ГЛАВА 27. ЭЛЕКТРИЧЕСКИЙ ТОК. ЗАКОН ОМА ДЛЯ ОДНОРОДНОГО УЧАСТКА ЦЕПИ И ДЛЯ ЗАМКНУТОЙ ЦЕПИ. ЗАКОН ДЖОУЛЯ-ЛЕНЦА
В связи с формулами (27.16), (27.17) отметим следующее обстоятельство. Очень часто школьники не могут правильно ответить на вопрос, а как мощность, выделяемая в проводнике, зависит от его сопротивления. Ведь формула (27.16), казалось бы, утверждает, что выделяемая мощность прямо пропорциональна сопротивлению проводника, первая часть формулы (27.17) — обратно пропорциональна, вторая часть — не зависит от сопротивления проводника. А как же действительно зависит выделяемая мощность от сопротивления проводника? И хотя ответ на этот вопрос очень прост — и не так, и не так, и не так — школьники задают его так часто, что мы решили рассмотреть соответствующий пример.
Пример 27.4. На каком из сопротивлений в схеме, представленной на рис. 27.7, выделяется наибольшая мощность? = 1 Ом,
= 2 Ом,
= 3 Ом,
= 4 Ом,
= 5 Ом,
= 6 Ом. Найти эту мощность, если к схеме приложено напряжение U = 100 В.
Решение. Часто школьники рассуждают так: «По закону Джоуля-Ленца мощность, выделяемая на резисторе R , равна . Поэтому наибольшая мощность будет выделяться на наибольшем сопротивлении
». Иногда — так: «По закону Джоуля-Ленца
наибольшая мощность будет выделяться на самом маленьком сопротивлении схемы
». Конечно, и то, и другое рассуждение неправильно, поскольку электрический ток через резисторы или напряжение на всех резисторах схемы не являются одинаковыми, и для сравнения мощности это необходимо учитывать.
Поэтому сравним сначала мощности, выделяемые на сопротивлениях ,
и
. Поскольку эти сопротивления соединены последовательно, ток через них одинаков, и из формулы
заключаем, что среди них наибольшая мощность выделяется на
. Аналогично, среди сопротивлений
,
и
наибольшая мощность будет выделяться на наибольшем сопротивлении, т.е. на сопротивлении
.
Главный закон электричества для «чайников»
Данная статья поможет вам начать понимать основы электрики. Главное, что вы должны усвоить – это закон, который связывает между собой силу тока, напряжение в сети и сопротивление энергопотребителя, подключенного к ней.
Сопротивление
Металл, применяемый при изготовлении токопроводящей жилы кабеля или провода, обладает удельным сопротивлением, зависящим от материала. Кроме того, с увеличением длины проводника растет и сопротивление, поскольку электрическому току необходимо преодолеть более значительное «расстояние». Также сопротивление увеличивается, если проводник более тонкий.
Расчет сопротивления осуществляется между точками подключения.
Напряжение
В России напряжение в силовой розетке составляет 230 В, в USB-розетке – 5 В, в аккумуляторе автомобиля – 12 В. В других странах сетевое напряжение может отличаться. Например, в США оно составляет 100-127 В. Увеличение напряжения обеспечивает возможность передавать большее количество энергии.
Напряжение находится, например, между «+» и «-» в обычных батарейках, а также в силовой розетке между входами для вилки.
Сила тока
Когда какое-либо сопротивление подключается к напряжению, возникает новая величина – сила тока. При уменьшении сопротивления сила тока всегда возрастает.
Достигнуть низкого сопротивления не так уж и трудно. С этим поможет справиться проволока небольшой длины. С целью ограничения силы тока используют автоматические выключатели. Они бывают разными, например, на 6, 10, 16 А и т.д.
Мощность
Мощность можно вычислить, умножив силу тока на напряжение. Логично, что при делении мощности на напряжение мы получаем значение силы тока.
На большинстве современных электрический приборов указана потребляемая мощность. О напряжении в бытовых силовых розетках мы уже говорили.
Для примера возьмем обычный электрический чайник. Мощность у выбранной нами модели составляет около 2000 Ватт (2 кВт), а напряжение в розетке – 230 Вольт (0,23 кВ). Делим 2 кВт на 0,23 кВ и получаем силу тока, которая равняется примерно 9 Амперам. Теперь идем в щиток и смотрим, что у нас на розеточные группы установлен автоматический выключатель на 16 Ампер. Это означает, что чайник мы можем включить без проблем. А если вам необходимо включить второй такой чайник (или любой другой прибор с такой же мощностью), то лучше не делать этого одновременно.
Главный закон электрики
Значение силы тока в бытовых приборах будет увеличиваться пропорционально увеличению мощности, указанной на корпусе устройства. При одном и том же напряжении ток будет больше в том приборе, сопротивление которого меньше. Это можно определить с помощью соответствующих измерений.
Провод небольшой длины обладает относительно малым сопротивлением. Если подключить его к силовой розетке, то значение тока, которое пройдет по нему, будет слишком велико.
Стоит помнить, что сопротивление нагревательных приборов резко возрастает из-за нагревания нити накала.
Если мы говорим об индуктивных нагрузках, то здесь возникает реактивное сопротивление.
Мы рассказали вам о главном законе электричества – законе Ома для участка цепи. Понимание данного принципа поможет вам осознать многие процессы, возникающие в электрике.
Как мощность зависит от сопротивления?
Есть утверждение: «Чем больше сопротивление, тем меньший ток идет по потребителю и меньше его мощность (40Ваттные лампочки имеют большее сопротивление, чем 100Ваттные).»
Есть также задачка: «Каким сопротивлением обладает лампа мощностью 40 Вт, работающая под напряжением 220 В? Ответ: R=1210 Ом»
Эти утверждение и задачка основываются на формуле обратной зависимости мощности от сопротивления, выводимой из закона Ома:
P=UI=U*2/R (чем больше сопротивление, тем меньше мощность)
Но можно также из закона Ома вывести формулу прямой зависимости мощности от сопротивления:
Закон Ома и закон Джоуля-Ленца для чайников: почему может меняться фактическая мощность одного и того же электронагревательного прибора
Это объявленная ранее публикация о том, как благодаря закону Ома и закону Джоуля-Ленца один и тот же водонагреватель может как заработать, так и не заработать через автоматический выключатель одного и того же номинала, а один и тот же чайник может нагревать воду с разной скоростью.
Читатель мог подумоть, что физика в объеме школьной программе никогда не понадобится в обычной жизни, но вот прямо сейчас она как понадобится.
Простой бытовой сюжет начинается с мыслей о ежегодном плановом отключении горячей воды и поиска проточного водонагревателя, который можно включать в «обычную» розетку на 16 ампер. Рынок предлагает несколько моделей с заявленной мощностью в 3500 ватт. В описании так и указано: «мощность 3500 ватт». Делим 3500 ватт на 220 вольт – получаем силу тока 15.91 ампера, как раз немного меньше, чем 16 ампер.
Именно поэтому мощность не 3400 и не 3600 – выбрано максимальное «круглое» значение мощности, которое должно безопасно получаться из обычной розетки на 16 ампер. Это в теории, а на практике.
. читаем отзывы на одну и ту же модель водонагревателя. Одни покупатели пишут, что водонагреватель работает через автоматический выключатель на 16 ампер, другие – что такой выключатель стабильно отключается через несколько минут работы водонагревателя. Одни покупатели пишут, что работает без нареканий, другие – что проводка становится теплой.
Это ЖЖЖЖЖ явно неспроста. Неправильные пчелы? Нет, это проявление закона Ома и закона Джоуля-Ленца.
В описании водонагревателя рядом с текстом «мощность 3500 ватт» также написано «напряжение 220 вольт». Читать нужно так: «мощность составляет 3500 ватт при напряжении питания 220 вольт».
Фактическое значение сетевого напряжения может отличаться от номинального по целому ряду причин. В зависимости от состояния электросетей и настройки трансформаторов на подстанциях напряжение может постоянно быть немного ниже или немного выше номинального. Помимо этого фактическое напряжение может меняться в течение суток из-за колебаний потребления электроэнергии.
Это нормально, пока отклонение от номинала остается в пределах, установленных нормативами. Бывает еще, что напряжение отличается от номинального в нарушение требований нормативов – читатель наверняка слышал истории о даче, где электросети изношены или перегружены и чайник еле-еле греет, а стиральная машина не включается и надежно работает только зарядное устройство с диапазоном входных напряжений 100–240 вольт.
Все производители электроприборов, которые не хотят разориться на замене сломавшихся электроприборов и компенсации вреда от их возгораний, делают электроприборы так, чтобы они безопасно работали в широком диапазоне допустимых по нормативам напряжений. Безопасная работа – хорошо, но при изменении напряжения может меняться сила тока через электронагревательный прибор и в результате будет изменяться его фактическая мощность.
Пришло время вспомнить закон Ома.
Закон Ома для участка цепи записывается обычно вот так:
I – сила тока в участке цепи, U – напряжение на его границах, R – электрическое сопротивление участка.
Из этого соотношения прямо следует, что при неизменном электрическом сопротивлении и возрастании напряжения сила тока возрастает линейно. Напряжение возрастает на 10 процентов – сила тока тоже возрастает на 10 процентов. При убывании напряжения сила тока линейно убывает.
При протекании электрического тока через участок цепи в нем выделяется тепло, это так называемое тепловое действие электрического тока. Мощность выделяемого тепла определяется так (следствие закона Джоуля-Ленца):
P – мощность выделяемого тепла, I – сила тока, R – сопротивление.
Из этого соотношения следует, что при неизменном электрическом сопротивлении и возрастании силы тока мощность тепла возрастает квадратично. Сила тока возрастает на 10 процентов – мощность выделяемого тепла возрастает на 21 процент (1.10 × 1.10 = 1.21).
Поэтому при неизменном электрическом сопротивлении и возрастании напряжения мощность выделяемого тепла возрастает квадратично. Это следствие двух указанных выше соотношений. Напряжение возрастает на 10 процентов – сила тока также возрастает на 10 процентов и мощность выделяемого тепла возрастает на 21 процент.
Это не бесполезная теория. Производители бытовой техники, которые собираются продавать технику в как можно большее число государств, учитывают, что входное напряжение может немного отличаться, и в описании чайника указывают например следующее: «220–240 вольт 2000–2400 ватт». Верхнее значение диапазона напряжения на 9 процентов выше нижнего, а верхнее значение диапазона мощности на 19% выше нижнего – мощность выделяемого тепла квадратично растет с ростом напряжения. Это следствие закона Ома и закона Джоуля-Ленца.
Да, один и тот же чайник может потреблять разную мощность в зависимости от фактического напряжения в электросети. Сила тока через нагревательный элемент чайника также может изменяться в зависимости от напряжения. Скорость нагревания одного и того же объема воды на одну и ту же разность температур будет разной в зависимости от напряжения в электросети. Это следствие закона Ома и закона Джоуля-Ленца.
И то же самое с водонагревателями. «мощность 3500 ватт напряжение 220 вольт». А фактическое напряжение не 220, а 230 вольт – это допустимо по действующим в России в 2021 году нормативам. Фактическое напряжение выше указанного на табличке водонагревателя на 4.55 процента. Сила тока будет выше также на 4.55 процента – не 15.91 ампера, а 16.63 ампера. Мощность составит 3825 ватт.
При фактическом напряжении 235 вольт (на 6.8 процента выше указанного на табличке) сила тока будет 17 ампер, а мощность – 3993 ватта.
Надо бы подумоть о таком неудобстве: повышение силы тока приведет к увеличению нагрева проводов, их соединений и розетки. Розетка-то как была на 16 ампер, так и осталась, и провода все те же и скрутки и клеммники никуда не делись. Но пока не будем обращать на это внимание, пока попробуем оценить.
. сколько времени потребуется автоматическому выключателю, чтобы сработать при таких превышениях силы тока выше номинала? Здесь придется выйти за пределы школьной программы по физике.
Ответ на этот вопрос дает так называемая время-токовая характеристика автоматического выключателя. Она показывает, сколько времени требуется для срабатывания автоматического выключателя в зависимости от того, насколько фактическая сила тока превышает номинал выключателя. Время срабатывания разное при разной температуре воздуха – если автоматический выключатель хуже охлаждается, он при той же силе тока быстрее прогреется и сработает раньше. Это не знакомый электрик – сын маминой подруги – сказал, это написано.
. в увлекательном документе ГОСТ Р 50345-2010 (является действующим на 2021 год).
Неисправимо оптимистичные читатели могут написать в комментариях о пункте 3.5.15 этого стандарта («условный ток нерасцепления») и заявить, что автоматический выключатель обязан не отключаться в течение не менее часа, если фактическая сила тока не превышает номинал выключателя более чем на 13%. В случае выключателя на 16 ампер речь идет о токе силой чуть больше 18 ампер. Вроде бы есть простор (на возможный перегрев проводов, соединений и розетки все еще не обращаем внимания).
Но помимо пункта об «условном токе нерасцепления» есть и другие интересные и важные. Например, в 8.6.1. рассказывают о «нормальной время-токовой характеристике» – она задается для «температуры окружающего воздуха» 30 градусов.
«Температура окружающего воздуха» – это не температура воздуха в помещении, а температура воздуха вокруг выключателя внутри электрощита. Внутри того же самого щита метры проводов, клеммники, другие выключатели, и все они могут нагреваться, вместе сильно прогревая воздух вокруг выключателя (а заодно и собственную изоляцию).
Время срабатывания выключателя, через который включен водонагреватель, будет зависеть и от фактической величины сетевого напряжения, и от охлаждения воздуха внутри электрощита, в котором находится выключатель, и от выделения тепла всем остальным содержимым того же электрощита. Здорово, правда?
Кстати, при увеличении силы тока на 13% его тепловое действие увеличивается. да, на 27.7 процентов. Это дополнительный нагрев всей цепи, в которой протекает избыточный ток. Это нагрев проводов, соединений, розеток. Здорово, правда? Именно о таком испытании своих электрических цепей, которые далеко не всегда сделаны с требуемыми по нормативам запасами, мечтает каждый покупатель бытовых приборов. Условный ток нерасцепления в нормальной время-токовой характеристике уже не выглядит таким привлекательным и теперь не только «решает» проблемы, но быть может и создает новые.
Поэтому электронагревательный прибор с мощностью «на пределе возможного» – это интригующая неопределенность. Может заработать без нареканий, а может беспокоить покупателя перегревом проводов или вызывать срабатывание автоматических выключателей.
Разгадывание таких ребусов – явно не то, к чему обычно готовится покупатель, выбирая бытовой электроприбор, который поставляется с сетевым проводом с вилкой для включения в «обычную» розетку. Он хотел просто помыться теплой водой. Такой наивный.
А теперь. краткий пересказ написанного выше.
1. Чем выше фактическое напряжение, тем большую фактическую мощность потребляет тот же электронагревательный прибор, тем выше сила тока через него и тем больше разогреваются все элементы электрической цепи, в которую он включен, – провода, вилка, розетка, автоматические выключатели и другое содержимое электрощита. Это следствие закона Ома и закона Джоуля-Ленца.
2. Фактическое напряжение может быть разным в разных домах одного квартала, разных подъездах одного дома, разных квартирах одного подъезда и изменяться в течение суток. Это нормально, это случается повсюду, так устроены распределительные электрические сети.
3. Чем выше температура воздуха вокруг автоматического выключателя и чем больше превышение фактической силы тока над номиналом автоматического выключателя, тем быстрее он срабатывает. Так устроены автоматические выключатели. ГОСТ Р 50345-2010 – увлекательный документ.
4. Электронагревательные приборы с мощностью «на пределе возможного» – неоднозначное решение для бытовых приборов, которые покупатель привозит из магазина и включает в «обычную» розетку. Покупатель, который наивно надеялся помыться теплой водой, может застрять в разгадывании разнообразных ребусов.