Глонасс когда появился
Перейти к содержимому

Глонасс когда появился

История развития ГЛОНАСС

Полномасштабные работы по созданию отечественной навигационной спутниковой системы начались в 1960-х годах, а 23 ноября 1967 года на орбиту был выведен первый навигационный отечественный спутник («Космос-192»). Он обеспечивал точность местоопределения потребителей 250 — 300 метров..

В 1976 году в эксплуатацию была принята навигационная система первого поколения «Циклон-Цикада», состоящая из шести спутников на орбитах высотой 1000 км. Она позволяла определять координаты морского судна или подводной лодки каждые 1,5 — 2 часа с продолжительностью сеанса до 6 минут. Точность местоопределения была повышена до 80 — 100 метров.

Успешная эксплуатация низкоорбитальных спутниковых навигационных систем морскими потребителями привлекла широкое внимание к спутниковой навигации. Возникла необходимость создания универсальной навигационной системы, удовлетворяющей требованиям всех потенциальных потребителей: авиации, морского флота, наземных транспортных средств и космических кораблей.

Структура новой спутниковой системы должна была обеспечить одновременную в любой момент времени радиовидимость потребителем, находящимся в любой точке Земли, не менее четырех спутников, при минимальном общем их количестве в системе. Это обстоятельство ограничило высоту орбиты спутников 20-ю тысячами км (дальнейшее увеличение высоты не ведет к расширению зоны радиообзора, а следовательно, к уменьшению необходимого количества спутников в системе). Для гарантированной видимости потребителем не менее четырех спутников, их количество в спутниковой системе должно составлять 18, однако оно было увеличено до 24-х с целью повышения точности определения собственных координат и скорости потребителя путем предоставления ему возможности выбора из числа видимых спутников четверки, обеспечивающей наивысшую точность.

Летные испытания среднеорбитальной отечественной навигационной системы, получившей название ГЛОНАСС, были начаты в октябре 1982 года запуском ГЛОНАСС спутника — «Космос-1413». В 1995 году было завершено развертывание системы ГЛОНАСС до ее штатного состава — 24 навигационных спутника.

Основным заказчиком системы выступило Министерство Обороны, а ответственным за испытания и управление системой — Управление Начальника Космических средств
(далее Военно-космические силы, ныне Космические войска).
ОАО «ИНФОРМАЦИОННЫЕ СПУТНИКОВЫЕ СИСТЕМЫ» (ИСС) имени академика М.Ф. Решетнёва (бывшее НПОПМ) является единственным российским изготовителем всех типов спутников: для военных, спутников связи, спутников навигации.

35 лет назад на орбиту вышел первый спутник ГЛОНАСС. Что за система и как работает

Favorite В закладки

35 лет назад на орбиту вышел первый спутник ГЛОНАСС. Что за система и как работает

Ровно 35 лет назад, 12 октября 1982 года, на орбиту вышел первый аппарат ГЛОНАСС — «Спутник 1413». Именно с него началась работа крупнейшей навигационной системы в России.

С релизом iPhone 4s ГЛОНАСС стала одной из систем позиционирования в смартфонах Apple, и используется по сей день. Она получила широкое распространение как в военной, так и в гражданской сфере.

Немногие смогут внятно ответить на вопрос о том, что такое ГЛОНАСС и чем она отличается от GPS. Разбираемся.

Что такое ГЛОНАСС

ГЛОНАСС — российская глобальная навигационная спутниковая система. Она охватывает всю поверхность земного шара.

Основная задача комплекса — навигация и геопозиционирование любого объекта и времени. Разумеется, это происходит с помощью множества спутников вокруг земной орбиты.

На сегодняшний день, точность определения координат объектов составляет несколько метров. Ожидается, что к 2020 году аппаратный комплекс будет ещё лучше определять позицию — погрешность до 1 метра.

Как работает ГЛОНАСС

Для полного покрытия земной орбиты необходимо постоянное наличие на орбите 24 спутников. Причём для определения координат объекта требуется «видеть» четыре из них.

Увеличение количества спутников приведёт к повышению точности определения местоположения.

Почему именно 4? Приемное устройство способно достаточно точно понять расстояние до спутника по его сигналу. По четырём спутникам вычисляют 4 разных расстояния до объекта.

Координаты спутников известны, поэтому их соотношение, а также расстояний от них до предмета позволяет весьма точно оценить положение этого устройства на земной поверхности.

Чем ГЛОНАСС отличается от GPS

По своему устройству ГЛОНАСС и GPS не имеют принципиальных различий. Разница есть в методах работы.

ГЛОНАСС и GPS используют разные системы кодирования сигнала. В GPS сигнал разделяется по коду (CDMA), в ГЛОНАСС – по частоте (FDMA).

В последнем используется более сложная модель расчетов, требующая больших затрат ресурсов принимающего устройства. Соответственно, требуется более мощный процессор, что приводит к увеличению потребления энергии.

Кроме того, спутники GPS располагаются на 1,1 тыс. км выше, чем у ГЛОНАСС — 20,2 тыс. км против 19,1 тыс. км. Из-за этого точность геопозиционирования американской системы немного хуже в приполярных областях.

Зато в других зонах GPS отображает местоположение объекта точнее, чем ГЛОНАСС — 2-4 метра против 3-6 метров. Правда, на практике это не имеет особого значения.

Так что всё-таки лучше, ГЛОНАСС или GPS?

Ни одну из этих систем нельзя выдвинуть на первый план. Они обе прекрасно дополняют друг друга.

Любое устройство, которое поддерживает сразу и ГЛОНАСС, и GPS — обречено на успех. В связке они способны наиболее точно определить местоположение устройства на земной поверхности.

И очень хорошо, что современные смартфоны, в том числе iPhone, поддерживают обе навигационные системы.

Favorite В закладки

Артём Баусов

Главный по новостям, кликбейту и опечаткам. Люблю электротехнику и занимаюсь огненной магией. Telegram: @TemaBausov

�� Читайте также . Всё по теме

Электромобили теперь летают! В Дубае показали XPeng X2, который пробыл в воздухе целых 90 минут

Apple может в будущем запустить производство MacBook в Таиланде

Российская актриса Мария Машкова сыграет в сериале Apple «Ради всего человечества» про космическую гонку между США и СССР

Вышла iOS 16.1 beta 5

На Госуслугах стало недоступно оформление паспорта и загранпаспорта

Как записывать текстовые заметки голосом прямо с домашнего экрана своего айфона. Супер-полезная фича

Не устраивает iOS 16? Тогда делаем даунгрейд до iOS 15 без потери данных и приложений

Как на iPhone установить ВКонтакте, Почта Mail.ru и другие удаленные из App Store приложения

�� Комментарии 18

С релизом iPhone 4s ГЛОНАСС стала одной из систем позиционирования
——————————
Вы понимаете вообще, какую ересь несете?

@iBolobay , я так понимаю речь идёт о iPhone конкретно…)

Есть неточность в статье, о том, что четвёртый спутник помогает определять время. Это не так. Каждый спутник в каждом импульсе посылает время и данные о себе. Именно исходя из этих данных приёмник рассчитывает своё местоположение.

@Max K. , четвёртый спутник помогает узнать высоту.

@Max K. , действительно ошибочка. Благодарю, что исправили

@Артём Баусов , у обеих систем разное системное время. Добавил Вам справку по разным обозначениям, чтобы понимать, о чём вообще толкую. Также в этом отрывке из статьи указаны поправки для обеих систем. Обратите Ваше внимание на разницу времени в системе ЖиПиэС и ГлоНаСС.

Никто не объясняет, как двое часов с разностью примерно в 15 секунд умещаются и дружат в одном отдельно взятом устройстве. И неясно, какое время заложено серверами Эпол. Счтается, что эталонное – это атомное время. В авиации используется UTC, в обычной жизни – GMT. Почитайте, Вам будет интересно:

Начальный (нулевой) меридиан – Гринвичский меридиан с географической долготой равной 0°00’00”, делит земной шар на западное и восточное полушария. Проходит через бывшую Гринвискую обсерваторию (в пригороде Лондона)

GMT (Greenwich Mean Time) – “время по Гринвичу” – на меридиане Гринвича. Определяется по астрономическим наблюдениям суточного движения звезд. Оно нестабильно (в пределах секунды в год) и зависит от постоянного изменения скорости вращения Земли, перемещения географических полюсов по её поверхности и нутации оси вращения планеты. Гринвичское (астрономическое) время близко по значению к UTC (атомному времени), и пока ещё будет употребляться в качестве его синонима. Ещё название – “Zulu Time”

В русскоязычной метеорологии GMT обозначают как СГВ (Среднее Гринвичское /или Географическое/ Время)

GMT= UTC (с точностью до 1 секунды)

Часовой пояс (Стандартный часовой пояс) – разница с Мировым временем UTC/GMT (пример: UTC/GMT+4 – четвёртый часовой пояс, восточнее Гринвича)

H:mm:ss – 24-часовой формат (пример: 14:25:17). Минуты и секунды – с выводом нулей в начале

h:mm:ss – 12-часовой формат (пример: 02:25:17 PM – “два с половиной часа пополудни” – 14:25:05). Минуты и секунды – с выводом нулей в начале

АМ – обозначение времени до полудня при 12-часовом формате (сокращенный вариант – “А”)
РМ – обозначение времени после полудня при 12-часовом формате

Всемирное время UT (Universal Time – Универсальное время) – среднее солнечное время на меридиане Гринвича, определяется по астрономическим наблюдениям суточных движений звезд. Его уточнённые значения – UT0, UT1, UT2

UT0 – время на мгновенном гринвичском меридиане, определённое по мгновенному положению полюсов Земли

UT1 – время на среднем гринвичском меридиане, исправленное за движение земных полюсов

UT2 — время, с учётом изменения скорости вращения Земли

TAI – время по атомным часам (Международное Атомное Время, с 1972 года). Стабильное, эталонное (самое точное), никогда не переводится. Стандарт времени и частоты.

Время в системе навигации GPS действует с января 1980 года. В него поправки не вводятся. Оно опережает в р е м я U T C на полтора десятка секунд.

UTC (от английского Universal Time Coordinated) – Универсальное координированное время для координированного распространения стандартных частот и сигналов точного времени по радио, телевидению и интернет – Всемирное, “Мировое время”. Его синоним: “Универсальный часовой пояс”

Шкала времени UTC введена с 1964 года для согласования значений UT1 (астрономические измерения) и TAI (атомные часы).

В отличие от времени по Гринвичу, шкала UTC устанавливается по атомным часам.

Скорость вращения земли замедляется, в связи с чем в шкалу UTC регулярно, через год или два-три, 30 июня или 31 декабря, вводятся уточняющие поправки (leap seconds – високосная “Секунда координации”), для того, чтобы U T C не более чем на секунду (если точнее – 0,9с) отличалось от астрономического времени (определяемого по движению Солнца), по мере отставания UT1 на секунду. Это международное правило было принято в 1972 году.

Соотношение времени после 31 декабря 2016 года: UTC (универсальное) отстаёт от TAI (атомное) – на 37 с.
T glonass = Tutc + 3 часа (корректируется, поэтому расхождение между ними не превышает 1 мс.)

@Артём Баусов , нефига себе неточность(в 1000 раз всеголиш ошибся). тебя как котенка тыкали в косяки в статье коменты он потер поисправлял и справился.

вам конечно же главное дое.атся…
каждый раз читая коменты одно нытье и наезды на авторов

ну ё моё, такая интересная тема, и так поверхностно освещена

для определения координат объекта требуется «видеть» четыре из них.

Почему три спутника, а не меньше?

Вы определитесь. 3 или 4?

«Разумеется, это происходит с помощью множества спутников вокруг земной орбиты», «Для полного покрытия земной орбиты…»
Что, простите? Спутники вращаются по орбитам вокруг Земли. Вокруг орбит они не вращаются и полностью орбиты не покрывают.

История ГЛОНАСС

Эволюция ГЛОНАСС

Впервые использовать спутники для навигации предложил проф. В.С. Шебшаевич в 1957 году. Такая возможность была открыта им при исследовании приложений радиоастрономических методов в самолетовождении. После этого в ряде советских институтов были проведены исследования, посвященные вопросам повышения точности навигационных определений, обеспечения глобальности, круглосуточного применения и независимости от погодных условий. Данные исследования были использованы в 1963 году при проведении опытно-конструкторских работах над первой отечественной низкоорбитальной системой «Цикада». В 1967 году был выведен на орбиту первый навигационный отечественный спутник «Космос-192», который обеспечивал непрерывное излучение радионавигационного сигнала на частотах 150 и 400 МГц в течение всего времени активного существования.

Система «Цикада» была сдана в эксплуатацию в составе четырех спутников в 1979 году. Навигационные спутники были выведены на круговые орбиты высотой 1000 км с наклонением 83° и равномерным распределением плоскостей орбит вдоль экватора. Система «Цикада» позволяла потребителю в среднем через каждые 1.5…2 часа входить в радиоконтакт с одним из спутников и определять плановые координаты своего места при продолжительности навигационного сеанса до 5…6 мин. Навигационная система «Цикада» использовала беззапросные измерения дальности от потребителя до навигационных спутников. Наряду с совершенствованием бортовых систем спутника и корабельной навигационной аппаратуры, серьезное внимание было уделено вопросам повышения точности определения и прогнозирования параметров орбит навигационных спутников.

В дальнейшем спутники системы «Цикада» были дооборудованы приемной измерительной аппаратурой обнаружения терпящих бедствие объектов, оснащенных специальными радиобуями. Их сигналы принимались спутниками системы «Цикада» и ретранслировались на специальные наземные станции, где производилось вычисление точных координат аварийных объектов (судов, самолетов и др.). Дооснащенные аппаратурой обнаружения терпящих бедствие спутники «Цикада» входили в систему «Коспас», которая совместно с американо-франко-канадской системой «Сарсат» образовывали единую службу поиска и спасания «Коспас-Сарсат», на счету которой уже несколько тысяч спасенных жизней. Создавалась КНС «Цикада» (и ее модернизация «Цикада-М») для навигационного обеспечения военных потребителей и эксплуатировалась с 1976 года. После 2008 года потребители КНС «Цикада» и «Цикада-М» были переведены на обслуживание системой ГЛОНАСС и эксплуатация этих систем была прекращена. Выполнить требования большого числа потребителей низкоорбитальные системы в силу принципов, заложенных в основу их построения, не могли.

Успешная эксплуатация низкоорбитальных спутниковых навигационных систем морскими потребителями привлекла широкое внимание к спутниковой навигации, что обусловило необходимость создания универсальной навигационной системы, удовлетворяющей требованиям подавляющего большинства потенциальных потребителей.

При этом были решены две проблемы создания высокоорбитальной навигационной системы. Первая — взаимная синхронизация спутниковых шкал времени с точностью до миллиардных долей секунды (наносекунд). Эта проблема была решена за счет установки на спутниках высокостабильных бортовых цезиевых стандартов частоты с относительной нестабильностью 10 –13 и наземного водородного стандарта с относительной нестабильностью 10 –14 , а также создания наземных средств сличения шкал с погрешностью 3…5 нс. Второй проблемой является высокоточное определение и прогнозирование параметров орбит навигационных спутников. Данная проблема была решена в результате проведения научных работ по учету факторов второго порядка малости, таких как световое давление, неравномерность вращения Земли и движение ее полюсов и т.п.

  1. Система ГЛОНАСС сохранена, прошла этап модернизации и развернута до штатного состава в который входят КА «Глонасс-М». В настоящее время штатно функционируют 4 глобальные навигационные системы: GPS, ГЛОНАСС , Beidou и Galileo.
  2. Проведена модернизация наземного комплекса управления, который обеспечивает управление ОГ и в совокупности с КА ОГ обеспечивает точностные характеристики системы на уровне, сопоставимом с системой GPS.
  3. Проведены существенные модернизации средств государственного эталона времени и частоты и средств определения параметров вращения Земли.
  4. Созданы опытные образцы функциональных дополнений глобальных навигационных систем, разработано большое количество образцов базовых приемоизмерительных модулей, навигационно-временной аппаратуры и систем на их основе.

Для обеспечения решения новых задач в рамках новых условий, в соответствии с Постановлением Правительства Российской Федерации от 3 марта 2012 года № 189 в 2012 году была запущена федеральная целевая программа «Поддержание, развитие и использование системы ГЛОНАСС на 2012—2020 годы» (далее — Программа).

С 2012 года система развивалась в рамках данной Программы, которая предусматривала:

  • поддержание системы ГЛОНАСС с гарантированными характеристиками навигационного поля на конкурентоспособном уровне;
  • развитие системы ГЛОНАСС в направлении улучшения ее тактико-технических характеристик с целью достижения ее паритета с иностранными системами навигационного обеспечения, лидирующих позиций Российской Федерации в области спутниковой навигации;
  • обеспечение использования системы ГЛОНАСС , как на территории Российской Федерации, так и за рубежом;

Уровень совершенства тактико-технических характеристик системы определяется рядом направлений развития системы, основными из которых являются:

Спутники ГЛОНАСС

«Глонасс-М» (наименование по ОКР: «Ураган-М», Индекс ГРАУ: 11Ф654М, 14Ф113) — серия космических аппаратов российской глобальной навигационной системы ГЛОНАСС 2-го поколения, разработанная и выпускаемая ОАО «ИСС» имени академика М. Ф. Решетнёва. От спутников серии «Глонасс» (1-е поколение) отличаются гарантированным сроком активного существования (7 лет). Эти спутники излучают, в отличие от аппаратов предыдущего поколения, уже по 2 сигнала для гражданских потребителей, что позволяет существенно повысить точность местоопределения.

30 июля 2015 года было объявлено о завершении производства спутников серии «Глонасс-М». Им на замену придут аппараты следующего поколения: «Глонасс-К» и «Глонасс-К2».

Тактико-технические данные

  • масса — 1415 кг,
  • гарантированный срок активного существования — 7 лет,
  • особенности — 2 сигнала для гражданских потребителей,
  • по сравнению со спутниками предшествующего поколения («Глонасс») точность определения местоположения объектов повышена в 2,5 раза,
  • мощность СЭП — 1400 Вт,
  • начало лётных испытаний — 10 декабря 2003 года.
  • отечественная бортовая ЦВМ на базе микропроцессора с системой команд VAX 11/750(К1839)

Аварии и происшествия

  • В июле 2010 года в Ульяновской области в аварию попал состав, перевозивший ракету-носитель«Протон-М». Перевозимая ракета предназначалась для проведения 2 сентября запуска с Байконура трёх навигационных спутников «Глонасс-М».
  • Запуск ракеты-носителя «Протон-М», произведённый 5 декабря 2010 года, в 15 часов 13 минут (мск) окончился неудачей. После старта «Протон-М» изменил заданной траектории полёта и ещё до отделения разгонного блока ушёл по тангажу на 8 градусов и ракета вышла на незамкнутую орбиту. Ко времени отделения разгонного блока ДМ-3 (11С861-03) с 3 спутниками «ГЛОНАСС-М», который прошёл в штатном режиме, он уже находился на нештатной траектории полёта, а затем и вовсе вышел из зоны радиовидимости российских средств слежения. Телеметрии с разгонного блока после его отделения от «Протона» специалисты так и не получили. Остатки разгонного блока ДМ с тремя спутниками «Глонасс-М» упали в Тихом океане в районе Гавайских островов. Полный ущерб от потери спутников оценивался в $90 млн., при этом страхованием была покрыта только примерно тридцатая часть ущерба – страховая сумма составила $3,5 млн. Страхованием занималась страховая компания «Страховой центр „Спутник“», спутники были перестрахованы на $3,3 млн в страховой компании «Русский страховой центр».
  • 2 июля 2013 года ракета-носитель «Протон-М» с разгонным блоком ДМ-03 (11С861-03) и тремя российскими навигационными космическими аппаратами «Глонасс-М» — «Ураган-М» №48, «Ураган-М» №49, «Ураган-М» №50, стартовавшая с Байконура, упала на первой минуте старта. Ни один из потерянных спутников не был застрахован из-за дефицита выделяемых Роскосмосом на эту статью средств, а также из-за решения не страховать серийные спутники.

Система ГЛОНАСС

Глобальная навигационная спутниковая система (ГЛОНАСС) — советская/российская спутниковая система навигации, разработана по заказу Министерства обороны СССР. Одна из двух функционирующих на сегодня систем глобальной спутниковой навигации (китайская система спутниковой навигации Бэйдоу на данный момент функционирует как региональная).

ГЛОНАСС предназначена для оперативного навигационно-временного обеспечения неограниченного числа пользователей наземного, морского, воздушного и космического базирования. Доступ к гражданским сигналам ГЛОНАСС в любой точке земного шара, на основании указа Президента РФ, предоставляется российским и иностранным потребителям на безвозмездной основе и без ограничений.

Основой системы должны являться 24 спутника, движущихся над поверхностью Земли в трёх орбитальных плоскостях с наклоном орбитальных плоскостей 64,8° и высотой орбит 19400 км. Принцип измерения аналогичен американской системе навигации NAVSTAR GPS. Основное отличие от системы GPS в том, что спутники ГЛОНАСС в своём орбитальном движении не имеют резонанса (синхронности) с вращением Земли, что обеспечивает им бо́льшую стабильность. Таким образом, группировка КА ГЛОНАСС не требует дополнительных корректировок в течение всего срока активного существования. Тем не менее, срок службы спутников ГЛОНАСС заметно короче.

В настоящее время развитием проекта ГЛОНАСС занимается Роскосмос и ОАО «Российская корпорация ракетно-космического приборостроения и информационных систем». Для обеспечения коммерциализации и массового внедрения технологий ГЛОНАСС в России и за рубежом постановлением Правительства РФ в июле 2009 года был создан «Федеральный сетевой оператор в сфере навигационной деятельности», функции которого были возложены на ОАО «Навигационно-информационные системы». В 2012 году федеральным сетевым оператором в сфере навигационной деятельности определено Некоммерческое Партнёрство «Содействие развитию и использованию навигационных технологий».

История развития

Спутник Глонасс-К

Модель КА Глонасс-К на выставке CeBIT

Официально начало работ по созданию ГЛОНАСС было положено в декабре 1976 года специальным постановлением ЦК КПСС и Совета Министров СССР. Данный проект являлся продолжением развития отечественной навигационной спутниковой системы, начатой программой «Циклон».

Сроки работ по созданию системы неоднократно сдвигались, первые лётные испытания были начаты 12 октября 1982 года запуском на орбиту первого спутника «Ураган» 11Ф654 и двух массо-габаритных макетов 11Ф654ГВМ. В последующих шести запусках на орбиту выводились по два штатных аппарата и одному макету. Применение макетов являлось следствием неготовности электронной части спутников. Только 16 сентября 1986 года с восьмого по счёту запуска были выведены сразу три штатных аппарата. Два раза в 1989 году вместе с двумя спутниками «Ураган» на орбиту выводились пассивные геодезические аппараты «Эталон», которые использовались для уточнения параметров гравитационного поля и его влияния на орбиты КА «Ураган».

4 апреля 1991 года в составе ГЛОНАСС в двух орбитальных плоскостях оказалось одновременно 12 работоспособных спутников системы и 24 сентября 1993 года система была официально принята в эксплуатацию Министерством обороны России. В этом же году США вывели на орбиту последний 24-й спутник (первый спутник США вывели на орбиту в 1974 году). После чего стали проводиться запуски в третью орбитальную плоскость. 14 декабря 1995 года после 27-го запуска «Протона-К» с «Ураганами» спутниковая группировка была развёрнута до штатного состава — 24 спутника.

Всего с октября 1982 г. по декабрь 1998 г. на орбиту были выведены 74 КА «Ураган» и 8 массо-габаритных макетов. В период развёртывания системы 6 «Ураганов» оказались утерянными из-за отказов разгонного блока 11С861. Согласно оценкам, проведённым в 1997 году, на развёртывание ГЛОНАСС было потрачено около 2,5 млрд долларов.

В дальнейшем вследствие недостаточного финансирования, а также из-за малого срока службы, число работающих спутников сократилось к 2001 году до 6.

В августе 2001 года была принята федеральная целевая программа «Глобальная навигационная система», согласно которой полное покрытие территории России планировалось уже в начале 2008 года, а глобальных масштабов система достигла бы к началу 2010 года. Для решения данной задачи планировалось в течение 2007, 2008 и 2009 годов произвести шесть запусков РН и вывести на орбиту 18 спутников — таким образом, к концу 2009 года группировка вновь насчитывала бы 24 аппарата.

В 2002 году был осуществлён переход на обновлённую версию геоцентрической системы координат ПЗ-90 — ПЗ-90.02.

С 2004 года запускаются новые КА “Глонасс-М”, которые транслируют два гражданских сигнала на частотах L1 и L2.

В 2007 году проведена 1-я фаза модернизации наземного сегмента, вследствие чего увеличилась точность определения координат. Во 2-й фазе модернизации наземного сегмента на 7 пунктах наземного комплекса управления устанавливается новая измерительная система с высокими точностными характеристиками. В результате этого к концу 2010 года увеличится точность расчёта эфемерид и ухода бортовых часов, что приведёт к повышению точности навигационных определений.

В конце марта 2008 года совет главных конструкторов по российской глобальной навигационной спутниковой системе (ГЛОНАСС), заседавший в Российском научно-исследовательском институте космического приборостроения, несколько скорректировал сроки развёртывания космического сегмента ГЛОНАСС. Прежние планы предполагали, что на территории России системой станет возможно пользоваться уже к 31 декабря 2007 года; однако для этого требовалось 18 работающих спутников, некоторые из которых успели выработать свой гарантийный ресурс и прекратили работать. Таким образом, хотя в 2007 году план по запускам спутников ГЛОНАСС был выполнен (на орбиту вышли шесть аппаратов), орбитальная группировка по состоянию на 27 марта 2008 года включала лишь шестнадцать работающих спутников. 25 декабря 2008 года количество было доведено до 18 спутников.

На совете главных конструкторов ГЛОНАСС план развёртывания системы был скорректирован с той целью, чтобы на территории России система ГЛОНАСС заработала хотя бы к 31 декабря 2008 года. Прежние планы предполагали запуск на орбиту двух троек новых спутников «Глонасс-М» в сентябре и в декабре 2008 года; однако в марте 2008 года сроки изготовления спутников и ракет были пересмотрены, чтобы ввести все спутники в эксплуатацию до конца года. Предполагалось, что запуски состоятся раньше на два месяца и система до конца года в России заработает. Планы были реализованы в срок.

29 января 2009 года было объявлено, что первым городом страны, где общественный транспорт в массовом порядке будет оснащён системой спутникового мониторинга на базе ГЛОНАСС, станет Сочи. На тот момент ГЛОНАСС-оборудование производства компании «М2М телематика» было установлено на 250 сочинских автобусах.

В ноябре 2009 года было объявлено, что Украинский научно-исследовательский институт радиотехнических измерений (Харьков) и Российский научно-исследовательский институт космического приборостроения (Москва) создадут совместное предприятие. Стороны создадут систему спутниковой навигации для обслуживания потребителей на территории двух стран. В проекте будут использованы украинские станции коррекции для уточнения координат систем ГЛОНАСС.

2 сентября 2010 года общее количество спутников ГЛОНАСС было доведено до 26 — группировка была полностью развёрнута для полного покрытия Земли.

В 2011 году была модернизирована система наземного комплекса управления. Результатом программы модернизации стало увеличение точности навигационных определений системы ГЛОНАСС в 2-2,5 раза, что составляет порядка 2,8 м для гражданских потребителей.

26 февраля того же года был запущен первый КА Глонасс-К, в котором реализованы дополнительные сигналы в формате CDMA и тестируется новый открытый сигнал в диапазоне L3.

С 2012 до 2020 года на развитие ГЛОНАСC из бюджета РФ выделено 320 миллиардов рублей. В этот период планируется изготовить 15 спутников «Глонасс-М» и 22 «Глонасс-К».

В июле 2012 года было возбуждено дело по факту необоснованного расходования и хищения более 6,5 миллиардов рублей, выделенных на развитие спутниковой системы. 13 мая 2013 года было возбуждено ещё одно уголовное дело по статье «Мошенничество в особо крупном размере» по выявленному факту злоупотребления полномочиями и хищения 85 млн рублей.

В 2014 году начались работы над обеспечением совместимости российской и китайской навигационных систем ГЛОНАСС и «Бэйдоу».

7 декабря 2015 года было объявлено о завершении создания системы ГЛОНАСС. Готовая система была направлена на заключительные испытания Минобороны РФ.

Навигация

Спутники ГЛОНАСС находятся на средневысотной круговой орбите на высоте 19400 км с наклонением 64,8° и периодом 11 часов 15 минут. Такая орбита оптимальна для использования в высоких широтах (северных и южных полярных регионах), где сигнал GPS ловится плохо. Спутниковая группировка развёрнута в трёх орбитальных плоскостях, с 8 равномерно распределёнными спутниками в каждой. Для обеспечения глобального покрытия необходимы 24 спутника, в то время как для покрытия территории России необходимы 18 спутников. Сигналы передаются с направленностью 38° с использованием правой круговой поляризации, мощностью 316—500 Вт (EIRP 25-27 dBW).

Для определения координат приёмник должен принимать сигнал как минимум четырёх спутников и вычислить расстояния до них. При использовании трёх спутников определение координат затруднено из-за ошибок, вызванных неточностью часов приёмника.

Навигационные сигналы

FDMA-сигналы

Используются два типа навигационных сигналов: открытые с обычной точностью и защищённые с повышенной точностью.

Сигналы передаются методом расширения спектра в прямой последовательности (DSSS) и модуляцией через двоичную фазовую манипуляцию (BPSK). Все спутники используют одну и ту же псевдослучайную кодовую последовательность для передачи открытых сигналов, однако каждый спутник передаёт на разной частоте, используя 15-канальное разделение по частоте (FDMA). Сигнал в диапазоне L1 находится на центральной частоте 1602 МГц, а частота передачи спутников определяется по формуле 1602 МГц + n × 0,5625 МГц, где n это номер частотного канала (n=−7,−6,−5,…0,…,6, ранее n=0,…,13). Сигнал в диапазоне L2 находится на центральной частоте 1246 МГц, а частота каждого канала определяется по формуле 1246 МГц + n×0.4375 МГц. Противоположно расположенные аппараты не могут быть одновременно видны с поверхности Земли, поэтому 15 радиоканалов достаточно для 24 спутников.

Открытый сигнал генерируется через сложение по модулю 2 трёх кодовых последовательностей: псевдослучайного дальномерного кода со скоростью 511 кбит/c, навигационного сообщения со скоростью 50 бит/c, и 100 Гц манчестер-кода. Все эти последовательности генерируются одним тактовым генератором. Псевдослучайный код генерируется 9-шаговым сдвиговым регистром с периодом 1 мс.

Навигационное сообщение открытого сигнала транслируется непрерывно со скоростью 50 бит/c. Суперкадр длиной 7500 бит требует 150 секунд (2,5 минуты) для передачи полного сообщения и состоит из 5 кадров по 1500 бит (30 секунд). Каждый кадр состоит из 15 строк по 100 бит (2 секунды на передачу каждой строки), 85 бит (1,7 секунды) данных и контрольных сумм и 15 бит (0,3 секунды) на маркер времени. Строки 1-4 содержат непосредственную информацию о текущем спутнике и передаются заново в каждом кадре; данные включают эфемериды, смещения тактовых генераторов частот, а также состояние спутника. Строки 5-15 содержат альманах; в кадрах I—IV передаются данные на 5 спутников в каждом, а в кадре V — на оставшиеся четыре спутника.

Эфемериды обновляются каждые 30 минут с использованием измерений наземного контрольного сегмента; используется система координат ECEF (Earth Centered, Earth Fixed) для положения и скорости, и также передаются параметры ускорения под действием Солнца и Луны. Альманах использует модифицированные кеплеровы элементы и обновляется ежедневно.

Защищённый сигнал повышенной точности предназначен для авторизованных пользователей, таких как Вооружённые силы РФ. Сигнал передаётся в квадратурной модуляции с открытым сигналом на тех же самых частотах, но его псевдослучайный код имеет в десять раз большую скорость передачи, что повышает точность определения координат. Хотя защищённый сигнал не зашифрован, формат его псевдослучайного кода и навигационных сообщений засекречен. По данным исследователей, навигационное сообщение защищённого сигнала L1 передаётся со скоростью 50 бит/c без использования манчестер-кода, суперкадр состоит из 72 кадров размером по 500 бит, где каждый кадр состоит из 5 строк из 100 бит и требует 10 секунд для передачи. Таким образом, всё навигационное сообщение имеет длину 36 000 бит и требует для передачи 720 секунд (12 минут); предполагается, что дополнительная информация используется для повышения точности параметров солнечно-лунных ускорений и коррекции частоты тактовых генераторов.

CDMA-сигналы

C середины 2000-х годов готовится введение сигналов ГЛОНАСС с кодовым разделением.

Формат и частоты новых сигналов окончательно не определены. По предварительным данным разработчиков, в спутниках Глонасс-К2 будут использоваться три открытых и два зашифрованных сигнала в формате CDMA.

Открытый сигнал L3OC передаётся на частоте 1202,025 МГц, использует двоичную фазовую манипуляцию BPSK(10) для пилотного и информационного сигналов; псевдослучайный дальномерный код транслируется с частотой 10,23 миллионов импульсов (чипов) в секунду и модулируется на несущей частоте через квадратурную фазовую манипуляцию QPSK, при этом пилотный и информационный сигналы разнесены по квадратурам модуляции: информационный сигнал находится в фазе, а пилотный — в квадратуре. Информационный сигнал дополнительно модулирован 5-битным кодом Баркера, а пилотный сигнал — 10-битным кодом Ньюмана-Хоффмана.

Открытый сигнал L1OC и защищённый сигнал L1SC передаются на частоте 1600,995 МГц, а открытый сигнал L2OC и защищённый сигнал L2SC — на частоте 1248,06 МГц, перекрывая диапазон сигналов формата FDMA. Открытые сигналы L1OC и L2OC используют мультиплексирование с разделением по времени для передачи пилотного и информационного сигналов; используется модуляция BPSK(1) для информационного и BOC(1,1) для пилотного сигналов. Защищённые широкополосные сигналы L1SC и L2SC Шаблон: Неи АИ2 для пилотного и информационного сигналов, и передаются в квадратуре по отношению к открытым сигналам; при таком типе модуляции пик мощности смещается на края частотного диапазона и защищённый сигнал не мешает открытому узкополосному сигналу, передающемуся на несущей частоте.

Модуляция BOC (binary offset carrier, двоичный сдвиг несущей) используется в сигналах систем Galileo и модернизированной GPS; в сигналах GLONASS и стандартной GPS используется двоичная фазовая манипуляция (BPSK), однако и BPSK и QPSK являются частными случаями квадратурной амплитудной модуляции (QAM-2 и QAM-4).

Навигационное сообщение сигнала L3OC передаётся со скоростью 100 бит/c. Один кадр размером 1500 бит передаётся за 15 секунд и включает 5 текстовых строк, каждая длиной 300 бит (3 секунды). В каждом кадре содержатся эфемериды текущего спутника и часть системного альманаха для трёх спутников. Суперкадр состоит из 8 кадров и имеет размер 12000 бит, таким образом на получение альманаха для всех 24 спутников требуется 120 секунд (2 минуты). В будущем суперкадр может быть расширен до 10 кадров или 15000 бит (150 секунд или 2,5 минуты на передачу) для поддержки работы 30 спутников. В каждой строке передаётся системное время.Секунда координации UTC учитывается удлинением (с заполнением нулями) либо укорачиванием последней строки месяца на длительность одной секунды (100 бит), укороченные строки отбрасываются аппаратурой приёмника.

0.5625 МГц 1246 + n×

Планировалось с 2014 года оснащать спутники Глонасс-М передатчиками сигнала L3OC, впервые введёнными в спутниках Глонасс-К, но эти планы не реализовались.

В спутниках Глонасс-КМ могут быть введены дополнительные передатчики на частоты и модуляцию сигналов, совпадающие с модернизированной GPS (GPS modernization) и Galileo/Compass. В частности,

  • сигнал L1OCM будет использовать модуляцию BOC(1,1) на частоте 1575,42 МГц, которая совпадает с сигналом L1C модернизированной GPS и сигналом E1 систем Galileo/Compass;
  • сигнал L3OCM будет использовать модуляцию BPSK(10) на частоте 1207,14 МГц, которая совпадает с сигналом E5b систем Galileo/Compass;
  • сигнал L5OCM будет использовать модуляцию BPSK(10) на частоте 1176,45 МГц, которая совпадает с сигналом Safety of Life (L5) модернизированной GPS и сигналом E5a системы Galileo.

Данная конфигурация поможет обеспечить широкую совместимость приёмного оборудования и повысит точность и быстроту определения координат для критически важных применений, в первую очередь в авиационной и морской безопасности.

Технические средства

Приемник Глонасс

НАП «ГРОТ-М» (НИИКП, 2003 год), один из первых образцов

Первым приёмником, рассчитанным на работу с американской и российской навигационными системами, был профессиональный прибор компании Ashtech GG24, выпущенный в 1995 году.

Первый потребительский спутниковый навигатор, рассчитанный на совместное использование ГЛОНАСС и GPS, поступил в продажу 27 декабря 2007 года — это был спутниковый навигатор Glospace. В России навигационную аппаратуру выпускают более 10 предприятий.

В целях реализации Постановления Правительства РФ от 25 августа 2008 года № 641 «Об оснащении транспортных, технических средств и систем аппаратурой спутниковой навигации ГЛОНАСС или ГЛОНАСС/GPS» НПО Прогресс разработало и выпустило аппаратуру спутниковой навигации ГАЛС-М1, которой уже сегодня могут быть оснащены многие виды военной и специальной техники Вооружённых сил Российской Федерации.

В 2012 году Минтранс России определил технические требования к аппаратуре спутниковой навигации для повышения безопасности перевозок пассажиров автомобильным транспортом, а также транспортировки опасных и специальных грузов.

В мае 2011 года в розничную продажу поступили первые массово производимые ГЛОНАСС/GPS-навигаторы компаний Explay и Lexand. Они были собраны на чипсете MSB2301 тайваньской компании Mstar Semiconductor.

Сегодня модели с поддержкой ГЛОНАСС и GPS есть в продуктовых линейках многих производителей. Доля таких устройств в общем годовом объёме продаж навигаторов достигает 6,6 % (за 8 месяцев 2011 года в России было продано порядка 100 тысяч «двухсистемников»). Сравнительный тест навигатора с ГЛОНАСС/GPS Lexand SG-555 и GPS-навигатора Lexand ST-5350 HD проводила газета Ведомости:

Тест показал, что для поездок по Москве можно обойтись и односистемным навигатором. Но то, что навигаторы «Глонасс/GPS» работают точнее и надёжнее, подтвердилось на практике. Превосходящие характеристики двухсистемных устройств актуальны и в повседневной жизни — например, если вы хотите вовремя перестроиться для поворота на нужную полосу дороги.

Американский производитель мобильных чипов Qualcomm производит семейство микросхем для приёма сигналов GPS и ГЛОНАСС: Snapdragon 2 и 3. В 2011 году объявлен выпуск семейства Snapdragon 4. В настоящее время общее количество моделей устройств с возможностью приёма ГЛОНАСС исчисляется десятками.

Точность

В настоящее время точность определения координат системой ГЛОНАСС несколько отстаёт от аналогичных показателей для GPS.

Согласно данным СДКМ на 18 сентября 2012 года, ошибки навигационных определений ГЛОНАСС (при p = 0,95) по долготе и широте составляли 3—6 м при использовании в среднем 7—8 КА (в зависимости от точки приёма). В то же время ошибки GPS составляли 2—4 м при использовании в среднем 6—11 КА (в зависимости от точки приёма).
При использовании обеих навигационных систем происходит существенный прирост точности. Европейский проект EGNOS, использующий сигналы обеих систем, даёт точность определения координат на территории Европы на уровне 1,5—3 метров.

Система ГЛОНАСС определяет местонахождение объекта с точностью до 2,8 метров, но после перевода в рабочее состояние двух спутников коррекции сигнала системы «Луч» точность навигационного сигнала ГЛОНАСС возрастёт до одного метра (ранее система определяла местонахождение объекта лишь с точностью до 5 м).

К 2015 году планируется увеличить точность позиционирования до 1,4 метра, к 2020 году — до 0,6 метра с дальнейшим доведением до 10 см.

Технологии высокоточного позиционирования на основе ГЛОНАСС уже сегодня широко используются в различных отраслях деятельности. Так, специалисты НИИ Прикладной Телематики разработали уникальное для навигационной отрасли решение — систему дистанционного мониторинга состояния сложных инженерных объектов, которая в режиме реального времени отслеживает смещение сооружений дорожно-транспортной инфраструктуры и оползневых геомассивов (в постобработке с точностью до 4-5 мм), позволяя не только оперативно реагировать на возникновение нештатных и чрезвычайных ситуаций, но и заранее их прогнозировать, своевременно определять появление дефектов дорожных сооружений. Система внедрена и успешно отработана на участке федеральной трассы М27 Джубга-Сочи в районе Хостинской эстакады (участок 194—196 км) — наиболее опасном и сложном с точки зрения прочности элементов конструкции.

Станции дифференциальной коррекции

Россия начала работы по размещению станций системы дифференциальной коррекции и мониторинга для повышения точности и надёжности работы навигационной системы ГЛОНАСС за рубежом. Первая зарубежная станция была построена и успешно функционирует в Антарктиде на станции «Беллинсгаузен». Тем самым обеспечены необходимые условия для непрерывного глобального мониторинга навигационных полей космических аппаратов ГЛОНАСС. Текущая сеть наземных станций насчитывает 14 станций в России, одну станцию в Антарктиде и одну в Бразилии. Развитие системы предусматривает развёртывание восьми дополнительных станций на территории России и нескольких станций за рубежом (дополнительные станции будут размещены в таких странах как Куба, Иран, Вьетнам, Испания, Индонезия, Никарагуа Австралия, две в Бразилии, и ещё одна дополнительная будет размещена в Антарктиде).

Из-за опасений, что системы ГЛОНАСС могут быть использованы в военных целях, госдепартамент США отказал Роскосмосу в выдаче разрешений на строительство на американской территории нескольких российских измерительных станций. Закон о фактическом запрете размещения станций ГЛОНАСС в США был подписан 30 декабря 2013 года. В ответ на это с 1 июня 2014 приостановлена работа на территории Российской Федерации станций для системы GPS. Видимо, это решение касается 19 пока ещё действующих измерительных станций IGS на территории России. Станции IGS не предназначены для функционирования самой системы GPS и имеют в большей степени научное значение. На территории США есть множество подобных станций, передающих данные ГЛОНАСС в режиме реального времени. Данные этих станций находятся в открытом доступе.

Доступность

Значения позиционного геометрического фактора PDOP по системе ГЛОНАСС на земной поверхности (угол места ≥ 5°). Дата: 7 февраля 2016

Официально прогнозировалось, что ГЛОНАСС догонит GPS по точности к 2015 году, но по официальным данным на первую половину 2015, точность позиционирования составляла 2,7 м и обещания о её повышении «в два раза» были «перенесены» на конец 2015 года. Однако по состоянию 7 февраля 2016 даже официальный «прогноз точности» указывал точность около 2-4 метров.

При совместном использовании ГЛОНАСС и GPS в совместных приёмниках (практически все ГЛОНАСС-приёмники являются совместными) точность определения координат практически всегда отличная вследствие большого количества видимых КА и их хорошего взаимного расположения.

По сообщению Reuters, сотрудники шведской компании Swepos, обслуживающей общенациональную сеть спутниковых навигационных станций, установили, что ГЛОНАСС обеспечивает более точное позиционирование в северных широтах: «работает немного лучше в северных широтах, потому что орбиты её спутников расположены выше, и мы видим их лучше, чем спутники GPS». Йонссон сообщил, что 90 % клиентов его компании используют ГЛОНАСС в комбинации с GPS.

Постановление правительства Российский Федерации от 27 сентября 2011 года об обязательном оснащении пассажирских транспортных средств модулями ГЛОНАСС/GPS вынуждает использовать систему ГЛОНАСС в России.

Модернизация

  • На 2015—2017 годы намечен запуск усовершенствованного спутника КА «Глонасс-К2», доработанного по результатам испытаний КА «Глонасс-К1». В дополнение к открытому CDMA сигналу в диапазоне L3, появятся открытые и шифрованные сигналы в диапазонах L1 и L2.
  • К 2025 году появится усовершенствованный спутник «Глонасс-КМ», характеристики которого находятся в стадии изучения; предположительно, в новых спутниках будет использоваться до 6 открытых и до 3 зашифрованных сигналов с кодовым разделением.
  • После полного перехода на CDMA-сигналы предполагается постепенное увеличение количества КА в группировке с 24 до 30, что, возможно, потребует отключения сигналов FDMA. Рассматриваются варианты с запуском в будущем дополнительных спутников по высокоэллиптической орбите типа «Молния» или «Тундра», либо по геосинхронной или геостационарной орбите, что должно обеспечить более высокую доступность в отдельных регионах за счёт дифференциальной коррекции сигналов ГЛОНАСС от основных спутников.

Спутники

Разработчик и изготовитель спутников — ОАО ИСС имени академика М. Ф. Решетнёва (до 2008 года «НПО ПМ») (Железногорск, Красноярский край).

Запуски

В декабре 2009 года введён в эксплуатацию 110 КА (запущен 14 декабря 2009 года). Общее число запущенных спутников NAVSTAR к этому времени составило 60.

Дата Тип спутника Последние запуски
26 апреля 2013 Глонасс-М Запуск КА «Глонасс-М» при помощи РН «Союз-2-1Б», космодром Плесецк
2 июля 2013 Глонасс-М РН «Протон-М» с тремя КА «Глонасс-М» взорвалась после старта
24 марта 2014 Глонасс-М Выведен на орбиту спутник Глонасс-М № 54 с помощью ракеты-носителя “Союз-2.1б”
14 июня 2014 Глонасс-М Выведен на орбиту спутник Глонасс-М с помощью ракеты-носителя “Союз-2.1б”
1 декабря 2014 Глонасс-К Выведен на орбиту спутник Глонасс-К с космодрома Плесецк с помощью ракеты-носителя “Союз-2.1б” Это второй запуск спутника третьего поколения.
7 февраля 2016 Глонасс-М Выведен на орбиту спутник Глонасс-М с космодрома Плесецк с помощью ракеты-носителя “Союз-2.1б” и разгонного блока «Фрегат»

Текущее состояние

Состав группы космической навигационной системы ГЛОНАСС на 15 марта 2016 года:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *