Как определить микросхему по маркировке на корпусе sot23 5
Перейти к содержимому

Как определить микросхему по маркировке на корпусе sot23 5

Как определить деталь по SMD маркировке

Данная статья- небольшая попытка разобраться в той путанице, которая происходит в SMD маркировке радиоэлементов.

Если в маркировке радиодеталей советского производства существовала какая-то закономерность, то среди зарубежных радиоэлементов всегда были свои тонкости, заключающиеся в первую очередь в том, что каждый производитель, как правило, вносил свои буквенные индексы в название деталей, а с переходом на SMD ситуация только лишь ухудшилась…

Главная проблема заключается в том, что на SMD корпусе катастрофически мало места, но помимо названия детали, производитель очень часто пытается впихнуть туда еще и дополнительную инфу- номер партии, адрес производства и т.д…

Кроме этого корпус радиоэлемента так-же совершенно ни о чем не говорит- так, к примеру в довольно распространенном корпусе SOT-23 могут быть как транзисторы, так и стабилитроны (или диоды), и вот пара примеров: стабилитроны серии BZX84

А вот транзистор BCX41

транзистор BCX41

В 4-х и более выводных SMD корпусах ситуация еще запутанней- это могут быть и транзисторы, и транзисторные сборки, и различные микросхемы.

Конечно- же производитель обычно указывает информацию по маркировкам в даташитах, но и от этого ничуть не легче- как правило в даташитах прилагается дополнительная инфа в виде символов типа «*» или буквенных индексов

Пример первый : информация из даташита цифрового транзистора серии PDTC123E:

Здесь сказано что буква «W» перед кодом 26 означает что данный транзистор китайского производства.

Пример второй : довольно распространенная микросхема ШИМ-контроллер LD7536 в корпусе SOT-26

Сама по себе микросхема имеет SMD маркировку p36 , однако на корпусе имеются еще несколько символов: это и год изготовления, и неделя изготовления и код продукции.

Имеется и еще одна, не совсем страшная, но все-таки проблема- это различная маркировка корпусов у разных производителей.
Дело в том, что и тут имеются свои стандарты:
1. De Facto Standart — общепринятое обозначение корпуса

2 JEDEC — Joint Electron Devices Engineering Council (США)

3. JEITA — Japan Electronics and Information Technology Industries Association

4. А иногда и фирменное — обозначение корпуса, принятое в отдельной компании

Так, к примеру, довольно распространенный корпус

SOT-523

В разных даташитах может называться по разному: SOT-523, SOT-490, SC89-3.

В общем, подводя итоги всего вышесказанного вывод напрашивается сам- если возникла необходимость определить деталь по SMD маркировке, то необходимо одновременно рассматривать несколько вариантов. Для ясности- приведем один пример:

Предположим, у нас имеется неизвестная деталька, в 3-х ногом SMD корпусе, и выглядит она так:

Для того чтобы определить наименование, требуется одновременно рассматривать три варианта маркировки:

1. W26 смотрим в этой таблице
2. W2* смотрим в этой таблице
3. *26 смотрим в этой таблице

При этом так-же еще необходимо и учитывать размеры корпуса ( в данном случае это SOT-23) и схемы включения.

Согласен- итоги статьи малоутешительны, однако если у Вас возникли проблемы- Вы можете заглянуть к нам на ФОРУМ, подумаем вместе!
Кроме этого- мы стараемся ежедневно просматривать массу различных источников и даташитов, так что информация на сайте постоянно пополняется.

Важно. Для того чтобы пройти регистрацию на нашем форуме, настоятельно советую заглянуть сначала СЮДА.

Ниже приводится таблица SMD корпусов различных радиоэлементов, надеемся она облегчит Вам поиски нужной информации

Расшифровка обозначений на smd-компонентах

C-Di— (Capacitance diode [varactor, varicap]) — емкостной диод (варикап);
MOS-N(P)-FET-d(e)— (Metal oxide FET, enhancement type) — МДП — транзистор с каналом N (P);
N-FET— (N-channel field-effect transistors) — полевой транзистор с N-каналом;
PIN-Di— (PIN -diode) — диод;
P-FET— (P- channel field-effect transistors) — полевой транзистор с Р-каналом;
S— (Sensor devices) — сенсорная схема;
Si-Di— (Silicon diode) — кремниевый диод;
Si-N— (Silicon NPN transistor) — кремниевый NPN (обратный) транзистор;
Si-N-Darl— (Silicon NPN Darlington transistor) — кремниевый NPN (обратный) транзистор по схеме Дарлингтона;
Si-P— (Silicon PNP transistor) — кремниевый PNP (прямой) транзистор;
Si-P-Darl— (Silicon PNP Darlington transistor) — кремниевый PNP (прямой) транзистор по схеме Дарлингтона;
Si-St— (Silicon-stabi-diode [operation in forward direction]) — стабилизирующий диод (стабилитрон);
Т— (Tuner Diodes) — переключающий диод;
Tetrode— (P- + N-gate thyristor) — транзистор с четырехслойной структурой;
Vrf— (Voltage reference diodes) — высокостабильный опорный диод;
Vrg— (Voltage requlator diodes) — регулируемый опорный диод;
AM— (RF application) — амплитудная модуляция;
Band-S— (RF band switching) — ключевой элемент (электронный переключатель диапазона);
Chopper— (Chopper) — прерыватель;
Dual— (Dual transistors for differential amplifiers or dual diode) — сдвоенный транзистор (диод);
FED— (Field effect diode) — диод, управляющий напряжением;
FM— (RF application) — частотная модуляция;
HF— (RF application [general]) — высокочастотный диапазон;
LED— (Light-emitting diode) — светодиод;
M— (Mixer stages) — смесительный;
Min— (Miniaturized) — миниатюрный;
NF— (AF applications) — низкочастотный (звуковой) диапазон;
О— (Oscillator stages) — генераторная схема;
ln— (Low noise) — малошумящий;
S— (Switching stages) — ключевой;
SS— (Fast switching stages) — быстродействующий ключ;
sym— (SyMinetrical types) — симметричный;
Tr— (Driver stages) — мощной устройство (мощный управляющий ключ);
tuning(RF tuning diode) — переключающий диод для схем переключения диапазона;
Tunnel-Di— (Tunnel diode) — тунельный диод;
UHF— (RF applications [>250MHz]) — ультрокороткий (СВЧ) диапазон;
Uni— (General purpose tyres) — универсальный (массового применения);
V— (Pre/input stages) — предварительный (для входных цепей);
VHF— (RF applications [approx. 100. 250 MHz]) — высокочастотный (УКВ) диапазон;
Vid— (Video output stages) — видеочастотный (для цепей видеочастоты);

SOT23: маркировка, даташит и микросхемы

Первый прибор с пластиковым корпусом, используемый для монтажа на поверхности, SOT23, впервые появился в 1969 году. А 3 года назад компания Nexperia смогла продать около 30 миллиардов устройств. Дело в том, что устройство является инновацией в изготовлении полупроводниковых приборов.

Создание устройства

Разработчики полупроводников часто совмещают взаимоисключающие идеи. Например, задают уменьшенные размеры и увеличенные скорости при жестких требованиях к прочности и стабильности системы, расширяют функционал при минимальных системных изменениях, стараются соблюсти баланс между высоким качеством и наименьшими затратами. Все это сочетается в самом распространенном корпусе транзистора SOT23.

Но мгновенного успеха не бывает. К тому же, поверхностный монтаж был, по большому счету, не актуален до 1990-х годов, когда потребительская электроника стала использоваться повсюду. Именно рассматриваемый корпус в те годы был взят за стандарт 3-выводных корпусов поверхностного монтажа. Сегодня почти всю электронику выпускают именно по этой технологии. Корпуса, которые устанавливают в отверстие, популярны. Чаще всего они применяются в разработке макетов и продукции.

Более современные варианты

Корпус SOT23 оставался внешне неизменным в течение нескольких десятков лет, на самом деле, он серьезно совершенствовался:

  • был добавлен 5-контактный вариант;
  • появилась бессвинцовая версия;
  • был расширен спектр допустимых температур до 175 градусов.

Сегодня устройство также развивается. Когда понадобилась более высокая плотность монтажа, появилось много “потомков” устройства. Самые популярные из них — SOT223 и SOT323. Взгляните на какой угодно корпус типа SOT для монтажа на поверхности, и заметите очень много общего с SOT23.

Так как эффективность и качество постоянно должны повышаться, появляются технологические инновации. Они актуальны для выпуска и сборки приборов для монтажа на поверхности — smd. Новые способы и линии производства отвечают постоянно растущему спросу на SOT23 и “дочерние” приборы.

SOT23 и похожие приборы

Транзисторы MOSFET в корпусе SOT-23

Фирма IR расширяет номенклатуру MOSFET в разных направлениях. Главным является усовершенствование электро параметров транзисторов, а именно:

  • снижение канального сопротивления;
  • паразитного сопротивления;
  • выводной емкости и индуктивности;
  • увеличение рабочего тока;
  • увеличение рабочего напряжения;
  • увеличение скорости действия.

Повышается эффективность применения корпусов в готовых устройствах, обеспечиваются высокие удельные показатели тока и передающейся мощности.

Сначала не планировались мощные применения транзисторов в корпусе SOT-23, так как он не может рассеивать больше количество тепла. Но при сильном уменьшении открытого сопротивления ключа появилась возможность серьезно увеличить спектр токов коммутации.

К транзисторам предъявляются следующие требования:

  1. Невысокое открытое сопротивление.
  2. Стабильность температуры, если не используется радиатор.
  3. Невысокий порог напряжения затвора.
  4. Бюджетная стоимость.

У нового семейства p- и n- канальных транзисторов от IR стандартный корпус имеет очень низкое открытое сопротивление. Оно нужно для использования в зарядках для аккумуляторов, нагрузочных коммутаторах, электрических приводах, телекоммуникации, применения в различных видах приложений.

У нового семейства MOSFET спектр напряжений находится в пределах от -30 до 100 В, с разными значениями сопротивлений и емкостей. Это способствует широкому выбору при создании небольших, но качественных и доступных по стоимости вариантов.

Чем же транзисторы отличаются от предшественников? Это можно узнать при изучении технологии создания кристаллов для подобных корпусов.

Новые способы создания кристаллов помогли сделать транзистор более эффективным, по сравнению с конкурентами. Если сохраняются прежние размеры кристалла, выходят сниженные значения сопротивлений. В итоге достигаются наилучшие значения температуры для данного корпуса. IR производит транзисторы с корпусами SOT-23 и кристаллами, которые выпускаются по технологии Gen 10.7.

Характеристики современных транзисторов с корпусами SOT-23

Как мы уже указывали, главные преимущества новых устройств с корпусами SOT-23 — это наименьшие значения сопротивлений. Чтобы оценить новые приборы, учитываются лишь 2 показателя.

Канальное сопротивление транзистора сильно связано с напряжением в затворе и допустимой температурой. Это особенно важно для устройств с низким порогом напряжения.

На картинке изображена зависимость сопротивления открытого транзистора от напряжения затвора.

График sot-23

Если сравнить транзистор IRLML6344 с AO3400A, то выяснится, что его рабочая температура меньше, за счет лучшего значения теплового сопротивления.

Обозначения разных величин в корпусе транзисторов SOT-23

В наименовании MOSFET присутствует несколько величин:

  • управляющее напряжение затвора;
  • тип корпуса;
  • технология кристаллизации;
  • уровень напряжения стока и размера кристалла.

Например, вот как обозначается новый транзистор: IRLML6244TRPBF, где:

  1. L — уровень управляющего напряжения.
  2. F — возможность управлять логическим уровнем напряжения.
  3. L — возможность управлять низким логическим уровнем сигнала.

Логическим уровнем называется состояние транзистора, когда он открыт при невысоком затворном напряжении 2,5 B.

ШИМ-контроллеры SOT23

Замена контроллеров широтно-импульсной модуляции с корпусом SOT23 приводит к сложностям в определении их вида. Наименования устройств, как правило, очень длинные, их не разместить на маленьком корпусе. Поэтому туда наносится не оно, а специальный код.

ШИМ-контроллером называется специальная схема sot23, на которой строится блок питания на импульсах. Когда нагрузочный этого прибора меняется, это приводит к изменению импульсной скважности. Имеются в виду импульсы, которые генерирует микросхема.

Для чего предназначены выводы

Обозначение производится следующим образом:

  1. Ground (GND) — аббревиатура основного провода.
  2. Input Voltage (VCC) — питание.
  3. Feedback (FB) — обратная связь для контроля напряжения.
  4. Output (JUT) — соединение с затвором главного транзистора.
  5. Current sense input pin (SEN) — токовый датчик, подключаемый к стоку главного транзисторного прибора.
  6. Internal Oscillator frequency setting pin (RI) — подключение резистора извне, задающего частоту. В ряде микросхем он заменяется на CT.
  7. Brownout Protection Pin (BNO) — регулятор наименьшего напряжения питания. Когда оно на этом входе меньше порогового, осуществляется отключение подачи импульсов от микросхемы.

Когда питание подается ко входу контроллера VCC, за ним следует напряжение с помощью резистора указанного моста. С помощью микросхемы запускается выдача импульсов. В дальнейшем питание подается с помощью выпрямления напряжения на нижней левой обмотке трансформатора импульсного типа.

Генерация на микросхеме происходит с фиксированной частотой. Ее задают значением резистора на RI, либо емкости на СТ.

Напряжение стабилизируется с помощью сопоставления силы тока, который протекает через главный транзистор MOSFET и обратного напряжения. Оценка тока осуществляется с учетом величины снижения напряжения резистора в цепи транзисторного стока, при подключении к выходу SEN.

Обратное напряжение снимают с регулирующегося стабилитрона. Минуя оптопару, он попадает на FB. От величины напряжения на заданных выходах зависит импульсная скважность на OUT. В большей части микросхем есть разные защитные системы, которые предотвращают поломку в нестандартных случаях.

Маркировка SOT-23

Взгляните на таблицы, приведенные ниже. Там присутствует расшифровка кодов для нескольких корпусов.

  1. sot23-3.
  2. sot23-5.
  3. sot23-6.

Во время ремонта электронных устройств инженерам часто бывает трудно определить вид микросхемы в каждом из корпусов. Дело в том, что на заводах из-за маленьких размеров корпусов их специально кодируют. В таблицах есть разные виды микросхем, в частности:

  1. DC/DC.
  2. AC/DC.
  3. ШИМ(pwm).

Сборка транзисторов тоже отличается, а вот корпуса — похожи. Взгляните на рисунок — здесь видно, как располагаются выводы 3 видов корпусов.

Виды SOT23

Маркировочные коды ставят на корпусах. Один из элементов кода может быть отмечен знаком “.” Таким символом может быть заменено любое цифровое или буквенное обозначение. Оно может иметь отношение к номеру производственной серии, дате выпуска, так что периодически меняется.

Есть несколько аналогов, идентичных по распиновке. Они могут заменить оригинал, при этом дорабатывать схему или не нужно, или нужно по-минимуму. Однако ее сравнение с datasheet будет не лишним. Замену может осуществлять только инженер.

SOT-23: аналоги

Согласно функционалу, принцип работы рассматриваемых регуляторов аналогичен микросхемам ШИМ xx384x, устойчивым и надежным.

С заменой или выбором аналогов таких регуляторов часто возникают трудности из-за кодировки при обозначении видов микросхем. К тому же, существует много фирм-производителей элементов, которые не выкладывают документацию в открытый доступ. Дело в том, что не каждый изготовитель приборов предоставляет схемы в сервису по ремонту. Так что ремонтники вынуждены осваивать возможные варианты схем по имеющимся компонентам и монтажу именно на плате.

В практическом применении обычно используются ШИМ-микросхемы с кодировкой EAxxx. Вы не найдете официальных документов к ним, но есть картинки из PDF от System General.

Картинка

Взгляните на таблицу, по которым можно подобрать аналоги с соответствующей выводной цоколевкой. Они отличаются применением 3-го вывода.

ШИМ-регуляторы (PWM), где по-другому используется вывод 3, таблица:

Таблица

При применении всех указанных ШИМ, присмотритесь к выводу 3. С его помощью можно обеспечить тепловую защиту и избежать увеличения напряжения на входе. Допускается фиксированная или регулируемая конденсатором частота.

Как собрать корпус SOT23 собственноручно

Приготовьте 3 куска монтажного провода подходящей длины, желательно, МГТФ. Из них получатся выводы корпуса.

Собрать корпус 1

Для защиты сделайте небольшую зачистку на пару миллиметров со стороны, которая припаивается к корпусу.

Замкните концы кусочков провода на участке, который впаивают в плату и зафиксируйте, чтобы уравнять потенциалы.

С помощью тонкого пинцета сделайте из пластика корпус, и зажмите его так:

Собрать корпус 2

Наденьте на паяльник так называемое игольчатое жало, оно, как правило, есть в паяльных станциях.

Установите на станции минимальную температуру, чтобы паять только припой. Ее можно определить только экспериментально.

Возьмите кусок провода в одну руку, паяльник — в другую. Можно паять стандартным припоем из свинца. Ни в коем случае нельзя перегревать контакты корпуса, а контакты паяльника — распаяйте и подпаяйте провода для выводов. Они должны быть уложены в виду пучка.

Собрать корпус 3

Припаивайте провода в определенном порядке, начиная с истока, и заканчивая затвором.

Не прикасайтесь к корпусу руками, трогать можно только паяльник и провода. При необходимости поправьте с помощью пинцета положение корпуса.

Готово! Вы не просто собрали корпус, а теперь он выводной. Его можно использовать, как все остальные транзисторы МОП.

На AliExpress очень большой выбор транзисторов в корпусе SOT-23, можете по ссылке перейти и выбрать для себя нужный.

SMD МАРКИРОВКА

Электронная промышленность выпускает большой ассортимент миниатюрных радиоэлементов для монтажа электронных схем сразу на дорожки печатных плат (их обычно называют SMD, чип, планарные или детали для поверхностного монтажа). Корпуса таких деталей могут различаться как по форме, так и по размеру.

Таблица кодировок планарных SMD деталей

Указаны первые 2 символа чип-элемента. Нажав на них вы попадёте на страницу с другой таблицей, где приводятся различные варианты остальных символов с кратким обозначением функций и параметров для каждого. Полная таблица здесь

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *