Как определить количество витков в катушке
Перейти к содержимому

Как определить количество витков в катушке

Как вычислить число витков и длину провода в катушке индуктивности?

Задача 7кл. Диаметр провода 1 мм, внутренний диаметр катушки 30 мм, наружный диаметр – 66 мм, высота — 36 мм без учета каркаса.

Очевидно, провод намотан на катушку в несколько слоев. При этом в каждом слое с учетом высоты катушки и толщины провода 36 витков. Для вычисления количества слоев необходимо разницу между внешним и внутренним диаметрами катушки поделить на 2 мм — именно на столько увеличивается диаметр каждого нового слоя.

(66 — 30)/2 = 18 слоев.

Отсюда общее число витков (36*18) = 648.

Длина одного витка из первого слоя π*32 мм, из второго слоя — π*34 мм. из восемнадцатого слоя — π*66 мм, значит, общая длина провода составляет

(36*π*32 + 36*π*34 + . + 36*π*66) мм

36π*(32 + 34 + . + 66) мм.

Вспоминаем формулу суммы армфм. прогрессии и получаем, что длина провода равна

36π*(32 + 66)/2*18 = 31 752π мм,

что примерно составляет 99 751,85 мм или 99,75 м.

В одном слое при высоте катушки 36 мм вмещается 35 витков провода диаметром 1мм. Намотка провода осуществляется под небольшим углом, так как каждый следующий виток смещается на 1 мм. Вот поэтому в начале намотки образуется небольшой клиновидный зазор и в конце слоя такой же, что в общем итоге составляет потерю одного витка. В этом можно убедится, например, намоткой полоски бумаги на карандаш. В следующем слое намотка провода идет под другим углом и относительного первого слоя крест-накрест. В результате второй слой не ложится в канавки первого слоя, что обусловливает высоту каждого слоя равной диаметру провода, а их количество 18. Тогда общее число витков составляет 35*18 = 630.

Теперь вычислим длину провода. Боковая поверхность катушки составляет Pi*( 66² — 30²)/4 =2714,336 мм², тогда длинна всех слоев провода высотой 1 мм составит

Расчёт индуктивности. Часть 2

Всем доброго времени суток. Сегодняшняя статья является продолжением предыдущей. Здесь продолжим рассматривать расчёт индуктивностей индуктивных элементов без сердечников. В прошлой статье я рассказал, как рассчитать индуктивность прямого провода и провода свёрнутого в кольцо (виток), в данной статье будем рассчитывать индуктивность круговых катушек, то есть поперечный профиль, которых представляет собой окружности.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Виды катушек индуктивности

Круговые катушки индуктивности являются, наверное, самыми распространёнными. В тоже время из-за разнообразия их форм существует некоторая трудность в расчёте индуктивности. Для некоторого упрощения расчёта катушки индуктивности делятся на несколько видов. Рассмотрим основные конструктивные особенности круговых катушек индуктивности

Расчёт индуктивности катушки

Расчёт индуктивности катушки.

Для расчёта индуктивности круговой катушки необходимо знать следующие размеры:

D1 – внутренний диаметр, D2 – внешний диаметр, Dср – средний диаметр, l – длина катушки (аксиальный размер), t – толщина обмотки (радиальный размер), где t можно вычислить

Поэтому, в зависимости от соотношения между этими размерами различают следующие катушки индуктивности:

если l > Dср – длинная катушка,

если l < Dср – короткая катушка,

если l << Dср – очень короткая катушка,

если l = 0 – плоская катушка,

если t ≈ Dср – толстая катушка,

если t << Dср – тонкая катушка,

если t = 0 – соленоид.

Особенности расчёта катушек индуктивности

Кроме конструктивных параметров, на индуктивность влияет также параметры обмоточного провода (диаметр, толщина изоляции, шаг намотки), хотя в большинстве случаев влияние их незначительно, но в некоторых случаях, например, при большом шаге намотки их следует учитывать. Поэтому общая индуктивность катушки можно представить следующим выражением

где LР – расчётная индуктивность;

∆L – поправка на «изоляцию», ∆L = ∆1L + ∆2L;

1L – поправка учитывающая влияние индуктивности витков;

2L – поправка учитывающая влияние взаимной индуктивности витков.

В большинстве случаев, например, при плотной намотке «виток к витку» поправка ∆L составляет несколько процентов от расчётной индуктивности LР, поэтому если нет необходимости в точном значении общей индуктивности L, поправку на изоляцию ∆L можно не учитывать.

Особенности расчёта круговых катушек индуктивности состоят в следующем:

1. При определении расчётной индуктивности LP, средний диаметр принимается равным среднему диаметру реальной катушки;

2. Длина намотки l и толщина намотки t принимается равными шагу обмотки (p – шаг по длине катушки, q – шаг по толщине намотки) умноженному на количество слоёв ω в том или ином направлении

3. Если у катушки в каком-либо направлении (по длине намотки l или по толщине намотки t) имеется только один ряд (или слой), то в этом направлении размер l или t можно принять равным нулю, то есть расчёт ведётся как для соленоида или плоской катушки.

4. В некоторых случаях, при большом диаметре провода или шаге намотки у однослойных катушках размер l или t принимается равным диаметру голого провода d.

5. Так как величина поправки на взаимную индуктивность ∆2L в несколько раз меньше, чем поправка на индуктивность витков ∆1L, то при расчётах можно учитывать только ∆1L.

Приступим к расчётным выражениям, в начале рассчитаем простейшие круговые катушки – соленоид и плоскую катушку.

Расчёт индуктивности соленоида

Определение индуктивности соленоида

Определение индуктивности соленоида, d – диаметр соленоида, l – длина соленоида.

Соленоид представляет собой катушку, намотанную на каркас в один слой, поэтому толщину слоя можно принять равной нулю t = 0, а расчётная формула индуктивности будет иметь вид

где μ0 – магнитная постоянная, μ0 = 4π•10 -7 Гн/м;

ω – число витков соленоида;

d – диаметр соленоида, м;

Φ – коэффициент, который зависит от отношения α = l/D;

l – длина соленоида, м;

Поправочный коэффициент Φ зависит от отношения длины соленоида l к его диаметру d

Для длинного соленоида, то есть α > 0,75, поправочный коэффициент составит

Для короткого соленоида, то есть α < 0,75, поправочный коэффициент составит

Пример. Необходимо рассчитать соленоид диаметром d = 1 см и длиной l = 5 см, который имеет ω = 75 витков.

Стоит отметить, что формула расчёта соленоида подходит для большинства однослойных катушек с точностью в несколько процентов.

Индуктивность плоской катушки

Определение индуктивности плоской катушки

Определение индуктивности плоской катушки, D1 – внутренний диаметр, D2 – внешний диаметр, D – средний диаметр, t – толщина намотки.

В данном случае в качестве плоской катушки представлена идеализированная катушка, длина намотки которой приняли равной нулю l = 0, тогда индуктивность такой катушки можно вычислить по следующей формуле

где μ0 – магнитная постоянная, μ0 = 4π•10 -7 Гн/м;

ω – число витков соленоида;

D – средний диаметр катушки, м;

Ψ – коэффициент, который зависит от отношения ρ = t/D­;

t – толщина намотки катушки.

Коэффициент Ψ зависит от соотношения толщины намотки t и среднего диаметра катушки D

При небольшой толщине намотки, когда ρ < 0,5

При большой толщине намотки, когда ρ > 0,5

где γ – коэффициент учитывающий соотношение внешнего и внутреннего диаметров обмотки катушки

Пример. Рассчитаем плоскую катушку со средним диаметром D = 5 см и толщиной намотки t = 1 см, состоящую из ω = 20 витков.

Выражения для индуктивности тонкой катушки позволяют рассчитать индуктивность и большинства катушек с малой длиной и большой толщиной обмоток.

Индуктивность круговой катушки прямоугольного сечения

Теперь перейдём от идеализированных катушек к реальным, которые в своем сечении представляют собой прямоугольник

Расчёт индуктивности катушки

Индуктивность прямоугольной катушки.

Катушку прямоугольного сечения можно представить в виде соленоида с ненулевой толщиной обмотки t ≠ 0, либо в виде плоской катушки с ненулевой длиной l ≠ 0, поэтому рассчитать необходимую катушку можно либо как соленоид, либо как плоскую катушку, а затем внести поправку.

Таким образом, индуктивность прямоугольной катушки можно вычислить по следующей формуле

где L0 – индуктивность идеальной катушки (соленоида или плоской катушки) в зависимости от α = l/Dcp;

l – длина катушки, м;

Dcp – средний диаметр катушки, м;

∆ — поправка на форму катушки.

В принципе реальную катушку индуктивности, в зависимости от отношения длины намотки l к среднему диаметру Dcp, можно разделить на несколько типов:

1. Длинная катушка, у которой α > 0,75.

2. Короткая катушка, имеющая α < 0,75 и γ < 1.

3. Очень короткая катушка, имеет α << 1 и γ > 1.

Рассмотрим каждый случай по отдельности.

Индуктивность длинной катушки

Длинная катушка

Для длинной катушки (α > 0,75) величина L0 рассчитывается также как для длинного соленоида, где l – длина соленоида, Dcp – средний диаметр соленоида, а значение поправки ∆ вычисляется по следующему выражению

где α – коэффициент, учитывающий отношение длины катушки l к её среднему диаметру DCP;

γ – коэффициент, учитывающий отношение толщины намотки t к длине намотки l;

ρ – коэффициент, учитывающий отношение толщины намотки t к её среднему диаметру DCP.

где D1 – внутренний диаметр, D2 – внешний диаметр.

Пример. Рассчитаем индуктивность катушки длиной l = 10 см, средним диаметром DCP = 2 см, количеством витков ω = 100 и толщиной намотки t = 5 мм.

Индуктивность короткой катушки

Короткая катушка

Для короткой катушки (α < 0,75, t < l) величина L0 рассчитывается также как для короткого соленоида, где l – длина соленоида, DСР – средний диаметр соленоида, а значение поправки ∆ вычисляется по следующему выражению

где α – коэффициент, учитывающий отношение длины катушки l к её среднему диаметру DCP;

γ – коэффициент, учитывающий отношение толщины намотки t к длине намотки l;

Пример. Рассчитаем индуктивность катушки длиной l = 1 см, средним диаметром DСР = 2 см, толщиной намотки t = 5 мм, количеством витков ω = 50.

Индуктивность очень короткой катушки

Очень короткая катушка

Очень короткая катушка.

Для очень короткой катушки (α << 1, t > l) величина L0 рассчитывается также как для плоской катушки, где t – толщина намотки, Dcp – средний диаметр катушки, а значение поправки ∆ вычисляется по следующему выражению

где α – коэффициент, учитывающий отношение длины катушки l к её среднему диаметру DCP;

γ – коэффициент, учитывающий отношение толщины намотки t к длине намотки l, γ < 1;

ρ – коэффициент, учитывающий отношение толщины намотки t к её среднему диаметру DCP.

Пример. Рассчитаем индуктивность катушки длиной l = 5 мм, средним диаметром DCP = 7 см, намотка толщиной t = 1 см, количество витков ω = 150.

Расчёт поправки на собственную индуктивность витков

Как я писал в начале статьи, полная индуктивность катушки L состоит из расчётной индуктивности LP и поправки на изоляцию ∆L, которая в свои очередь состоит из поправки на собственную индуктивность витков ∆1L и поправки на взаимную индуктивность витков ∆2L

Данные поправки зависят от взаимного расположения витков в катушке. Для провода круглого сечения возможны следующие варианты заполнения катушки

Расположение провода круглого сечения в катушке индуктивности. s – диаметр провода с изоляцией, sp – диаметр голого провода (без изоляции), p – шаг намотки по длине катушки, q – шаг намотки по толщине катушки.

В общем случае поправка на собственную индуктивность витков рассчитывается по следующему выражению

где μ0 – магнитная постоянная, μ0 = 4π•10 -7 Гн/м;

ω – число витков соленоида;

DСР – средний диаметр катушки, м;

I – коэффициент, зависящий от расположения витков катушки.

Коэффициент I определяется в зависимости от расположения провода, варианты которого изображены на рисунке выше.

Для варианта а), провод намотан с небольшим коэффициентом заполнения

где s – диаметр провода с изоляцией, sp – диаметр голого провода (без изоляции).

Для варианта б), провод намотан с большим коэффициентом заполнения

где s – диаметр провода с изоляцией, sp – диаметр голого провода (без изоляции).

Для варианта в), провод намотан с шагом p по длине катушки и с шагом q по толщине катушки

где s – диаметр провода с изоляцией, sp – диаметр голого провода (без изоляции).

Для варианта г), провод намотан в один слой по длине катушки с шагом p. В зависимости от способа вычисления расчётной индуктивности LP

— если при вычислении расчётной индуктивности LP толщина намотки t принята равной диаметру голого провода sP, то коэффициент I будет равен

— если при вычислении расчётной индуктивности LP толщина намотки t принята равной нулю (расcчитывалась как соленоид), то коэффициент I будет равен

где p – шаг намотки по длине катушки, sp – диаметр голого провода (без изоляции).

Для варианта д), провод намотан в один слой по толщине намотки с шагом q, также возможно два случая

— если при вычислении расчётной индуктивности LP длина намотки l принята равной диаметру голого провода sP, то коэффициент I будет равен

— если при вычислении расчётной индуктивности LP длина намотки l принята равной нулю (рассчитывалась как плоская катушка), то коэффициент I будет равен

где q – шаг намотки по толщине катушки, sp – диаметр голого провода (без изоляции).

Расчёт поправки на взаимную индуктивность витков

В общем случае поправка на взаимную индуктивность витков ∆2L катушки определяется выражением

где μ0 – магнитная постоянная, μ0 = 4π•10 -7 Гн/м;

ω – число витков соленоида;

DСР – средний диаметр катушки, м;

J – коэффициент, зависящий формы катушки и от числа витков катушки.

1. Для катушки выполненной в один слой по длине катушки (соленоид):

а) при определении расчётной индуктивности LP толщина намотки t принята равной шагу намотки р, то коэффициент J составит

где ω – количество витков катушки.

б) при определении расчётной индуктивности LP толщина намотки t принята равной нулю (рассчитывается как соленоид), то коэффициент J составит

где ω – количество витков катушки.

2. Для катушки, выполненной в один слой по толщине намотки (плоская катушка):

а) при определении расчётной индуктивности LP длина катушки l принята равной шагу намотки р, то коэффициент J составит

где ω – количество витков катушки.

б) при определении расчётной индуктивности LP длина катушки l принята равной нулю (рассчитывается как плоская катушка), то коэффициент J составит

где ω – количество витков катушки.

На сегодня всё. В следующей статье я закончу с индуктивными элементами без сердечников.

Теория это хорошо, но необходимо отрабатывать это всё практически ПОПРОБЫВАТЬ МОЖНО ЗДЕСЬ

Расчет катушки индуктивности

При построении электронных устройств часто приходится сталкиваться с индуктивным элементом схемы. Когда на чертеже указано только значение индуктивности L, то расчет катушки индуктивности приходится выполнять самостоятельно. В интернете есть множество программ, позволяющих выполнять расчёт индуктивности катушек онлайн при помощи специального калькулятора. Зная то, как устроен элемент, можно вручную произвести все вычисления.

Внешний вид катушки

Что такое катушка индуктивности

Данный элемент ещё называют дросселем. Это свёрнутый в спираль изолированный провод. Для такой спирали характерны большие индуктивные и маленькие ёмкостные параметры.

Важно! Дроссель препятствует протеканию переменного тока, потому что обладает существенной инерционностью. Она препятствует любому изменению проходящего через витки тока. При этом нет разницы, увеличивается он или уменьшается.

В связи с этим данные элементы применяют в электротехнике для осуществления:

  • токоограничения;
  • ослабления биений;
  • помехоподавления;
  • формирования магнитного поля;
  • изготовления датчиков движения.

Дроссель входит в систему колебательного контура в цепях резонанса и применяется в линиях задержки.

Применение L в колебательном контуре

Какие параметры есть у катушки

От того, где будет применяться индуктивный элемент и на какой частоте работать, зависит его исполнение. Имеются общие параметры:

  • L – индуктивность;
  • R пот – сопротивление потерь;
  • Q – добротность;
  • свой резонанс и паразитарная ёмкость;
  • коэффициенты ТКИ и ТКД.

Индуктивность (коэффициент самоиндукции) L – это главная электрическая характеристика элемента, которая показывает количество накапливаемой дросселем энергии при передвижении тока. Величина энергии в катушки тем выше, чем больше её индуктивность. Единица измерений L – 1 Гн.

При взаимодействии тока и магнитного поля в обмотке возникают вредные явления. Они способствуют возникновению потерь, которые обозначают R пот. Формула потерь имеет вид:

R пот = rω + rd + rs + re.

Слагаемые формулыэто потери:

  • rω – в проводах;
  • rd – в диэлектрике;
  • rs – в сердечнике;
  • re – на вихревые токи.

В результате таких потерь импеданс индуктивного двухполюсника нельзя назвать целиком реактивным.

Добротность двухполюсника определяется по формуле:

где ω*L = 2π*L – реактивное сопротивление.

При наматывании витков элемента между ними возникает ненужная ёмкость. Из-за этого дроссель превращается в колебательный контур с собственным резонансом.

ТКИ – показатель, описывающий зависимость L от Т0С.

ТКД – показатель, описывающий зависимость добротности от Т0С.

Информация. Изменение основных параметров индуктивного двухполюсника зависит от коэффициентов ТКИ, ТКД, а также от времени и влажности.

Конструкция катушки

По конструктивному исполнению индуктивные элементы различаются:

  • видом намотки: винтоспиральная, винтовая; кольцевая;
  • количеством слоёв: однослойные или многослойные;
  • типом изолированного провода: одножильный, многожильный;
  • наличием каркаса: каркасные или бескаркасные (при небольшом количестве витков толстого провода);
  • геометрией каркаса: прямоугольный, квадратный, тороидальный;
  • наличием сердечника: ферритовый, из карбонильного железа, электротехнической стали, пермаллоевый (магнитомягкий сплав), металлический (латунный);
  • геометрией сердечника: стержневой (разомкнутый), кольцо-образный или ш-образный (замкнутый);
  • возможностью изменять L в узких интервалах (движение сердечника по отношению к обмотке).

Существуют плоские катушки, в печатном исполнении устанавливаемые на платах цифровых устройств.

К сведению. Намотка провода может быть как рядовой (витком к витку), так и в навал. Последний способ укладки провода снижает паразитную ёмкость.

Конструкция катушек

Зачем нужен расчёт индуктивности

Расчет индуктивности нужен, потому что конструктивно это могут быть по-разному выполненные катушки. Применение дросселей в разных отраслях электрики и электроники, их работа под влиянием постоянного и переменного тока требуют тщательного подбора индуктивности, добротности и стабильности работы. При выполнении своими руками дросселей заданного параметра L нужно выполнить расчёт. Для каждого типа индуктивного двухполюсника используется своя формула.

Расчет параметров катушки

Приходится при расчётах рассматривать разные варианты. Расчет индуктивности зависит от исходных данных и заданных конечных параметров.

Расчет L в зависимости от заданной конструкции

Если исходными параметрами являются: w, D каркаса и длина намотанного провода, то формула для расчёта имеет вид:

L = 0,01*D*w2/(l/D) + 0,46,

где:

  • D – диаметр каркаса, см;
  • w – число витков;
  • l – длина намотки, см;
  • L – индуктивность, мкГн.

Подставляя численные значения в формулу, получают значение L.

Расчет количества витков по индуктивности

Зная D каркаса и L, рассчитывают количество витков в катушке, формула имеет вид:

где:

  • L – индуктивность, мкГн;
  • D – диаметр каркаса, мм.

Если в качестве исходных параметров берутся длина навитого в ряд проводника и его диаметр, то количество витков находят, используя формулу:

где:

  • l – длина намотки, мм;
  • d – диаметр провода, мм.

Измерения диаметра провода проводят линейкой или штангенциркулем.

Расчёт индуктивности прямого провода

Собираясь найти L круглого прямого проводника, обращаются к приближённой формуле:

L = (μ0/2π)*l*( μe*ln(l/r) + 1/4* μi,

где:

  • μ0 – магнитная постоянная;
  • μe – относительная магнитная проницаемость (ОМП) среды (для вакуума – 1);
  • μi – ОМП проводника;
  • l – длина провода;
  • r – радиус провода.

Формула справедлива для длинного проводника.

Расчёт однослойной намотки

Однослойные дроссели без сердечника легко и быстро можно рассчитать при помощи онлайн-калькулятора, в окно которого можно забить все известные характеристики, и программа выдаст значение L.

Вычисления проводятся и вручную, с использованием математического выражения. Оно имеет вид:

L = D2*n2/45D + 100*l,

где:

  • D – диаметр катушки, см;
  • l – длина намотанного провода, см;
  • n – количество витков.

Формула подходит для вычислений L дросселей без ферритовых сердечников.

Однослойная катушка виток к витку

Дроссель с сердечником

При наличии сердечника следует учесть его размеры и форму. В случае одинаковых катушках индуктивность больше у той, которая располагается на сердечнике.

Многослойная намотка

Особенности расчёта при подобном способе наматывания провода заключаются в том, что нужно учитывать его толщину. Формула для дросселя без сердечника имеет вид:

где:

  • Dk – общий диаметр (диаметр каркаса и намотки);
  • t – толщина слоя;
  • l – длина накрученного провода.

Все значения подставляют в мм, величину L – в мкГн.

Многослойная намотка

Факторы, влияющие на индуктивность катушки

Коэффициент самоиндукции зависит от следующих параметров:

  • геометрических особенностей каркаса;
  • формы оправки;
  • числа витков;
  • марки и диаметра провода;
  • свойств магнитопровода.

Интересно. Материал сердечников из распыленного железа выделяют разным цветом в зависимости от марки смеси. Сердечники такого рода используют для дросселей в импульсных устройствах.

Эквивалентная схема реальной катушки индуктивности

Каждый дроссель можно представить в виде эквивалентной схемы.

Данная схема состоит из элементов:

  • Rw – сопротивление обмотки с выводами;
  • L – индуктивность;
  • Cw – паразитная ёмкость;
  • Rl – сопротивление потерь.

Изготавливая индуктивный элемент, стремятся снизить величину сопротивления потерь, паразитную ёмкость. При работе катушки на низкой частоте учитывают сопротивление её обмотки Rw. На таких частотах действуют токи большой величины.

Эквивалентная схема дросселя

Правильно рассчитанная катушка индуктивности будет иметь высокую добротность (180-300) и стабильность работы при влиянии внешних условий (температуры и влажности). Зная способы различной намотки и манипуляции с шагом, можно уменьшить влияние паразитных факторов.

Расчет катушки индуктивности — онлайн-калькулятор

Расчет катушки индуктивности без сердечника при помощи онлайн-калькулятора — рассчитать многослойную катушку индуктивности на количество витков, сопротивление.

  • Расчёт
  • Скачать PDF
  • Виджет

Катушка индуктивности — это пассивный электронный компонент, в виде намотанного в спираль изолированного проводника. Основной характеристикой катушки является индуктивность, т.е. способность преобразования электрической энергии в энергию магнитного поля, измеряется в Генри (Гн). Катушка может иметь цилиндрический или тороидальный каркас (сердечник) из феррита, который позволяет в разы повысить индуктивность катушки. Также, индуктивность катушки прямо пропорциональна линейным размерам катушки, магнитной проницаемости сердечника и квадрату числа витков намотки. Обращаем внимание, что важным условием работы устройства является наличие изоляции между витками катушки, они не должны замыкаться друг с другом.

При помощи калькулятора расчета индуктивности катушки онлайн можно вычислить количество витков и слоев обмотки, общую длину проводника, а также сопротивление катушки постоянному току по требуемым значениям индуктивности. Метод расчета основан на формуле решения эллиптических интегралов Максвелла, в котором катушка представляется как множество соосных бесконечно тонких круговых проводников. Вычисления справедливы для однослойных и многослойных катушек без сердечника. Теоретическое обоснование представлено ниже.

Обращаем внимание, в нашем калькуляторе учитывается расширение диаметра катушки для каждого последующего слоя. Эта поправка влияет на увеличение длины витка, и соответственно на общую длину провода и активное сопротивление катушки индуктивности.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *