляет свои собственные турбулентности, а это очень важно для управления работой реактора. Конечно, необходимо решить множество технических задач — в частности, завершить разработку материалов для внутренней облицовки камеры, способных выдержать интенсивную нейтронную бомбардировку. Но с точки зрения физики плазмы картина достаточно ясна — во всяком случае мы так считаем. ITER должен подтвердить, что мы не ошибаемся. Если все так и будет, придет черед и токамаку следующего поколения, который станет прототипом промышленных термоядерных реакторов. Но сейчас об этом говорить еще рано. А пока мы рассчитываем, что ITER начнет работать в конце этого десятилетия. Скорее всего, он сможет генерировать горячую плазму никак не раньше 2018 года — во всяком случае по нашим ожиданиям». Так что с точки зрения науки и техники у проекта ITER неплохие перспективы.
Плазменные чудеса
Где только не используется плазма в фантастических романах — от оружия и двигателей до плазменных форм жизни. Реальные профессии плазмы, впрочем, выглядят не менее фантастически.
Плазменное оружие — наиболее часто встречающееся применение плазмы в фантастике. Гражданские применения значительно скромнее: обычно речь идет о плазменных двигателях. Такие двигатели существуют и в реальности, «ПМ» неоднократно писала о них (№2, 2010, №12, 2005). Между тем другие возможности использования плазмы, о которых нам рассказал глава филадельфийского Дрекселовского института плазмы Александр Фридман, в обычной жизни выглядят не менее, а то и более фантастично.
Использование плазмы позволяет решать задачи, которые еще не так давно решению не поддавались. Возьмем, к примеру, переработку угля или биомассы в горючий газ, богатый водородом. Немецкие химики научились этому еще в середине 30-х годов прошлого века, что позволило Германии во время Второй мировой войны создать мощную индустрию по выпуску синтетического горючего. Однако это чрезвычайно затратная технология, и в мирное время она неконкурентоспособна.
По словам Александра Фридмана, в настоящее время уже созданы установки для генерации мощных разрядов холодной плазмы, в которой температура ионов не превышает сотен градусов. Они дают возможность дешево и эффективно получать из угля и биомассы водород для синтетического горючего или же заправки топливных элементов. Причем установки эти достаточно компактны, чтобы их можно было разместить на автомобиле (на стоянке, например, для работы кондиционера не нужно будет включать двигатель — энергию дадут топливные элементы). Отлично работают и полупромышленные пилотные установки для переработки угля в синтез-газ с помощью холодной плазмы.
«В упомянутых процессах углерод рано или поздно окисляется до двуокиси и моноокиси, — продолжает профессор Фридман. — А вот лошади получают энергию, перерабатывая овес и сено в навоз и выделяя лишь небольшое количество углекислого газа. В их пищеварительной системе углерод окисляется не полностью, а лишь до субоксидов, в основном до С3О2. Эти вещества лежат в основе полимеров, из которых состоит навоз. Конечно, в этом процессе выделяется приблизительно на 20% меньше химической энергии, чем при полном окислении, но зато практически отсутствуют парниковые газы. В нашем институте мы сделали экспериментальную установку, которая с помощью холодной плазмы как раз и способна перерабатывать бензин в такой вот продукт. Это настолько впечатлило большого поклонника автомобилей — принца Монако Альберта II, что он заказал нам автомобиль с такой силовой установкой. Правда, пока только игрушечный, которому к тому же нужно дополнительное питание — батарейки для конвертера. Такая машинка будет ездить, выбрасывая что-то вроде катышков сухого помета. Правда, для работы конвертера нужна батарейка, которая сама по себе гоняла бы игрушку несколько быстрее, но ведь, как говорится, лиха беда начало. Я могу себе представить, что лет через десять появятся настоящие автомобили с плазменными конверторами бензина, которые будут ездить, не загрязняя атмосферу».
Одно из чрезвычайно перспективных применений холодной плазмы — в медицине. Давно известно, что холодная плазма порождает сильные окислители и поэтому отлично подходит для дезинфекции. Но для ее получения нужны напряжения в десятки киловольт, с ними лезть в человеческий организм опасно. Однако, если эти потенциалы генерируют токи небольшой силы, никакого вреда не будет. «Мы научились получать в холодной плазме очень слабые однородные разрядные токи под напряжением в 40 киловольт, — говорит профессор Фридман.– Оказалось, что такая плазма быстро заживляет раны и даже язвы. Сейчас этот эффект изучается десятками медицинских центров в различных странах. Уже выяснилось, что холодная плазма может превратиться в орудие борьбы с онкологическими заболеваниями — в частности, с опухолями кожи и мозга. Конечно, пока опыты производятся исключительно на животных, но в Германии и России уже получено разрешение на клинические испытания нового метода лечения, а в Голландии делают очень интересные эксперименты по плазменному лечению воспаления десен. Кроме того, около года назад мы смогли зажечь холодный разряд прямо в желудке живой мыши! При этом выяснилось, что он хорошо работает для лечения одной из тяжелейших патологий пищеварительного тракта — болезни Крона. Так что сейчас на наших глазах рождается плазменная медицина — совершенно новое медицинское направление».
Плазма – четвертое состояние вещества
Древние греки подарили нам, кроме великолепных произведений искусства, прекрасное по своей наивной простоте представление о строении мира. Они считали, что в основе всех вещей лежат четыре «начала», или «стихии»: земля, вода, воздух и огонь. Уже во времена Ломоносова стало известно, что первые три из них — всего лишь различные состояния вещества, которые называются соответственно твердым, жидким и газообразным. А огонь? Долгое время ученые не выделяли его в самостоятельную форму существования материи. И лишь в последние десятилетия удалось проникнуть в тайны огненного состояния вещества, получившего название плазмы.
ОТ ТРЕХ СОСТОЯНИЙ — К ЧЕТВЕРТОМУ
Чтобы понять, чем отличается четвертое состояние от всех остальных, обратимся к «кирпичикам» любого вещества — атомам. Атом каждого вещества состоит из положительно заряженного ядра и оболочки из отрицательно заряженных электронов, движущихся по различным орбитам. Разрушить эту оболочку не просто: силы электрического взаимодействия удерживают электроны на их орбитах.
…В солнечный весенний день можно наблюдать, как тает кусок льда на мостовой. Вот лед потемнел, разрыхлился, под ним появилась вода. Затем над водой закурились тоненькие струйки тумана, а спустя небольшое время исчезла и вода: она испарилась. В обоих этих превращениях электронная оболочка атомов, входящих в молекулу воды, принимает мало участия. Солнечные лучи, нагревая лед, сначала сообщают его молекулам тепловую энергию, достаточную для того, чтобы разрушить кристаллическую решетку льда. Затем тепловая энергия, переданная молекулам воды, разрывает связи между ними — в результате возникает пар. Поместим его в сосуд и станем нагревать.
Придется запастись терпением. Прибор показывает пятьсот, тысячу, две тысячи градусов. Мы все еще ничего не замечаем. Но вот при температуре в несколько тысяч градусов в сосуде возникает слабое свечение, которое становится все более ярким по мере дальнейшего повышения температуры.
Физик скажет, что теперь пары воды перешли в плазменное состояние. А мы и не заметили этого. Но что не видно человеческому глазу, не составляет тайны для чувствительных физических приборов. Они и поведают нам о том, что им удалось «увидеть».
На что расходуется тепловая энергия, подводимая к сосуду с газом? На увеличение скорости движения молекул. Они все быстрее носятся в сосуде, чаще и энергичнее сталкиваются друг с другом. При этом электронные оболочки их атомов «сотрясаются» сильнее, пока от них не начинают отрываться внешние, наиболее слабо связанные с ядром электроны. Атомы приобретают положительный заряд и становятся ионами.
Прибор извещает нас: началась ионизация — в газе появились свободные электроны и ионизированные атомы. Температура повышается, и оболочки атомов «трещат по швам». Внутренние электроны стараются выбраться из атома. Но если у самого «выхода» им не поможет новое столкновение, ядро втянет их обратно. При возвращении электроны отдают свою энергию в виде электромагнитного излучения, которое регистрируется прибором. Да мы и сами видим: газ начал светиться.
При дальнейшем повышении температуры свечение в сосуде постепенно становится ослепительно ярким, нестерпимым для глаз. Плазма достигает, если можно так выразиться, идеального состояния: в сосуде остались только свободные электроны и совершенно оголенные ядра атомов. Воображаемый термометр, если его поместить в сосуд, показал бы при этом температуру в несколько миллионов градусов.
ВСЕ НЕ ТАК ПРОСТО
Мы не оговорились. Воображаемым является не только термометр, но и сам опыт. Нагреть газ до такой температуры совсем не так просто, как, например, вскипятить воду в чайнике.
Первая лазейка, через которую ускользает подводимая к газу энергия,— это стенки сосуда, которые нагреваются. Даже если сделать их из теплоизоляционного материала, то и в этом случае температуру можно повышать лишь до того момента, пока газ не начнет светиться. Теперь энергия ускользает из газа в виде электромагнитного излучения. Не помогают при этом и зеркальные стенки.
Очевидно, что энергию в газ надо подводить не тепловым путем. Каким же? Наилучшим способом получения плазмы является электрический разряд. В чем его преимущества? Во-первых, все процессы протекают намного быстрее, чем при химической реакции горения. К тому же длительность разряда можно ограничить миллионными долями секунды, а мощность довести до миллионов киловатт. Это важно: разряд позволяет подводить энергию в газ быстрее, чем она ускользает из газа.
В природе и в быту мы встречаем много примеров электрического разряда в газах. Это молния и вольтова дуга, свечение проводов высокого напряжения и искры в электрической цепи. Но почему электрический ток вообще идет через газы, которые, как известно, являются изоляторами? Вместе с этим вопросом возникает много других, столь же интересных.
ИОНЫ В КОМНАТЕ. ХОЛОДНАЯ ПЛАЗМА
Оказывается, газ является изолятором, так сказать, только теоретически. Практически же он, хоть и слабо, всегда проводит электрический ток. Кое-кто, вероятно, и не подозревает, что в воздухе, которым мы дышим, находятся ионы. Те самые ионы, которые, казалось бы, могут образовываться лишь при очень высоких температурах. Их появление вызвано действием космических лучей, а также радиоактивных веществ, находящихся в земной коре. Правда, этих ионов очень мало, но они и есть та «дорожка», по которой ток входит в газ.
Однако гость в чужом доме может вести себя по-разному. Если напряжение на Электродах невелико, то разряд можно обнаружить лишь при помощи чувствительных приборов — идет слабенький ток, и атомы газа в большинстве остаются нейтральными. Повысим напряжение. Ток увеличится. Все больше атомов газа вовлекается в процесс ионизации, пока, наконец, не возникает лавинный разряд, а с ним и плазменное состояние вещества.
Мы уже знаем, что для того, чтобы получить плазму, надо разогреть газ до высокой температуры. Но дотроньтесь до лампы дневного света. Не бойтесь обжечься: стенки ее совершенно холодные. Между тем ртутный пар в ней светится, а это признак плазмы. Как же так? Дело в том, что в одной и той же плазме могут одновременно существовать несколько разных температур.
Чтобы понять это, вспомним определение температуры — не житейское, а научное. Температура есть мера средней энергии хаотического движения частиц вещества. Чем больше эта энергия, тем выше температура. В ионизируемом газе по меньшей мере три сорта частиц: электроны, ионы и нейтральные атомы. А если имеется смесь газов, то число различных сортов частиц еще больше. Когда газ нагревают, то столкновения между его частицами в конце концов, приводят к выравниванию энергий движения всех видов частиц в нем, то есть к выравниванию температуры. В плазме устанавливается какая-то средняя температура. Такая плазма называется изотермической.
Другое дело — ионизация газа электрическим разрядом. Здесь выравнивания энергий не происходит. Когда через газ проходит ток, то электроны, налетая на нейтральные атомы, почти не изменяют энергию их движения, так как очень легки по сравнению с атомами. Зато электроны могут ионизировать и возбуждать атомы, и тогда возникает свечение. Иными словами, средняя энергия электронов выше, чем средняя энергия ионов, а значит, и температура электронов выше, чем у ионов.
Это неизотермическая плазма. Она существует в лампах дневного света, в которых электронная температура может доходить до десятков тысяч градусов — газ светится. Ионная же температура не превышает комнатной — стенки лампы холодные. Выровнять эти температуры можно лишь при очень высоком давлении.
Плазма (агрегатное состояние)
Плазма (от греч. πλάσμα «вылепленное», «оформленное») — в физике и химии полностью или частично ионизированный газ, который может быть как квазинейтральным, так и неквазинейтральным. Плазма иногда называется четвёртым (после твёрдого, жидкого и газообразного) агрегатным состоянием вещества. Слово «ионизированный» означает, что от значительной части атомов или молекул отделён по крайней мере один электрон. Слово «квазинейтральный» означает, что, несмотря на наличие свободных зарядов (электронов и ионов), суммарный электрический заряд плазмы приблизительно равен нулю. Присутствие свободных электрических зарядов делает плазму проводящей средой, что обуславливает её заметно большее (по сравнению с другими агрегатными состояниями вещества) взаимодействие с магнитным и электрическим полями. Четвёртое состояние вещества было открыто У. Круксом в 1879 году и названо «плазмой» И. Ленгмюром в 1928 году, возможно из-за ассоциации с плазмой крови. Ленгмюр писал:
Исключая пространство около электродов, где обнаруживается небольшое количество электронов, ионизированный газ содержит ионы и электроны практически в одинаковых количествах, в результате чего суммарный заряд системы очень мал. Мы используем термин «плазма», чтобы описать эту в целом электрически нейтральную область, состоящую из ионов и электронов.
Многие философы античности утверждали, что мир состоит из четырех стихий: земли, воды, воздуха и огня. Это положение с учетом некоторых допущений укладывается в современное научное представление о четырех агрегатных состояниях вещества, причем плазме, очевидно, соответствует огонь. [1] Свойства плазмы изучает физика плазмы.
Содержание
Формы плазмы
Фазовым состоянием большей части вещества (по массе ок. 99,9 %) во Вселенной является плазма. [2] Все звёзды состоят из плазмы, и даже пространство между ними заполнено плазмой, хотя и очень разреженной (см. межзвездное пространство). К примеру, планета Юпитер сосредоточила в себе практически все вещество Солнечной системы, находящееся в «неплазменном» состоянии (жидком, твердом и газообразном). При этом масса Юпитера составляет всего лишь около 0,1 % массы Солнечной системы, а объем и того меньше — всего 10 −15 %. При этом мельчайшие частицы пыли, заполняющие космическое пространство и несущие на себе определенный электрический заряд, в совокупности могут быть рассмотрены как плазма, состоящая из сверхтяжелых заряженных ионов (см. пылевая плазма (англ.)).
- , включая TV
- Вещество внутри люминесцентных и неоновых ламп[3]
- Внутри газоразрядной короны озонового генератора
- В исследованиях, посвященных управляемому термоядерному синтезу в дуговой лампе и в дуговой сварке
- Внутри плазменных шаров (см. рисунок) от трансформатора Теслы
- Плазму создают при помощи воздействия на вещество лазерным излучением
- и другие звезды (те, которые существуют за счет термоядерных реакций) (пространство между планетами, звездами и галактиками)
- Межзвездные туманности
Свойства и параметры плазмы
Определение плазмы
Плазма — частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. [4] Не всякую систему заряженных частиц можно назвать плазмой. Плазма обладает следующими свойствами: [5] [6] [7]
- Достаточная плотность: заряженные частицы должны находиться достаточно близко друг к другу, чтобы каждая из них взаимодействовала с целой системой близкорасположенных частиц, состоящей из многих ионов. Условие считается выполненным, если число заряженных частиц в сфере влияния (сфера радиусом Дебая) достаточно для возникновения коллективных эффектов (подобные проявления — типичное свойство плазмы). Математически это условие можно выразить так:
- Приоритет внутренних взаимодействий: радиус дебаевского экранирования должен быть мал по сравнению с характерным размером плазмы. Этот критерий означает, что взаимодействия, происходящие внутри плазмы более значительны по сравнению с эффектами на ее поверхности, которыми можно пренебречь. Если это условие соблюдено, плазму можно считать квазинейтральной. Математически оно выглядит так:
- Плазменная частота: среднее время между столкновениями частиц должно быть велико по сравнению с периодом плазменных колебаний. Эти колебания вызываются действием на заряд электрического поля, возникающего из-за нарушения квазинейтральности плазмы. Это поле стремится восстановить нарушенное равновесие. Возвращаясь в положение равновесия, заряд проходит по инерции это положение, что опять приводит к появлению сильного возвращающего поля, возникают типичные механические колебания. [8] Когда данное условие соблюдено, электродинамические свойства плазмы преобладают над молекулярно-кинетическими. На языке математики это условие имеет вид:
Классификация
Плазма обычно разделяется на идеальную и неидеальную, низкотемпературную и высокотемпературную, равновесную и неравновесную, при этом довольно часто холодная плазма бывает неравновесной, а горячая равновесной.
Температура
При чтении научно-популярной литературы, читатель зачастую видит значения температуры плазмы порядка десятков, сотен тысяч или даже миллионов градусов. Для описания плазмы в физике удобно использовать не температуру, а энергию, выраженную в электрон-вольтах (эВ). Для перевода температуры в эВ можно воспользоваться следующим соотношением: 1эВ = 11600 градусов Кельвина. Таким образом становится понятно, что температура в «десятки тысяч градусов» достаточно легко достижима.
В неравновесной плазме электронная температура существенно превышает температуру ионов. Это происходит из-за различия в массах иона и электрона, которое затрудняет процесс обмена энергией. Такая ситуация встречается в газовых разрядах, когда ионы имеют температуру около сотен, а электроны около десятков тысяч градусов.
В равновесной плазме обе температуры равны. Поскольку для осуществления процесса ионизации необходимы температуры, сравнимые с потенциалом ионизации, равновесная плазма обычно является горячей (с температурой больше нескольких тысяч градусов).
Понятие высокотемпературная плазма употребляется обычно для плазмы термоядерного синтеза, который требует температур в миллионы кельвинов.
Степень ионизации
Для того, чтобы газ перешел в состояние плазмы, его необходимо ионизировать. Степень ионизации пропорциональна числу атомов, отдавших или поглотивших электроны, и больше всего зависит от температуры. Даже слабо ионизированный газ, в котором менее 1 % частиц находятся в ионизированном состоянии, может проявлять некоторые типичные свойства плазмы (взаимодействие с внешним электромагнитным полем и высокая электропроводность). Степень ионизации α определяетя как α = ni/(ni + na), где ni — концентрация ионов, а na — концентрация нейтральных атомов. Концентрация свободных электронов в незаряженной плазме ne определяется очевидным соотношением: ne=<Z> ni, где <Z> — среднее значение заряда ионов плазмы.
Для низкотемпературной плазмы характерна малая степень ионизации (до 1 %). Так как такие плазмы довольно часто употребляются в технологических процессах, их иногда называют технологичными плазмами. Чаще всего их создают при помощи электрических полей, ускоряющих электроны, которые в свою очередь ионизируют атомы. Электрические поля вводятся в газ посредством индуктивной или емкостной связи (см. индуктивно-связанная плазма). Типичные применения низкотемпературной плазмы включают плазменную модификацию свойств поверхности (алмазные пленки, нитридирование металлов, изменение смачиваемости), плазменное травление поверхностей (полупроводниковая промышленность), очистка газов и жидкостей (озонирование воды и сжигание частичек сажи в дизельных двигателях).
Горячая плазма почти всегда полностью ионизирована (степень ионизации
100 %). Обычно именно она понимается под «четвертым агрегатным состоянием вещества». Примером может служить Солнце.
Плотность
Помимо температуры, которая имеет фундаментальную важность для самого существования плазмы, вторым наиболее важным свойством плазмы является плотность. Слово плотность плазмы обычно обозначает плотность электронов, то есть число свободных электронов в единице объема (строго говоря, здесь, плотностью называют концентрацию — не массу единицы объема, а число частиц в единице объема). Плотность ионов связана с ней посредством среднего зарядового числа ионов :
. Следующей важной величиной является плотность нейтральных атомов n0 . В горячей плазме n0 мала, но может тем не менее быть важной для физики процессов в плазме. Плотность в физике плазмы описывается безразмерным параметром плазмы rs , который определяется как отношение среднего межчастичного состояния к радиусу бора.
Квазинейтральность
Так как плазма является очень хорошим проводником, электрические свойства имеют важное значение. Потенциалом плазмы или потенциалом пространства называют среднее значение электрического потенциала в данной точке пространства. В случае если в плазму внесено какое-либо тело, его потенциал в общем случае будет меньше потенциала плазмы вследствие возникновения дебаевского слоя. Такой потенциал называют плавающим потенциалом. По причине хорошей электрической проводимости плазма стремится экранировать все электрические поля. Это приводит к явлению квазинейтральности — плотность отрицательных зарядов с хорошей точностью равна плотности положительных зарядов (). В силу хорошей электрической проводимости плазмы разделение положительных и отрицательных зарядов невозможно на расстояниях больших дебаевской длины и временах больших периода плазменных колебаний.
Примером неквазинейтральной плазмы является пучок электронов. Однако плотность не-нейтральных плазм должна быть очень мала, иначе они быстро распадутся за счёт кулоновского отталкивания.
Отличия от газообразного состояния
Плазму часто называют четвертым состоянием вещества. Она отличается от трёх менее энергетичных агрегатных состояний материи, хотя и похожа на газовую фазу тем, что не имеет определённой формы или объема. До сих пор идёт обсуждение того, является ли плазма отдельным агрегатным состоянием, или же просто горячим газом. Большинство физиков считает что плазма является чем-то большим чем газ по причине следующих различий:
- Несмотря на то, что при протекании тока возникает хотя и малое, но тем не менее конечное падение потенциала, во многих случаях электрическое поле в плазме можно считать равным нулю. Градиенты плотности, связанные с наличием электрического поля, могут быть выражены через распределение Больцмана.
- Возможность проводить токи делает плазму сильно подверженной влиянию магнитного поля, что приводит к возникновению таких явлений как филаментирование, появление слоев и струй.
- Типичным является наличие коллективных эффектов, так как электрические и магнитные силы являются дальнодействующими и гораздо сильнее чем гравитационные.
Электрические поля имеют другое влияние на скорости частиц чем столкновения, которые всегда ведут к максвеллизации распределения по скоростям. Зависимость сечения кулоновских столкновений от скорости может усиливать это различие, приводя к таким эффектам, как двухтемпературные распределения и убегающие электроны.
Сложные плазменные явления
Хотя основные уравнения, описывающие состояния плазмы, относительно просты, в некоторых ситуациях они не могут адекватно отражать поведение реальной плазмы: возникновение таких эффектов — типичное свойство сложных систем, если использовать для их описания простые модели. Наиболее сильное различие между реальным состоянием плазмы и ее математическим описанием наблюдается в так называемых пограничных зонах, где плазма переходит из одного физического состояния в другое (например, из состояния с низкой степенью ионизации в высокоионизационное). Здесь плазма не может быть описана с использованием простых гладких математических функций или, применяя вероятностный подход. Такие эффекты как спонтанное изменение формы плазмы являются следствием сложности взаимодействия заряженных частиц, из которых состоит плазма. Подобные явления интересны тем, что проявляются резко и не являются устойчивыми. Многие из них были изначально изучены в лабораториях, а затем были обнаружены во Вселенной.
Математическое описание
Плазму можно описывать на различных уровнях детализации. Обычно плазма описывается отдельно от электромагнитных полей. Совместное описание проводящей жидкости и электромагнитных полей даётся в теории магнитогидродинамических явлений или МГД теории.
Флюидная (жидкостная) модель
Во флюидной модели электроны описываются в терминах плотности, температуры и средней скорости. В основе модели лежат: уравнение баланса для плотности, уравнение сохранения импульса, уравнение баланса энергии электронов. В двухжидкостной модели таким же образом рассматриваются ионы.
Кинетическое описание
Иногда жидкостная модель оказывается недостаточной для описания плазмы. Более подробное описание даёт кинетическая модель, в которой плазма описывается в терминах функции распределения электронов по координатам и импульсам. В основе модели лежит уравнение Больцмана. Уравнение Больцмана неприменимо для описания плазмы заряженных частиц с кулоновским взаимодействием вследствие дальнодействующего характера кулоновских сил. Поэтому для описания плазмы с кулоновским взаимодействием используется уравнение Власова с самосогласованным электромагнитным полем, созданным заряженными частицами плазмы. Кинетическое описание необходимо применять в случае отсутствия термодинамического равновесия либо в случае присутствия сильных неоднородностей плазмы.
Particle-In-Cell (частица в ячейке)
Модели Particle-In-Cell являются более подробными чем кинетические. Они включают в себя кинетическую информацию путём слежения за траекториями большого числа отдельных частиц. Плотности эл. заряда и тока определяются путём суммирования частиц в ячейках, которые малы по сравнению с рассматриваемой задачей но тем не менее содержат большое число частиц. Эл. и магн. поля находятся из плотностей зарядов и токов на границах ячеек.
Базовые характеристики плазмы
Все величины даны в Гауссовых СГС единицах за исключением температуры, которая дана в eV и массы ионов, которая дана в единицах массы протона μ = mi / mp ; Z — зарядовое число; k — постоянная Больцмана; К — длина волны; γ — адиабатический индекс; ln Λ — Кулоновский логарифм.
Частоты
- Ларморова частота электрона, угловая частота кругового движения электрона в плоскости перпендикулярной магнитному полю:
- Ларморова частота иона, угловая частота кругового движения иона в плоскости перпендикулярной магнитному полю:
- плазменная частота (частота плазменных колебаний), частота с которой электроны колеблются около положения равновесия, будучи смещенными относительно ионов:
- ионная плазменная частота:
- частота столкновений электронов
- частота столкновений ионов
Длины
- Де-Бройлева длина волны электрона, длина волны электрона в квантовой механике:
- минимальное расстояние сближения в классическом случае, минимальное расстояние на которое могут сблизиться две заряженных частицы при лобовом столкновении и начальной скорости, соответствующей температуре частиц, в пренебрежении квантово-механическими эффектами:
- гиромагнитный радиус электрона, радиус кругового движения электрона в плоскости перпендикулярной магнитному полю:
- гиромагнитный радиус иона, радиус кругового движения иона в плоскости перпендикулярной магнитному полю:
- размер скин-слоя плазмы, расстояние на которое электромагнитные волны могут проникать в плазму:
- Радиус Дебая (длина Дебая), расстояние на котором электрические поля экранируются за счёт перераспределения электронов:
Скорости
- тепловая скорость электрона, формула для оценки скорости электронов при распределении Максвелла. Средняя скорость, наиболее вероятная скорость и среднеквадратичная скорость отличаются от этого выражения лишь множителями порядка единицы:
- тепловая скорость иона, формула для оценки скорости ионов при распределении Максвелла: