Как проверить микросхему на работоспособность мультиметром
Перейти к содержимому

Как проверить микросхему на работоспособность мультиметром

Жив или мёртв? Проверяем радиодетали

Многим из нас часто приходилось сталкиваться с тем, что из-за одной, вышедшей из строя, детальки перестаёт работать целое устройство. Что бы избежать недоразумений, следует уметь быстро и правильно проверять детали. Этому я и собираюсь Вас научить. Для начала, нам потребуется мультиметр

Транзисторы биполярные

Транзисторы

Чаще всего, сгорают в схемах транзисторы. По крайней мере у меня. Проверить их на работоспособность очень просто. Для начала, стоит прозвонить переходы База-Эмиттер и База-Коллектор. Они должны проводить ток в одном направлении, но не пускать в обратном. В зависимости от того, ПНП это транзистор или НПН, ток они будут проводить к Базе или от Базы. Для удобства, можем представить его в виде двух диодов

Так же стоит прозвонить переход Эмиттер-Коллектор. Точнее это 2 перехода. . . Ну в прочем не суть. В любом транзисторе, ток не должен проходить через них в любом направлении, пока транзистор закрыт. Если же на Базу подали напряжение, то ток протекая через переход База-Эмиттер откроет транзистор, и сопротивление перехода Эмиттер-Коллектор резко упадёт, почти до нуля. Учтите, что падение напряжения на переходах транзистора обычно не ниже 0,6В. А у сборных транзисторов (Дарлингтонов) более 1,2В. По этому некоторые «китайские» мультиметры с батарейкой в 1,5В просто не смогут их открыть. Не поленитесь/поскупитесь достать себе мультиметр с «Кроной»!

Учтите, что в некоторых современных транзисторах параллельно с цепью Коллектор-Эмиттер встроен диод. Так что стоит изучить даташит на Ваш транзистор, если Коллектор-Эмиттер звонится в одну сторону!

Если хотя бы одно из утверждений не подтверждается, то транзистор нерабочий. Но прежде чем заменить его, проверьте оставшиеся детали. Возможно причина в них!

Транзисторы униполярные (полевые)

У исправного полевого транзистора между всеми его выводами должно быть бесконечное сопротивление. Причем бесконечное сопротивление прибор должен показывать независимо от прикладываемого тестового напряжения. Следует заметить, что имеются некоторые исключения.

Если при проверке приложить положительный щуп тестового прибора к затвору транзистора n-типа, а отрицательный — к истоку, зарядится емкость затвора и транзистор откроется. При замере сопротивления между стоком и истоком прибор покажет некоторое сопротивление. Неопытные ремонтники могут принять такое поведение транзистора за его неисправность. Поэтому перед «прозвонкой» канала «сток-исток» замкните накоротко все ножки транзистора, чтобы разрядить емкость затвора. После этого сопротивление сток-исток должно стать бесконечным. В противном случае транзистор признается неисправным.

Учтите ещё, что в современных мощных полевых транзисторах между стоком и истоком имеется встроенный диод поэтому канал «сток-исток» при проверке ведет себя как обычный диод. Для того чтобы избежать досадных ошибок, помните о наличии такого диода и не примите это за неисправность транзистора. Проверить это легко, пролистав даташит на Ваш экземпляр.

Конденсаторы

Конденсатор

Конденсаторы – ещё одна разновидность радиодеталей. Они тоже довольно часто выходят из строя. Чаще всего умирают электролитические, плёнки и керамика портятся несколько реже. . .

Для начала, платы стоит обследовать визуально. Обычно мёртвые электролиты надуваются, а многие даже взрываются. Присмотритесь! Керамические конденсаторы не надуваются, но могут взорваться, что тоже заметно! Их, как и электролиты надо прозванивать. Ток они проводить не должны.

Перед началом электронной проверки конденсатора необходимо провести механическую проверку целостности внутреннего контакта его выводов.

Для этого достаточно поочерёдно согнуть выводы конденсатора под небольшим углом, и аккуратно поворачивая их в разные стороны, а также слегка потягивая на себя, убедиться в их неподвижности. В случае, если хотя бы один вывод конденсатора свободно вращается вокруг своей оси, или свободно вынимается из корпуса, то такой конденсатор считается не пригодным и дальнейшей проверке не подлежит.

Ещё один интересный факт – заряд/разряд конденсаторов. Это можно заметить, если мерять сопротивление конденсаторов, ёмкостью более 10мкФ. Оно есть и у меньших емкостей, но не так заметно выражен! Как только мы подключим щупы, сопротивление будет единицы Ом, но в течении секунды вырастет до бесконечности! Если мы поменяем щупы местами, эффект повторится.

Проверка конденсатора

Соответственно, если конденсатор проводит ток, или не заряжается, то он уже ушёл в мир иной.

Резисторы

Резисторы

Резисторы – их больше всего на платах, хотя они не так то уж и часто выходят из строя. Проверить их просто, достаточно сделать одно измерение – проверить сопротивление.

Проверка резистора

Если оно меньше бесконечности и не равно нулю, то резистор скорее всего пригоден к использованию. Обычно, мёртвые резисторы чёрные – перегретые! Но чёрные бывают и живыми, хотя их тоже стоит заменить. После нагрева, их сопротивление могло измениться от номинального, что плохо повлияет на работу устройства! Вообще стоит прозвонить все резисторы, и если их сопротивление отличается от номинального, то лучше заменить. Заметьте, что отличие от номинала на ± 5% считается допустимым. . .

Диоды

Диоды

Проверить диоды по моему проще всего. Померили сопротивление, с плюсом на аноде, показывать должно несколько десятков/сотен Ом. Померили с плюсом на катоде – бесконечность. Если не так, то диод стоит заменить. . .

Индуктивность

Редко, но всё же из строя выходят индуктивности. Причины тому две. Первая – КЗ витков, а вторая – обрыв. Обрыв вычислить легко – достаточно проверить сопротивление катушки. Если оно меньше бесконечности, то всё ОК. Сопротивление индуктивностей обычно не более сотен Ом. Чаще всего несколько десятков. . .

КЗ между витков вычислить несколько труднее. Надо проверить напряжение самоиндукции. Это работает только на дросселях/трансформаторах, с обмотками в хотя бы 1000 витков. Надо подать импульс низковольтный на обмотку, А после, замкнуть эту обмотку лампочкой газоразрядной. Фактически, любя ИН-ка. Импульс обычно подают, слегка касаясь контактов КРОНЫ. Если ИН-ка в итоге мигнёт, то всё норм. Если нет, то либо КЗ витков, либо очень мало витков. . .

Как видите, способ не очень точный, и не очень удобный. Так что сначала проверьте все детали, и лишь потом грешите на КЗ витков!

Оптопары

Оптопара фактически состоит из двух устройств, поэтому проверять её немного сложнее. Сначала, надо прозвонить излучающий диод. Он должен как и обычный диод прозваниваться в одну сторону и служить диэлектриком в другую. Затем надо подав питание на излучающий диод померить сопротивление фотоприёмника. Это может быть диод, транзистор, тиристор или симистор, в зависимости от типа оптопары. Его сопротивление должно быть близким к нулю.

Затем убираем питание с излучающего диода. Если сопротивление фотоприёмника выросло до бесконечности, то оптопара целая. Если что-то не так, то её стоит заменить!

Тиристоры

Ещё один важный ключевой элемент – тиристор. Так же любит выходить из строя. Тиристоры так же бывают симметричные. Называются симисторы! Проверить и те и другие просто.

Берём омметр, плюсовой щуп подключаем к аноду, минусовой к катоду. Сопротивление равно бесконечности. Затем управляющий электрод (УЭ) подсоединяем к аноду. Сопротивление падает до где-то сотни Ом. Затем УЭ отсоединяем от анода. По идее, сопротивление тиристора должно остаться низким – ток удержания.

Но учтите, что некоторые «китайские» мультиметры могут выдавать слишком маленький ток, так что если тиристор закрылся, ничего страшного! Если он всё же открыт, то убираем щуп от катода, а через пару секунд присоединяем обратно. Теперь тиристор/симистор точно должен закрыться. Сопротивление равно бесконечности!

Если некоторые тезисы не совпадают с действительностью, то Ваш тиристор/симистор нерабочий.

Стабилитроны

Стабилитроны

Стабилитрон – фактически один из видов диода. По этому проверяется он так же. Заметим, что падение напряжения на стабилитроне, с плюсом на катоде равно напряжению его стабилизации – он проводит в обратную сторону, но с бОльшим падением. Чтоб это проверить, мы берём блок питания, стабилитрон и резистор на 300. 500Ом. Включаем их как на картинке ниже и меряем напряжение на стабилитроне.

Проверка стабилитрона

Мы плавно подымаем напряжение блока питания, и в какой-то момент, на стабилитроне напряжение перестаёт расти. Мы достигли его напряжения стабилизации. Если этого не случилось, то либо стабилитрон нерабочий, либо надо ещё повысить напряжение. Если Вы знаете его напряжение стабилизации, то прибавьте к нему 3 вольта и подайте. Затем повышайте и если стабилитрон не начал стабилизировать, то можете быть уверены, что он неисправен!

Стабисторы

Стабилитроны

Стабисторы – одна из разновидностей стабилитронов. Единственное их отличие в том, что при прямом включении – с плюсом на аноде, падение напряжения на стабисторе равно напряжению его стабилизации, а в другую сторону, с плюсом на катоде, ток они не проводят вообще. Достигается это включением нескольких кристаллов-диодов последовательно.

Учтите, что мультиметр с напряжением питания в 1,5В чисто физически не сможет вызвонить стабистор скажем на 1,9В. По этому включаем наш стабистор как на картинке ниже и меряем напряжение на нём. Подать надо напряжение около 5В. Резистор взять сопротивлением в 200. 500Ом. Повышаем напряжение, меряя напряжение на стабисторе.

Проверка стабистора

Если на какой то точке оно перестало расти, или стало расти очень медленно, то это и есть его напряжение стабилизации. Он рабочий! Если же он проводит ток в обе стороны, или имеет крайне низкое падение напряжения в прямом включении, то его стоит заменить. По видимому, он сгорел!

Шлейф/разъём

Шлейф/разъём

Проверить различного рода шлейфы, переходники, разъёмы и др. довольно просто. Для этого надо прозвонить контакты. В шлейфе каждый контакт должен звониться с одним контактом на другой стороне. Если контакт не звонится ни с каким другим, то в шлейфе обрыв. Если же он звонится с несколькими, то скорее всего в шлейфе КЗ. Тоже самое с переходниками и разъёмами. Те из них, которые с обрывом или КЗ считаются бракованными и использованию не подлежат!

Микросхемы/ИМС

Микросхемы

Их великое множество, они имеют много выводов и выполняют разные функции. Поэтому проверка микросхемы должна учитывать её функциональное назначение. Точно убедиться в целости микросхем довольно трудно. Внутри каждая представляет десятки-сотни транзисторов, диодов, резисторов и др. Есть такие гибриды, в которых одних только транзисторов более 2000000000 штук.

Одно можно сказать точно – если Вы видите внешние повреждения корпуса, пятна от перегрева, раковины и трещины на корпусе, отставшие выводы, то микросхему стоит заменить – она скорее всего с повреждением кристалла. Греющаяся микросхема, назначение которой не предусматривает её нагрева, должна быть так же заменена.

Полная проверка микросхем может осуществляться только в устройстве, где она подключена так, как ей полагается. Этим устройством может быть либо ремонтируемая аппаратура, либо специальная, проверочная плата. При проверке микросхем используются данные типового включения, имеющиеся в спецификации на конкретную микросхему.

Ну всё, ни пуха Вам, и поменьше горелых деталек!

GENIAL Опубликована: 2012 г. 0 0
Вознаградить Я собрал 0 1

Неисправности микросхем

Любая современная техника не может обойтись без применения микросхем. Они универсальны, практичны и очень эффективны по сравнению с дискретными деталями. Одна микросхема может заменить целую плату деталей.

Но как диагностировать микросхемы, если все компоненты находятся в одном корпусе?

Микросхему на исправность сложнее проверить, чем условный биполярный транзистор или резистор, но это вполне возможно сделать даже без мультиметра.

Визуальная диагностика

Радиодетали не выходят из строя просто так. И последствия их неисправностей можно увидеть визуально. Рассмотрим наиболее частые неисправности, когда их можно заметить визуально.

Условно все причины неисправностей можно разделить на 3 категории: попадание влаги, механические и электрические повреждения.

Все они могут быть взаимосвязаны, и даже зависеть друг от друга. Рассмотрим поподробнее каждую типичную неисправность микросхем с диагностикой и примерами.

Электрические повреждения

Микросхема может выйти из строя из-за банального короткого замыкания. Обычно на таких микросхемах могут появиться дырки. Это называется тепловым пробоем.

Тепловой пробой – это когда через микросхему прошел ток, который повредил ее настолько, что на корпусе появилась дырка. Т.е. она «сгорела», и даже дымилась какое-то время. Дырка на корпусе появляется от большого количества тепла, который создал проходящий через микросхему ток. Микросхема не рассчитана на такой ток, поэтому ее корпус не выдерживает, и начинает разрушение в уязвимом участке.

Ниже приверед наглядный пример теплового пробоя микросхемы управления шаговым двигателем (драйвер).

На микросхеме был установлен радиатор, но даже это не спасло микросхему от теплового пробоя.

Как правило такие микросхемы полностью утрачивают свою работоспособность. А еще при таком тепловом пробое могут повредиться дорожки. После выпаивания поврежденной микросхемы внимательно посмотрите на дорожки и окружающие детали, чтобы они были целые и без повреждений. Еще может вздуться текстолит, но это происходит очень редко.

Также при коротком замыкании микросхемы могут полностью обуглиться, и оставить следы нагара на плате и окружающих деталях. Нагар надо обязательно удалять с платы т.к. он может проводить ток.

Проверка микросхем мультиметром

Иной пример абсолютно аналогичной неисправности можно найти в ноутбуках.

Например, на платах ноутбуков достаточно случайно закоротить USB порт (или статическим электричеством), и тут же может выйти из строя хаб (группа микросхем). И это 100% короткое замыкание. И при этом визуально микросхема будет без каких-либо повреждений. Тем не менее, таких микросхемы можно легко проверить на исправность мультиметром.

В качестве примере рассмотрим проверку микросхемы в DIP корпусе.

У каждой микросхемы есть питание. И как правило именно оно и выходит из строя, если микросхема не выполняет своих функций.

Ниже приведен пример распиновки микросхемы-таймера NE555.

У этой микросхемы (как и у любой другой) есть питание. Питание обозначается Vcc (грубо говоря плюс) и GND (минус). При помощи мультиметра можно проверить целостность питания, как будто проверяем обычный диод на исправность.

В примере ниже мультиметром будет проверяться другая микросхема, но суть одна и та же.

Переключаем мультиметр в режим прозвонки.

Режим прозвонки обычно показывают в виде УГО диода со знаком излучения звука.

И теперь достаточно прозвонить Vcc и GND (питание) микросхемы.

Как и диод, она не должна показывать нули при прямой прозвонке (плюсовой щуп мультиметра к плюсу (Vcc) микросхемы, минусовой щуп мультиметра к минусу (GDD)).

Так и при обратной.

Конечно этот метод не универсален. Например, есть платы у которых обвязка возле микросхем может влиять на измерения. Либо придется выпаивать микросхему из платы, либо отпаивать детали или выводы микросхемы, чтобы они не влияли на проверку.

Однако диагностировать те же ноутбуки на исправности видеочипа или хаба достаточно просто, если знать их рабочие сопротивления и состояния. И там влияние компонентов не толь велико. Все зависит от платы.

Проверка при помощи сервис мануалов

У каждой выпускаемой техники существуют сервис мануалы. По ним можно проверять работоспособность плат (соответственно, и микросхем) следуя инструкциям. Например «На контакте шлейфа номер 12 есть напряжение 5в?». И далее несколько следующих шагов, которые приведут к окончательному решению по ремонту.

Хотя в сервис мануалах рекомендуют менять плату сразу целиком, даже без конкретных замены радиодеталей.

Конечно не получится найти мануал на любую технику в силу различных обстоятельств, но можно найти технику, где используется аналогичная микросхема или плата. У смартфонов разных производителей могут быть одинаковые контроллеры питания. Поэтому здесь важен опыт и навыки поиска информации.

Также не стесняйтесь спрашивать информацию о микросхемах на форумах и группах в социальных сетях об электронике. (естественно перед этим самостоятельно поискав информацию во всех доступных источниках)

Типовые схемы включения

Помимо сервис мануалов еще есть и даташиты с простыми схемами выключения. Т.е. грубо говоря можно собрать схему для простой проверки работоспособности микросхем.

Почему микросхема греется и методы ее диагностики

Еще один типичный случай с кротким замыканием – это когда микросхема сильно греется. Здесь возможны сразу несколько вариантов.

Большинство начинающих ремонтников сразу же заявляют, что если микросхема греется, то именно она неисправна. Это отчасти правда, но только в редких случаях. Если микросхема греется – это не значит, что именно она неисправна. Но именно это влияет на ее функции и общую работоспособность платы и устройства в целом.

В качествен примера рассмотрим ситуацию с контроллерами питания на смартфонах. Эти микросхемы управляют питанием всей узлов устройства. И именно через нее проходят все токи. Допустим, микросхема греется, и вы поменяли ее. И снова та же проблема. А проблем оказалась вообще не в ней, а в другой части платы, где есть короткое замыкание.

Через микросхему проходит большой ток именно в ту часть платы, где находится неисправная радиодеталь, которая как раз вызывает сильный нагрев микросхемы.

Можно как визуально найти неисправную коротящую деталь (она может быть повреждена, со следами окисла, более темная, со следами ржавчинами и т.п.), так и по выделяемому теплу.

Если с визуальным обнаружением могут возникнуть проблемы (без микроскопа найти на плате поврежденный SMD конденсатор или резистор довольно проблематично + нужно внимание), то с обнаружением по выделяемому теплу все куда может быть проще.

Конечно тут тоже бывают разные случаи. Одно дело нагрев от 2 А, а другое дело от 20 мА. Хотя природа неисправностей могут быть идентичны, но методы диагностики придется использовать разные.

Диагностика при помощи кассового чека

Подключите плату к лабораторному блоку питанию с ограничением по току короткого замыкания. Это нужно для того, чтобы окончательно не добить нагревающуюся микросхему.
Далее прислоняем кассовый чек к плате.

И как результат можно увидеть на бумаге силуэт той детали, из-за которой происходит короткое замыкание.

Естественно будет след и от нагрева микросхемы, но саму микросхему греет другая неисправная деталь.

  1. Нагрев микросхемы происходит из-за короткого замыкания на другом участке платы.В данном случае неисправна не сама микросхема, а другая радиодеталь. Микросхема просто стоит на пути у большого тока, и пропускает его через себя;
  2. Неисправна и микросхема и другая радиодеталь.Так получилось, что неисправная радиодеталь добила микросхему. Она не может постоянно нагреваться, и рано или поздно выйдет из строя;
  3. Все-таки неисправна сама микросхема. Да, так бывает. особенно если проблема с контактами;
  4. На плате имеются следы попадания влаги.. Далее разберём подобные случаи.

Попадание влаги

Ниже пример микросхемы со следами от воды.

Вообще попадание влаги на плату это не всегда одинаковый сценарий. Может быть как частичное залитие платы, так и полное уничтожение коррозией.

Механические повреждения

Механические повреждения микросхем (и радиодеталей в частности) носят обширный характер. Это могут быть последствия ударов по корпусу прибора, и неаккуратные эксплуатация и ремонт.

Повреждения корпуса

Типичный пример повреждения корпуса.

Корпус можно повредить пинцетом просто передавив его. Но тут спорная ситуация. Микросхема может быть и исправна, если на ее стеклянном основании нет трещин, даже если корпус серьезно поврежден.

А здесь пример окончательного уничтожения микросхемы. Только полная замена.

Повреждения окружающих деталей

Микросхема не может работать без «обвязки» — радиодеталей, которые создают условия для работы.

SMD конденсаторы очень легко сносятся пинцетами. Будьте аккуратнее при замене модулей на смартфонах.

Отвал контактов

Схема не будет работать, если контакты с радиодеталями повреждены. Среди основных типовых корпусов микросхем (DIP, SMD, BGA) BGA труднее всего визуально оценить на предмет отвала контактов.

Отвал контакта может быть от микросхемы (небольшие микросхемы — это питание, память, модемы на смартфонах):

Шарики припоя отсутствуют на контактах микросхемы.

А вот тут пример отвала уже контакта с микросхемой (т.е. шарик остается на микросхеме), причем с повреждениями (большие микросхемы — это обычно это материнские платы).

Как можно заметить, большие BGA контакты чаще всего забирают с собой кусочки платы.

В принципе отвал можно отнести к механическим повреждениям, но к отвалу можно отнести и плохое качество пайки.

Методы диагностики отвала

Прогрев платы может быть как вариант диагностики, но не ремонта.

Защита от производителей

На фото ниже следы от компаунда. Это вещество снижает вероятность перегрева, механического повреждения и попадания влаги. Однако диагностировать микросхему с комаундом труднее чем кажется. Даже просто отпаять микросхему с компаундом становится в разы сложнее. На фото нижэе пример остатка компаунда от микросхемы памяти (EMMC) на BGA контактах

Как проверить микросхему на работоспособность

Прежде чем проверять любую микросхему на работоспособность, необходимо знать и понимать ее устройство, хотя бы приблизительно. Это нужно для того, чтобы заранее представлять себе, какие сигналы или напряжения ожидать от исправной микросхемы на ее выводах.

Лучше всего для проверки конкретной микросхемы собрать хотя бы на макетной плате схему для ее тестирования, — это в том случае, если микросхема новая или уже выпаяна.

Вообще, если устройство микросхемы известно, то в некоторых ситуациях ее можно проверить даже не выпаивая с платы, на которой она установлена, просто измерив сигналы на ножках при помощи мультиметра или осциллографа. Тогда наличие или отсутствие сигнала либо искаженная форма импульса сразу покажут, что — к чему.

Как проверить микросхему на работоспособность

Внешний осмотр микросхемы

Допустим что микросхема все еще установлена на плате и выпаивать ее сразу нежелательно. Прежде чем подавать питание на плату, внимательно осмотрите микросхему со всех сторон. Быть может есть очевидные физические признаки ее неисправности: трещина на корпусе, обгоревший или отпавший вывод, короткое замыкание между ножками из-за попадания куска провда (и такое бывет), горелые обвесные компоненты и т. д. Если при осмотре никаких поврежднеий не выявлено, можно идти дальше.

Если к текущему моменту на плату подано питание, то можно аккуратно (с соблюдением техники безопасности!) приступать к дальнейшей проверке микросхемы.

Проверка выводов питания

Первым делом диагностируют цепи питания микросхемы. Это можно проделать при помощи вольтметра (мультиметра). Уточнить выводы питания известной микросхемы очень легко — достаточно заглянуть в документацию (datasheet) на нее. Плюс положительного питания обозначаетя в даташите как VCC+, отрицательное питание VCC-, общий провод имеет обозначение GND.

Итак, минусовой щуп мультиметра устанавливается на общий провод — упирается в минусовой вывод микросхемы, а плюсовой (красный) щуп мультиметра — на соответствующую ножку питания. Если напряжение соответствует норме для микросхемы, значит питание подается как надо, следовательно цепи питания всего устройства исправны.

Если же напряжение питания не в норме, значит необходимо далее проверить саму цепь питания, хотя бы предворительно отпаяв ее от микросхемы. Если цепи питания работают нормально без микросхемы, занчит проблема в микросхеме, и в худшем случае ее действительно придется менять. Если же проблема в цепях питания, значит скорее всего необходимо ремонтировать их (конденсатор, стабилизатор и т. д.).

Проверка микросхемы мультиметром

Проверка источника опорного напряжения

Далее проверяют все известные выводы микросхемы. Например, можно начать с измерения напряжения на выводе встроенного в микросхему источника опорного напряжения Vref, нормальное значение которого указано в документации. На этом выводе должно быть постоянное напряжение определенного значения относительно общего провода. Если оно меньше или сильно больше, занчит внутри микросхемы или в обвесных компонентах что-то не так, и следует продолжить диагностику.

Проверка времязадающих цепей

Если на микросхеме есть какая-нибудь RC-цепь, то на ней, как правило, в рабочем режиме должны наблюдаться пилообразные колебания. На этом этапе опять же полезным будет обратиться к даташиту, чтобы понять где находится данная цепь если она предусмотрена, и на какой ножке должны быть колебания.

Проверка осуществляется осциллографом. Общий его щуп цепляется на минус питания, а измерительный — на соответствующий вывод микросхемы. Если колебания есть и их форма приемлема — все в порядке, можно идти дальше. Если колебаний нет, то скорее всего проблема в микросхеме или в обвесных времязадающих компонентах.

Проверка сигнальных выводов

Наконец, проверяют сигнальные выводы (выходы) микросхемы. Если микросхема управляет каким-то ключом или следующим блоком на схеме, то на соответствующих выходах (или хотя бы на одном выходе, если он единственный) микросхемы должны присутствовать правильные сигналы. Посмотрите в даташите, к каким выводам должны подходить управляемые цепи.

Проверьте осциллографом данные выводы тем же путем, как проверяли RC-цепь. Если сигнал нормальный и значительно не искажен по сравнению с нормальной формой, значит все в порядке. Если сигнал отсутствует или сильно искажен, скорее всего микросхема повреждена, и ее следует заменить, предварительно проверив управляемую цепь, ведь в действительности она может оказаться причиной выхода микросхемы из строя.

Как проверить плату на работоспособность мультиметром

Часто возникает ситуация, когда из-за вышедшей из строя маленькой незначительной детали перестает работать бытовой прибор. Поэтому, ответ на вопрос, как прозванивать плату мультиметром, хотели бы знать многие начинающие радиолюбители. Главное в этом деле быстро обнаружить причину поломки.

Перед выполнением инструментальной проверки, необходимо осмотреть плату на наличие поломок. Электрическая схема платы должна быть без повреждений мостиков, детали не должны быть распухшими и черными.

Приведем правила проверки некоторых элементов, в том числе и материнской платы.

С чего начинается диагностика?

Первым и необходимым этапом диагностики является визуальный осмотр состояния материнской платы. Нам предстоит выявить наличие видимых повреждений на ее поверхности. Для этого снимем крышку системного блока и посмотрим непосредственно на материнскую плату. Первое, на что нужно обратить внимание — не вздуты ли электролитические конденсаторы (как это показано на рисунке).
Если да, то придется менять всю плату (заменой отдельных конденсаторов дело не обойдется). Если вздутий не обнаружилось, переходим к дальнейшему осмотру.

Внимательно осмотрите другие электрические элементы на предмет наличия потемнения на их поверхности и стертых надписей (показано на рисунке).

Стабилитроны, шлейфы/разъемы

Для тестирования стабилитрона понадобится блок питания, резистор и мультиметр. Соединяем резистор с анодом стабилитрона, через блок питания подаем напряжение на резистор и катод стабилитрона, плавно поднимая его.

На дисплее мультиметра, подключенного к выводам стабилитрона, мы можем наблюдать плавный рост уровня напряжение. В определенный момент напряжение перестает расти, независимо от того, увеличиваем ли мы его блоком питания. Такой стабилитрон считается исправным.

Для проверки шлейфов необходимо прозвонить контакты мультиметром. Каждый контакт с одной стороны должен звониться с контактом с другой стороны в режиме «прозвонки». В случае если один и тот же контакт звонится сразу с несколькими – в шлейфе/разъеме короткое замыкание. Если не звонится ни с одним – обрыв.

Иногда неисправность элементов можно определить визуально. Для этого придется внимательно осмотреть микросхему под лупой. Наличие трещин, потемнений, нарушений контактов может говорить о поломке.

Три варианта действий

Проверка микросхем — достаточно сложный процесс, который, зачастую, оказывается невозможен. Причина кроется в том, что микросхема содержит большое число различных радиоэлементов. Однако даже в такой ситуации есть несколько способов проверки:

  1. внешний осмотр. Внимательно изучив каждый элемент микросхемы, можно обнаружить дефект (трещины на корпусе, прогар контактов и т.п.);
  2. проверка питания мультиметром. Иногда проблема кроется в коротком замыкании со стороны питающего элемента, его замена может помочь исправить ситуацию;
  3. проверка работоспособности. Большинство микросхем имеют не один, а несколько выходов, потому нарушение в работе хотя бы одного из элементов приводит к отказу всей микросхемы.

Самыми простыми для проверки являются микросхемы серии КР142. На них имеется всего три вывода, поэтому при подаче на вход любого уровня напряжения, на выходе мультиметром проверяется его уровень и делается вывод о состоянии микросхемы.

Следующими по сложности проверки являются микросхемы серии К155, К176 и т.п. Для проверки нужно использовать колодку и источник питания с конкретным уровнем напряжения, подбираемым под микросхему. Так же как и в случае с микросхемами серии КР142, мы подаем сигнал на вход и контролируем его уровень на выходе с помощью мультиметра.

Применение специального тестера

Для более сложных проверок нужно пользоваться специальным тестером микросхем, который можно приобрести или сделать своими руками. При прозвонке отдельных узлов микросхемы на экран дисплея будут выводиться данные, анализируя которые можно прийти к выводу об исправности или неисправности элемента.

Стоит не забывать, что для полноценной проверки микросхемы нужно полностью смоделировать ее нормальный режим работы, то есть обеспечить подачу напряжения нужного уровня. Для этого проверку стоит проводить на специальной проверочной плате.

Зачастую, осуществить проверку микросхемы, не выпаивая элементы, оказывается невозможным, и каждый из них должен прозваниваться отдельно. О том, как прозвонить отдельные элементы микросхемы после выпаивания будет рассказано далее.

Четвертый шаг

Проделаем более подробный тест, отключив от материнской платы все подключенные к ней компоненты, и попытаемся выяснить, нет ли проблемы в каком-то из них. Для этого отсоединим все разъемы (оперативной памяти, видеокарту), кроме центрального процессора и питания. После этого включим блок питания и спикер в сеть и нажмем кнопку включения компьютера.

Если материнская плата исправна, вы должны услышать один короткий и один длинный сигнал спикера, который указывает на неисправность оперативной памяти и косвенно указывает на то, что с платой все в порядке. Если спикер молчит, значит неисправна материнская плата. В этом случае ее придется заменить.

Далее подключаем модули оперативной памяти и снова слушаем спикер. Если оперативная память исправна, вы услышите один длинный и два коротких сигнала. Это указывает на то, что неисправность возможна в видеокарте.

Повторяем процедуру, только на этот раз, подключив видеокарту и монитор. Если все хорошо, то вы услышите один сигнал в спикере и увидите на мониторе заставку BIOS. Если нет — проблема в видеокарте. Однако, сигнал может отсутствовать, и при этом видеокарта также будет исправна. Такое может случиться в том случае, если центральный процессор имеет встроенное графическое ядро (определить его наличие можно в инструкции по эксплуатации, либо на сайте производителя).

Индуктивность и тиристоры

Проверка катушки на обрыв осуществляется замером ее сопротивления мультиметром. Элемент считается исправным, если сопротивление меньше бесконечности. Надо заметить, что не все мультиметры способны проверять индуктивность.

Проверка тиристора происходит следующим образом. Прикладываем красный щуп к аноду, а черный – к катоду. В окошке мультиметра должно отобразиться бесконечное сопротивление.

После этого управляющий электрод соединяем с анодом, наблюдая за падением сопротивления на дисплее мультиметра до сотен Ом. Управляющий электрод открепляем от анода – сопротивление тиристора не должно измениться. Так ведет себя полностью исправный тиристор.

Проверка отдельных деталей

Разберем несколько деталей, при поломке которых выходит из строя схема, а вместе с этим и все оборудование.

Резистор

На различных платах данную деталь применяют довольно часто. И так же часто при их поломке происходит сбой в работе прибора. Резисторы несложно проверить на работоспособность мультиметром. Для этого необходимо провести измерение сопротивления.

При значении, стремящемся к бесконечности, деталь следует заменить. Неисправность детали можно определить визуально. Как правило, они чернеют из-за перегрева. При изменении номинала более 5%, резистор требует замены.

Проверка диода на неисправность не займет много времени. Включаем мультиметр на замер сопротивления. Красный щуп на анод детали, черный на катод — показание на шкале должно быть от 10 до 100 Ом.

Переставляем щупы мультиметра, теперь минус (черный щуп) на аноде — показание, стремящееся к бесконечности. Эти величины говорят об исправности диода.

Катушка индуктивности

Плата редко выходит из строя по вине этой детали. Как правило, поломка случается по двум причинам:

  • витковое короткое замыкание;
  • обрыв цепи.

Проверив значение сопротивления катушки мультиметром, при значении менее бесконечности — цепь не оборвана. Чаще всего, сопротивление индуктивности имеет значение в несколько десятков омов.

Определить витковое замыкание немного труднее. Для этого прибор переводим в сектор измерения напряжения цепи. Необходимо определить величину напряжения самоиндукции.

На обмотку подаем небольшой по напряжению ток (чаще всего используют крону), замыкаем ее с лампочкой. Лампочка моргнула — замыкания нет.

Шлейф

В этом случае следует прозванивать контакты входа на плату и на самом шлейфе. Заводим щуп мультиметра в один из контактов и начинаем прозвон. Если идет звуковой сигнал, значит, эти контакты исправны.

При неисправности одно из отверстий не найдет себе «пару». Если же один из контактов прозвонится сразу с несколькими — значит, пришло время менять шлейф, поскольку на старом короткое замыкание.

Микросхема

Выпускается большое разнообразие этих деталей. Замерить и определить неисправность микросхемы с помощью мультиметра достаточно тяжело, наиболее часто используют тестеры pci.

Мультиметр не позволяет провести замер, потому что в одной маленькой детали находится несколько десятков транзисторов и других радиоэлементов. А в некоторых новейших разработках сконцентрированы миллиарды компонент.

Определить проблему можно только при визуальном осмотре (повреждения корпуса, изменение цвета, отломанные выводы, сильный нагрев). Если деталь повреждена, ее необходимо заменить.

Нередко при поломке микросхемы, компьютер и другие приборы перестают работать, поэтому поиск поломки следует начинать именно с обследования микросхемы.

Тестер материнских плат — это оптимальный вариант определения поломки отдельной детали и узла. Подключив POST карту к материнке и запустив режим тестирования, получаем на экране прибора сведения об узле поломки. Выполнить обследование тестером pci сможет даже новичок, не имеющий особых навыков.

Стабилизаторы

Ответ на этот вопрос, как проверить стабилитрон, знает каждый радиотехник. Для этого переводим мультиметр в положение замера диода. Затем касаемся щупами выходов детали, снимаем показания. Меняем местами щупы и выполняем замер и записываем цифры на экране.

Транзисторы (полевые и биполярные)

Переводим мультиметр в режим «прозвонки», подключаем красный щуп к базе транзистора, а черным касаемся вывода коллектора. На дисплее должно отобразиться значение пробивного напряжения.

Схожий уровень будет показан и при проверке цепи между базой и эмиттером. Для этого красный щуп соединяем с базой, а черный прикладываем к эмиттеру.

Следующим шагом будет проверка этих же выводов транзистора в обратном включении. Черный щуп подключаем к базе, а красным щупом по очереди касаемся эмиттера и коллектора. Если на дисплее отображается единица (бесконечное сопротивление), то транзистор исправен. Так проверяются полевые транзисторы.

Биполярные транзисторы проверяются аналогичным методом, только меняются местами красный и черный щуп. Соответственно, значения на мультиметре также будут показывать обратные.

Как проверить материнскую плату на работоспособность — видео

Итак, мы разобрали все необходимые шаги по самостоятельной диагностике вашей материнской платы и о том как проверить материнскую плату на работоспособность. Если выявить наличие проблем так и не удалось, вам остается только один шаг — обратиться в сервис центр. Однако, я надеюсь, что моя статья все же окажется полезной и доступной, а изложенные рекомендации помогут вам обойтись без обращения к специалистам. Желаю вам удачи!

Когда дело доходит до вопросов, касающихся компьютерной техники, в частности материнских плат, то самое неприятное — это ее дефекты. Материнская плата является одним из самых дорогих компонентов компьютера, поэтому покупка новой материнской платы может существенно ударить по вашему карману. Иногда владельцы компьютеров и даже техники преждевременно выносят вердикт о поломке даже не проводя диагностические тесты. Эта статья поможет вам провести необходимые тесты для того, чтобы убедиться, что материнская плата действительно «мертва».

Примечание: перед выполнением каких-либо действий с вашей материнской платой, обязательно снимите с себя статическое электричество. Схемы в плате компьютера чувствительны к любой форме электрического заряда, в том числе и к статическому электричеству вашего тела.

Первый лист

  1. Проверка настроек проекта:
      ревизия (Поле revision в свойствах — используется впоследствии для генерации документации)
  2. настройки компилятора (д.б. настроено в проекте по умолчанию) (Настройки компиляции в Altium — что можно, что нельзя. Обычно мы создаём проект из внутреннего шаблона, в котором уже всё хорошо настроено)
  3. Компиляция проекта (есть ли ошибки)
  4. Разъемы: (опираемся на ТЗ и дополнительные пожелания в духе “как на плате ХХ”)
      тип
  5. распиновка
  6. соответствие номера номеру на схеме Э4
  7. Блоки на первом листе:
      охват функционала (Все функции описанные в ТЗ, реализованы)
  8. количество, если многоканальные
  9. синхронизация выводов символов листов
  10. Оформление (Оформление — это важно. Недооформленная схема проверку не проходит)
      Основная надпись
  11. Расположение блоков, подписи, связи

Проверка отдельных деталей

Разберем несколько деталей, при поломке которых выходит из строя схема, а вместе с этим и все оборудование.

Резистор

На различных платах данную деталь применяют довольно часто. И так же часто при их поломке происходит сбой в работе прибора. Резисторы несложно проверить на работоспособность мультиметром. Для этого необходимо провести измерение сопротивления.

При значении, стремящемся к бесконечности, деталь следует заменить. Неисправность детали можно определить визуально. Как правило, они чернеют из-за перегрева. При изменении номинала более 5%, резистор требует замены.

Проверка диода на неисправность не займет много времени. Включаем мультиметр на замер сопротивления. Красный щуп на анод детали, черный на катод — показание на шкале должно быть от 10 до 100 Ом.

Переставляем щупы мультиметра, теперь минус (черный щуп) на аноде — показание, стремящееся к бесконечности. Эти величины говорят об исправности диода.

Катушка индуктивности

Плата редко выходит из строя по вине этой детали. Как правило, поломка случается по двум причинам:

  • витковое короткое замыкание;
  • обрыв цепи.

Проверив значение сопротивления катушки мультиметром, при значении менее бесконечности — цепь не оборвана. Чаще всего, сопротивление индуктивности имеет значение в несколько десятков омов.

Определить витковое замыкание немного труднее. Для этого прибор переводим в сектор измерения напряжения цепи. Необходимо определить величину напряжения самоиндукции.

На обмотку подаем небольшой по напряжению ток (чаще всего используют крону), замыкаем ее с лампочкой. Лампочка моргнула — замыкания нет.

Шлейф

В этом случае следует прозванивать контакты входа на плату и на самом шлейфе. Заводим щуп мультиметра в один из контактов и начинаем прозвон. Если идет звуковой сигнал, значит, эти контакты исправны.

При неисправности одно из отверстий не найдет себе «пару». Если же один из контактов прозвонится сразу с несколькими — значит, пришло время менять шлейф, поскольку на старом короткое замыкание.

Микросхема

Выпускается большое разнообразие этих деталей. Замерить и определить неисправность микросхемы с помощью мультиметра достаточно тяжело, наиболее часто используют тестеры pci.

Мультиметр не позволяет провести замер, потому что в одной маленькой детали находится несколько десятков транзисторов и других радиоэлементов. А в некоторых новейших разработках сконцентрированы миллиарды компонент.

Определить проблему можно только при визуальном осмотре (повреждения корпуса, изменение цвета, отломанные выводы, сильный нагрев). Если деталь повреждена, ее необходимо заменить.

Нередко при поломке микросхемы, компьютер и другие приборы перестают работать, поэтому поиск поломки следует начинать именно с обследования микросхемы.

Тестер материнских плат — это оптимальный вариант определения поломки отдельной детали и узла. Подключив POST карту к материнке и запустив режим тестирования, получаем на экране прибора сведения об узле поломки. Выполнить обследование тестером pci сможет даже новичок, не имеющий особых навыков.

Стабилизаторы

Ответ на этот вопрос, как проверить стабилитрон, знает каждый радиотехник. Для этого переводим мультиметр в положение замера диода. Затем касаемся щупами выходов детали, снимаем показания. Меняем местами щупы и выполняем замер и записываем цифры на экране.

При одном значении порядка 500 Ом, а во втором замере значение сопротивления стремится к бесконечности — эта деталь исправна и годится для дальнейшего использования.

На неисправной — величина при двух измерениях будет равна бесконечности — при внутреннем обрыве. При величине сопротивления до 500-сот Ом — произошел полупробой.

Конденсаторы, резисторы и диоды

Исправность конденсатора проверяется путем подключения щупов мультиметра к его выводам. В течение секунды сопротивление вырастет от единиц Ом до бесконечности. Если поменять местами щупы, то эффект повторится.

Чтобы убедиться в исправности резистора, достаточно замерить его сопротивление. Если оно отлично от нуля и меньше бесконечности, значит, резистор исправен.

Проверка диодов из микросхемы достаточно проста. Измерив сопротивление между анодом и катодом в прямой и обратной последовательности (меняя местами щупы мультиметра), убеждаемся, что в одном случае одно находится на уровне нескольких десятков-сотен Ом, а в другом – стремится к бесконечности (единица в режиме «прозвонки» на дисплее).

П О П У Л Я Р Н О Е:

Если необходимо очистить контакты программного переключателя в видеокамере без его разборки, изумительно помогает жидкость KONTAKT PRF7-78 производства фирмы TAEROSOL (Фин). Впрыскиваю через тоненькую трубочку ( в комплекте с баллоном) прямо в зазор прогр. шестерни. Проникающая способность, моющие и смазывающие свойства просто поражают. Вечно хрипящие регуляторы громкости в отечественной аппаратуре начинают работать как новенькие. Подробнее…

Солнечная электростанция — современный способ электроснабжения нашего дома. Вопрос использования альтернативных источников энергии возникает у многих. И это не удивительно, ведь постоянный рост цен на электричество заставляет задумываться об этом всё чаще и чаще. Вот и встаёт вопрос: почему бы не использовать бесплатные неиссякаемые природные ресурсы — ветер, солнце, воду? Давайте сегодня поговорим об солнечной энергии, а точнее о солнечной электростанции.

Невозможно представить рабочий стол ремонт­ника без удобного недорогого цифрового мультиметра.

В этой статье рассмотрено устройство цифровых мультиметров 830-й серии, его схема, а также наиболее часто встре­чающиеся неисправности и способы их устранения. Подробнее…

Определение при помощи мультиметра

Перед измерением резистора необходимо визуально определить его целостность: осмотреть его на предмет обгоревшего внешнего покрытия — краски или лака, а также проверить надписи на корпусе, если они просматриваются. Определить номинал можно по таблицам рядов или цветовых кодов, после чего при помощи мультиметра можно замерить сопротивление.

Для прозвонки можно использовать простой измерительный прибор, например, DT-830B. В первую очередь необходимо установить переключатель измерений в режим проверки минимального сопротивления — 200 Ом, после чего соединить щупы между собой. Индикатор прибора при соединённых щупах должен показывать минимальное значение R, которое стремится к нулю, например, 0,03 Ома. После так называемой калибровки можно приступить к измерениям.

Конструкция

Если есть 3D модель для устройства, проверка производится по ней.(Чаще всего устройство собрано воедино в 3D САПР, там есть инструменты для проверки интерференций, выполнения сечений и пр.)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *