Как работает термопара в холодильнике
Перейти к содержимому

Как работает термопара в холодильнике

Как устроены и работают термоэлектрические холодильники, их достоинства и недостатки

Термоэлектрический холодильник — охлаждающий прибор, работающий на принципе поглощения тепла в контакте разнородных материалов при прохождении через него тока определенного направления.

Термоэлектрическое охлаждение — понижение (повышение) температур в электрической цепи на основе эффекта Пельтье.

Современный переносной термоэлектрический холодильник

Достоинства термоэлектрических холодильников :

отсутствие движущихся частей и изнашивающихся деталей;

отстувие веществ, вызывающих коррозию;

практически неогранич енный срок службы;

невысокая стоимость при массовом производстве;

небольшие вес и габариты.

Недостаток термоэлектрических холодильников : необходимость непрерывного электропитания (отключение его приводит к быстрому повышению темп ерату ры в рабочем объеме).

Термоэлектрический модуль для охлаждения

При приложении постоянной разности потенциалов к цепи, состоящей из двух проводников, имеющих разную зонную структуру, в местах контактов выделяется или поглощается (в зависимости от направления тока) некоторое количество тепла, как следствие перехода носителей заряда из одного проводника в другой, при этом они теряют часть энергии, преодолевая энергетический барьер (происходит охлаждение), либо приносят с собой добавочную потенциальную энергию (переходящую в кинетическую), «скатываясь» с барьера (происходит нагревание).

Термоэлектрическое охлаждение осуществляется с применением полупроводниковых термоэлементов. При непрерывном рассеянии тепла с горячих спаев термоэлементов на холодных их спаях будет стационарно поддерживаться пониженная температура.

С увеличением силы тока температура снижается до тех пор, пока не наступает динамическое равновесие поглощенного тепла Пельтье с потоком тепла, поступающего с горячих спаев вследствие теплопроводности веществ и за счет части тепла, выделяющегося на холодном спае.

Модуль Пельтье для холодильника

Модуль Пельтье для холодильника

Контактирующая пара для достижения наибольшего эффекта охлаждения изготавливается из полупроводников, обладающих разными знаками коэффициентов термоэдс и имеющих максимальную термоэлектрическую эффективность в рабочем интервале температур.

Виды и технические характеристики термоэлементов: Разновидности модулей Пельтье

Полупроводниковый термоэлемент — устройство, непосредственно преобразующее тепловую энергию в электрическую или осуществляющее охлаждение (нагревание). В первом случае разность температур, возникающая на спаях ветвей термоэлемента при пропускании через него теплового потока, вызывает появление в цепи термоэдс, в результате чего на внешней нагрузке выделяется полезная электрическая мощность. Во втором случае электроны и дырки, движущиеся в ветвях термоэлемента под действием приложенной постоянной разности потенциалов, переносят теплоту с одного спая на другой, вызывая, соответственно, охлаждение одного и нагрев другого спая.

Термоэлементы для термоэлектрических холодильников путем последовательного соединения объединяются в термобатарею в виде плоской плиты (при использовании полупроводников в форме прямоугольных параллелепипедов) или цилиндра (при применении полупроводниковых шайб), при этом горячие и холодные спаи оказываются разнесенными в разные стороны.

Радиаторами батареи, забирающими и отдающими тепло, служат пластины (медные, алюминиевые), которыми коммутируются термоэлементы. В других случаях применяются специльные металлические радиаторы, изолированные от термобатареи (термоблока) слюдяными пластинками, покрытыми смесью алюминиевой пудры с силиконовым лаком.

Подлежащий охлаждению предмет иногда припаивается или приклеивается непосредственно на холодный радиатор батареи.

В иных случаях для размещения объекта изготавливается термоизолированная камера в виде двух, вставленных друг в друга, металлических кожухов (из меди, алюминия), пространство между которыми заполняется теплоизоляционным материалом (обычно пенопластом). Для отбора тепла из рабочего объема холодный радиатор соединяется с внутренним кожухом.

Радиатор для термомодуля

Повышение мощности термоэлементов ограничено вредным влиянием переходных сопротивлений, а также резким возрастанием теплового напора на их спаях. Поэтому важное значение в проблеме использования термоэлементов в холодильных установках имеют вопросы рассеивания выделяемого ими тепла.

Отвод «откачанного» из объема и выделенного на батарее тепла от горячих спаев осуществляется путем естественного теплообмена с воздухом (для повышения эффективности радиатор изготавливают ребристым) или испарением циркулирующей воды.

В стационарных термоэлектрических холодильниках предпочтение отдается охлаждению проточной водой. Для отвода тепла может быть использована вторая термоэлектрическая батарея (таким каскадированием достигается более глубокое общее термоэлектрическое охлаждение).

Холодильные термоэлементы (и термобатареи) могут работать либо в режиме максимальной холодопроизводительности (основная задача — охлаждение, количество потребляемой электроэнергии не играет роли) или максимального холодильного коэффициента (т. е. наивыгоднейшего для данной разности температур соотношения между холодопроизводительностью и потребляемой электрической мощностью).

Холодопроизводительность (при заданной разности температур) прямо пропорциональна потребляемой термоэлементом или батареей термоэлементов электрической мощности.

Электрический комплект термоэлектрической системы охлаждения BH Peltier Semiconductor - BHCYD821D0809

Электрический комплект термоэлектрической системы охлаждения BH Peltier Semiconductor — BHCYD821D0809

Для питания термоэлектрических холодильников используют сильноточные источники небольшого постоянного напряжения. Меняя величину тока через термоэлектрический холодильник, можно легко регулировать температуру на рабочих спаях термобатареи. Изменением направления тока термобатарея превращается в нагреватель. Эти возможности позволили создать полупроводниковые термостаты.

Первые термоэлектрические холодильники были разработаны в 1950-х годах XX века. Они были созданы для использования в астрономии, ядерной физике, электронике, вакуумной технике, метрологии, медицине и во многих других областях науки, техники, сельского хозяйства и быта.

Термоэлектрические холодильники обладают существ енными преимуществами перед другими методами охлаждения. Охлаждение криостатными смесями, обдувом охлажденным воздухом, твердой углекислотой и т. п. технически и эксплуатационно трудно и неудобно , охлаждение водой не всегда достаточно , применение жидкого азота, дросселирование жидкой углекислоты затрудняют контроль темп ерату ры и автоматизацию.

В науке и технике, где часто необходимо охлаждение малых объемов (до нескольких литров), способ термоэлектрического охлаждения (нагревания) во многих случаях оказывается единственно пригодным.

Так, например, для определения типа проводимости образца полупроводника по знаку коэффициента термоэдс используется термозонд, на острие которого через две минуты после включения тока (20 А, 1,4 Вт) устанавливается температура -17°С. А при помощи термоэлектрических микротомов достигается охлаждение до -20° С, что позволяет получать срезы мозговой ткани толщиной 4 — 6 микрон.

Используя обратимость эффекта Пельтье, осуществляют термостабилизацию (изменение полярности приложенного напряжения превращает холодный спай в горячий) при температуре, более низкой, чем окружающая.

Термоэлектрический модуль для 40-литрового настольного холодильника LG Objet

Термоэлектрический модуль для 40-литрового настольного холодильника LG Objet (размер 55 x 55 x 4,5 мм). Режим охлаждения без обычного компрессора и хладагента. Холодильник LG Objet может снизить температуру охлаждения до 3°C, в то время как в традиционных небольших холодильниках температура ограничена до 8°C. Температуру можно контролировать с точностью до градуса, что обеспечивает лучшую сохранность продуктов.

В последнее десятилетие стали очень популярны различные переносные устройства (автохолодильники, сумки-холодильники, термобоксы), работающие с помощью термоэлектрического охлаждения. Для использования в автотранспорте и в качестве различных переносных устройств термоэлектрические холодильники наиболее экономичны, а иногда и незаменимы.

В будущем такой способ охлаждения будет широко использоваться в системах кондиционирования воздуха в помещениях, в мощных холодильных машинах, рефрежираторах и т. п.

Переностной термоэлектрический холодильник MOBICOOL Q40 на 40 литров

Переносной термоэлектрический холодильник MOBICOOL Q40 на 40 литров. Он может быть подключен к электрической сети, а также в гнездо прикуривателя автомобиля.

В отличие от термоэлектрического холодильника термоэлектрический генератор — устройство для непосредственного (безмашинного) преобразования тепловой энергии в электрическую.

При прохождении теплового потока через через термоэлемент на нем возникает разность температур, что ведет к появлению термоэдс в ветвях термогенератора, а при замыкании на внешнюю нагрузку — к выделению на ней полезной электрической мощности.

Источниками тепла могут служить специально сжигаемое топливо или тепловые отходы газов, использованных в двигателях, тепловое излучение реакторов, доменных печей, теплоцентралей и др.

Подробнее про термогенераторы и особенности их использования смотрите здесь:

Термопары: устройство и принцип работы простым языком

Термопарой, или термоэлектрическим преобразователем, называют устройство для измерения температуры, основой работы которого является термоэлектрический эффект.

В бытовых целях используются в различных приборах, в самых простых и технически сложных: от утюгов, паяльников, холодильников до автомобилей и отопительных котлов. Благодаря большому диапазону измеряемых температур (от -250 о С до +2500 о С) широкое применение термопары нашли в промышленности, коммунальном хозяйстве, науке и медицине. Также термоэлектрические преобразователи работают как часть систем автоматики и управления, снимая и передавая данные об изменениях температуры. Такие датчики отличаются надежностью, невысокой стоимостью, необходимой точностью и низкой инертностью.

Работа термопары основана на свойстве изменения термо-ЭДС (термоэлектродвижущей силы) от повышения или уменьшения температуры. Точность показаний зависит от типа конструкции, соблюдения технологических требований, схемы подключения проводников.

Конструкция термоэлектрического преобразователя обусловлена тепловой инерцией и чувствительностью используемых элементов, условиями применения: диапазоном температур, агрессивностью и агрегатным состоянием среды, необходимостью использовать защиту.

Принцип работы термопары

Принцип действия термопары — термоэлектрический эффект, или эффект Зеебека. Явление это было открыто ученым в 1821 году и состоит в следующем:

в замкнутой цепи из двух разнородных проводников возникает электродвижущая сила (термо-ЭДС), если места их соединения, или спаи, поддерживать при разной температуре. Эффект не возникает в случае использования однородных материалов, а также при одинаковых температурах спаев. Величина термоэлектродвижущей силы зависит от материала проводников и разницы температур контактов, направление тока в контуре — от того, температура какого спая выше.

unnamed.jpg

На практике в термопаре используют проводники из разных сплавов, они также называются термоэлектродами. Один спай, «горячий», выполняют сваркой или скручиванием и помещают в среду с измеряемой температурой; другой, «холодный», замыкается на контакты измерительного прибора или соединяется с устройством автоматического управления. В современных сложных термопарах используются цифровые преобразователи сигнала.

Термо-ЭДС возникает за счет разницы потенциалов между соединениями проводников при интенсивном нагреве или охлаждении горячего спая. Напряжение на холодном спае пропорционально зависит от температуры на горячем. При этом температура на холодном должна быть постоянной, иначе возникает большая погрешность измерений. Для высокой точности холодный контакт помещается в специальные камеры, где температура поддерживается на одном уровне.

Применение термопар и их особенности

Область применения термопар огромна, в первую очередь, благодаря широкому измерительному диапазону температур: от сверхнизких до экстремально высоких. Широкое распространение эти устройства получили также из-за стабильности и точности измерений. Их используют в бытовых и промышленных приборах, производственных технологиях для измерения температуры различных устройств, объектов и сред: воздуха, твердых тел, расплавленного металла, жидкостей и газов, вращающихся деталей, тепловых двигателей.

Как датчики температур термоэлектрические преобразователи применяют в автоматизированных системах управления. В газовом оборудовании (котлы, плиты, колонки) с помощью термопар осуществляют термоконтроль. По данным термопары срабатывает аварийное отключение приборов, если превышена допустимая температура.

От назначения термопары зависит ее конструкция и материалы проводников: различные комбинации металлов предназначены для различных сред и диапазонов температур.

Рабочие элементы для защиты от воздействия внешних факторов могут помещаться в колбу, или чехол: например, защитный материал для термопары в газовом котле — нержавеющая или обычная сталь. При температурах до 1000-1100 о С применяют жаростойкие сплавы, при более высоких — фарфор, тугоплавкие сплавы. Для измерений в особых условиях среды, к примеру, при высоком давлении, требуется герметичность термопары.

Если среда измерения не оказывает вредного влияния на проводники, защиту не используют. Бескорпусный вариант с незакрытым местом соединения двух проводников отличается низкой инертностью и практически мгновенным измерением температуры.

В зависимости от количества мест измерения термопары могут быть одноточечные и многоточечные. Соответственно, длина рабочей части термопары колеблется от 120 мм до 20000 мм. Потребность во многих точках измерения (до нескольких десятков) возникает, в частности, в химической и нефтехимической промышленности для тех емкостей, где перерабатываются жидкости (реакторов, баков, колонн фракционирования).

Классификация термопар

Принцип действия термопары основан на возникновении разности потенциалов в проводниках, поэтому металлы термоэлектродов должны отличаться по химическим и физическим характеристикам. Для применения в термопарах используются различные сплавы цветных и благородных металлов.

Благородные металлы позволяют существенно повысить точность измерений, сказывается меньшая термоэлектрическая неоднородность и стойкость к окислению. Они используются для измерений до 1900 о С, при более высоких температурах необходимы специальные жаростойкие сплавы. Неблагородные металлы применяются до 1400 о С.

Все материалы проводников обладают различной плавкостью, стойкостью к окислению, диапазоном рабочих температур. Именно в указанном производителем интервале температур возможна качественная работа устройства и точные данные измерений.

Для классификации групп термопар по российскому ГОСТу используют три кириллические буквы, международная классификация подразумевает обозначение одной буквой латиницы: например, нихросил-нисиловая термопара имеет обозначение ТНН, или N; платинородий-платинородиевая — ТПР, тип В.

Другая классификация термопар учитывает типы спаев, которые могут быть использованы:

  • одноэлементные и двухэлементные;
  • изолированные и соединенные с корпусом;
  • заземленные и незаземленные.

Инерционность термопары снижается при заземлении на корпус, а это увеличивает быстродействие и точность измерений. Также для уменьшения инерционности в некоторых устройствах спай оставляют снаружи защитного корпуса.

Хромель+алюмель ТХА (тип K)

ТХА.jpg

Существует множество типов термопар, хромель-алюмель — одна из самых распространенных.

Состав сплава хромель:

  • 90% никеля
  • 10% хрома
  • 95% никеля
  • 2% алюминия
  • 2% никеля
  • 1% кремния

Возможность работы с линейной характеристикой в пределах температур от -200 о С до +1300 о С, подходит для нейтральных и окислительных сред, имеет невысокую стоимость. В восстановительной среде требуется защитный корпус. Диапазон рабочих температур зависит от диаметра электродов, может применяться при реакторном облучении.

Отличается высокой чувствительностью (примерно 41 мВ/ о С) и регистрирует даже небольшие изменения температуры, очень широко применяется во многих областях.

Недостатки и особенности. Никель имеет магнитные свойства, что вызывает изменение выходного сигнала при температурах 350 о С. В серной среде возможен преждевременный отказ, при определенных низких концентрациях кислорода работа также нарушается.

Железо+константан ТЖК (Тип J)

ТЖК 2.jpg

Надежная и недорогая термопара для промышленности и науки.

Константан обычно состоит из :

Применяется в более узком диапазоне температур по сравнению с хромель-алюмелем: -200 — +1100 о С, при этом выше чувствительность: 50-60 мкВ/ о С.

Хорошо подходит для вакуумной среды, измерения проводятся также в окислительных, восстановительных, нейтральных средах. Температура длительного воздействия — до +750 о С, кратковременного — до +1100 о С.

Нельзя постоянно применять при отрицательных температурах из-за коррозии на металлическом выводе, окислительные среды сокращают срок действия. При высоких положительных температурах негативно влияет сера.

Хромель+копель ТХК (тип L).

ТХК.jpg

Копель изготавливается примерно в таких пропорциях:

  • медь 56%
  • никель 43%
  • марганец 1%.

В основном используется для пирометрических измерений различных сред при рабочих температурах 200-600 о С, в промышленных и лабораторных установках. Максимальный диапазон измеряемых температур: от -250 о С до +1100 о С при кратковременном воздействии.

Одна из самых высокочувствительных термопар — до 80 мкВ/ о С.

Чувствительна к деформации, очень хрупкая.

Преимущества и недостатки термопар

Термопары имеют давнюю историю эксплуатации и широко применяются благодаря следующим преимуществам:

  • Способности работать в агрессивных средах и экстремальных температурах от -250 о С до +2500 о С.
  • Невысокой цены для большинства моделей. Стоимость увеличивается для приборов с благородными металлами, защитными элементами, дополнительными соединениями и разъемами.
  • Проверенной десятилетиями надежности и неприхотливости.
  • Точности измерений. Погрешность составляет до 1-2 о С в стандартных приборах, что по большей части достаточно для промышленных и бытовых нужд. Более высокоточные приборы имеют показатель 0,01 о С.
  • Простой технологии изготовления и обслуживания.

К недостаткам термопар можно отнести:

  • необходимость применения высокочувствительных приборов для снятия результатов измерений;
  • малая величина токов требует экранирующей защиты проводов для уменьшения наводки;
  • ухудшение показателей при длительном использовании в условиях перепадов температур;
  • для точных измерений требуется градуировка каждого прибора на заводе-изготовителе;
  • появление нелинейной зависимости термо-ЭДС от нагревания, если превышаются рабочие ограничения.

В целом, возможные сложности в работе с термопарами хорошо изучены и имеют различные способы решения. Благодаря надежности, точности, широкому рабочему диапазону температур устройства очень распространены. Применение определяется их техническими характеристиками и особенностями, а для некоторых систем термопары — единственно возможный вариант. Существующая классификация, а также многочисленные исследования и опыт эксплуатации дают обширную информацию о различных типах устройств, что облегчает их выбор и использование.

Какой тип термопар выбрать

В промышленном оборудовании термопары используются крайне часто для более точного контроля этапов производства товара. В то время пока вы рассматриваете какую термопару выбрать, рекомендуем заострить свое внимание на следующих характеристиках:

  • Диапазон измерения температур
  • Устойчивость к химическим средам
  • Стойкость к вибрации и механическим воздействиям
  • Совместимость с используемым оборудованием

Как подобрать тип спая термопары

У термопар имеется три типа спая: изолированный, неизолированный или открытый.

Типы спаев.jpg

На конце датчика с неизолированным переходом провода термопары прикреплены к стенке датчика с внутренней стороны. Благодаря этому достигается отличная теплопередача снаружи через стенку оболочки к спаю термопары. В изолированном типе спай термопары отделен от стенки оболочки. Время отклика меньше, чем у неизолированного типа, но изолированный обеспечивает изоляцию от электричества.

Термопара в стиле открытого спая выступает из конца оболочки и подвержена воздействию среды которая ее окружает. Этот тип обеспечивает лучшее время отклика, но его можно эксплуатировать только для некоррозионных и негерметичных случаев.

Неизолированный спай используют для замера температур агрессивных сред, или же для областей применения где характерно высокое давление. Спай неизолированной термопары приварен к защитной оболочке, благодаря чему достигается более быстрый отклик, чем при эксплуатации спая изолированного типа.

Изолированный спай отлично себя показывает в измерениях температур в агрессивных средах, где рекомендуется иметь термопару, которая электрически изолирована от оболочки и экранированную ею. Термопара из сварной проволоки физически изолирована от оболочки термопары порошком MgO (оксид магния).

Открытый переход рекомендуется для измерения статических или текущих температур некоррозионных газов, где понадобится быстрое время отклика. Соединение выходит за пределы защитной оболочки из металла, в следствии чего получается более точный и быстрый отклик. Изоляция оболочки герметична в соединительных местах, благодаря чему исключается любое проникновение влаги или газа, которое могло бы привести к ошибкам.

Что такое термопара, принцип действия, основные виды и типы

Термопара – это устройство для измерения температур во всех отраслях науки и техники. Данная статья представляет общий обзор термопар с разбором конструкции и принципом действия устройства. Описаны разновидности термопар с их краткой характеристикой, а также дана оценка термопары как измерительного прибора.

Что такое термопара, принцип действия, основные виды и типы

Устройство термопары

Принцип работы термопары. Эффект Зеебека

Работа термопары обусловлена возникновением термоэлектрического эффекта, открытым немецким физиком Томасом Зеебеком (Tomas Seebeck) в 1821 г.

Явление основано на возникновении электричества в замкнутом электрическом контуре при воздействии определенной температуры окружающей среды. Электрический ток возникает при наличии разницы температур между двумя проводниками (термоэлектродами) различного состава (разнородных металлов или сплавов) и поддерживается сохранением места их контактов (спаев). Устройство выводит на экран подсоединенного вторичного прибора значение измеряемой температуры.

Что такое термопара, принцип действия, основные виды и типы

Выдаваемое напряжение и температура находятся в линейной зависимости. Это означает, что увеличение измеряемой температуры приводит к большему значению милливольт на свободных концах термопары.

Находящийся в точке измерения температуры спай называется «горячим», а место подключения проводов к преобразователю — «холодным».

Компенсация температуры холодного спая (КХС)

Компенсация холодного спая (КХС) – это компенсация, вносимая в виде поправки в итоговые показания при измерении температуры в точке подсоединения свободных концов термопары. Это связано с расхождениями между реальной температурой холодных концов с вычисленными показаниями градуировочной таблицы для температуры холодного спая при 0°С.

Что такое термопара, принцип действия, основные виды и типы

КХС является дифференциальным способом, при котором показания абсолютной температуры находятся из известного значения температуры холодного спая (другое название эталонный спай).

Конструкция термопары

При конструировании термопары учитывают влияние таких факторов, как «агрессивность» внешний среды, агрегатное состояние вещества, диапазон измеряемых температур и другие.

Что такое термопара, принцип действия, основные виды и типы

Особенности конструкции термопар:

1) Спаи проводников соединяются между собой скруткой или скруткой с дальнейшей электродуговой сваркой (редко пайкой).

ВАЖНО: Не рекомендуется использовать способ скручивания из-за быстрой потери свойств спая.

2) Термоэлектроды должны быть электрически изолированы по всей длине, кроме точки соприкосновения.

3) Способ изоляции подбирается с учетом верхнего температурного предела.

  • До 100-120°С – любая изоляция;
  • До 1300°С – фарфоровые трубки или бусы;
  • До 1950°С – трубки из Al2O3;
  • Свыше 2000°С – трубки из MgO, BeO, ThO2, ZrO2.

4) Защитный чехол.

Что такое термопара, принцип действия, основные виды и типы

Материал должен быть термически и химически стойким, с хорошей теплопроводностью (металл, керамика). Использование чехла предотвращает коррозию в определенных средах.

Удлиняющие (компенсационные) провода

Что такое термопара, принцип действия, основные виды и типы

Данный вид проводов необходим для удлинения концов термопары до вторичного прибора или барьера. Провода не используются в случае наличия у термопары встроенного преобразователя с унифицированным выходным сигналом. Наиболее широкое применение получил нормирующий преобразователь, размещенный в стандартной клеммной головке датчика с унифицированным сигналом 4-20мА, так называемая «таблетка».

Что такое термопара, принцип действия, основные виды и типы

Материал проводов может совпадать с материалом термоэлектродов, но чаще всего заменяется на более дешевый с учетом условий, предотвращающих образования паразитных (наведенных) термо-ЭДС. Применение удлиняющих проводов также позволяет оптимизировать производство.

Лайфхак! Для правильного определения полярности компенсационных проводов и их подключения к термопаре запомните мнемоническое правило ММ — минус магнитится. То есть берём любой магнит и минус у компенсации будет магнитится, в отличии от плюса.

Типы и виды термопар

Многообразие термопар объясняется различными сочетаниями используемых сплавов металлов. Подбор термопары осуществляется в зависимости от отрасли производства и необходимого температурного диапазона.

Что такое термопара, принцип действия, основные виды и типы

Термопара хромель-алюмель (ТХА)

Положительный электрод: сплав хромель (90% Ni, 10% Cr).
Отрицательный электрод: сплав алюмель (95% Ni, 2% Mn, 2% Al, 1% Si).

Изоляционный материал: фарфор, кварц, окиси металлов и т.д.

Диапазон температур от -200°С до 1300°С кратковременного и 1100°С длительного нагрева.

Рабочая среда: инертная, окислительная (O2=2-3% или полностью исключено), сухой водород, кратковременный вакуум. В восстановительной или окислительно-восстановительной атмосфере в присутствии защитного чехла.

Недостатки: легкость в деформировании, обратимая нестабильность термо-ЭДС.

Возможны случаи коррозии и охрупчивания алюмеля в присутствии следов серы в атмосфере и хромеля в слабоокислительной атмосфере («зеленая глинь»).

Термопара хромель-копель (ТХК)

Что такое термопара, принцип действия, основные виды и типы

Положительный электрод: сплав хромель (90% Ni, 10% Cr).
Отрицательный электрод: сплав копель (54,5% Cu, 43% Ni, 2% Fe, 0,5% Mn).

Диапазон температур от -253°С до 800°С длительного и 1100°С кратковременного нагрева.

Рабочая среда: инертная и окислительная, кратковременный вакуум.

Недостатки: деформирование термоэлектрода.

Возможно испарение хрома при длительном вакууме; реагирование с атмосферой, содержащей серу, хром, фтор.

Термопара железо-константан (ТЖК)

Положительный электрод: технически чистое железо (малоуглеродистая сталь).
Отрицательный электрод: сплав константан (59% Cu, 39-41% Ni, 1-2% Mn).

Используется для проведения измерений в восстановительных, инертных средах и вакууме. Температура от -203°С до 750°С длительного и 1100°С кратковременного нагрева.

Применение складывается на совместном измерении положительных и отрицательных температур. Невыгодно использовать только для отрицательных температур.

Недостатки: деформирование термоэлектрода, низкая коррозийная стойкость.

Изменение физико-химических свойств железа около 700°С и 900 °С. Взаимодействует с серой и водными парами с образованием коррозии.

Что такое термопара, принцип действия, основные виды и типы

Термопара вольфрам-рений (ТВР)

Положительный электрод: сплавы ВР5 (95% W, 5% Rh)/ВАР5 (BP5 с кремнещелочной и алюминиевой присадкой)/ВР10 (90% W, 10% Rh).
Отрицательный электрод: сплавы ВР20 (80% W, 20% Rh).

Изоляция: керамика из химически чистых окислов металлов.

Отмечается механическая прочность, термостойкость, малая чувствительность к загрязнениям, легкость изготовления.

Измерение температур от 1800°С до 3000°С, нижний предел – 1300°С. Измерения проводятся в среде инертного газа, сухого водорода или вакуума. В окислительных средах только для измерения в быстротекущих процессах.

Недостатки: плохая воспроизводимость термо-ЭДС, ее нестабильность при облучении, непостоянная чувствительность в температурном диапазоне.

Термопара вольфрам-молибден (ВМ)

Положительный электрод: вольфрам (технически чистый).
Отрицательный электрод: молибден (технически чистый).

Изоляция: глиноземистая керамика, защита кварцевыми наконечниками.

Инертная, водородная или вакуумная среда. Возможно проведение кратковременных измерений в окислительных средах в присутствии изоляции. Диапазон измеряемых температур составляет 1400-1800°С, предельная рабочая температура порядка 2400°С.

Недостатки: плохая воспроизводимость и чувствительность термо-ЭДС, инверсия полярности, охрупчивание при высоких температурах.

Термопары платинородий-платина (ТПП)

Положительный электрод: платинородий (Pt c 10% или 13% Rh).
Отрицательный электрод: платина.

Изоляция: кварц, фарфор (обычный и огнеупорный). До 1400°С — керамика с повышенным содержанием Al2O3, свыше 1400°С — керамику из химически чистого Al2O3.

Предельная рабочая температура 1400°С длительно, 1600°С кратковременно. Измерение низких температур обычно не производят.

Рабочая среда: окислительная и инертная, восстановительная в присутствии защиты.

Недостатки: высокая стоимость, нестабильность при облучении, высокая чувствительность к загрязнениям (особенно платиновый электрод), рост зерен металла при высоких температурах.

Что такое термопара, принцип действия, основные виды и типы

Термопары платинородий-платинородий (ТПР)

Положительный электрод: сплав Pt c 30% Rh.
Отрицательный электрод: сплав Pt c 6% Rh.

Среда: окислительная, нейтральная и вакуум. Использование в восстановительных и содержащих пары металлов или неметаллов средах в присутствии защиты.

Максимальная рабочая температура 1600°С длительно, 1800°С кратковременно.

Изоляция: керамика из Al2O3 высокой чистоты.

Менее подвержены химическим загрязнениям и росту зерна, чем термопара платинородий-платина.

Схема подключения термопары

Что такое термопара, принцип действия, основные виды и типы

  • Подключение потенциометра или гальванометра непосредственно к проводникам.
  • Подключение с помощью компенсационных проводов;
  • Подключение обычными медными проводами к термопаре, имеющей унифицированный выход.

Стандарты на цвета проводников термопар

Цветная изоляция проводников помогает отличить термоэлектроды друг от друга для правильного подключения к клеммам. Стандарты отличаются по странам, нет конкретных цветовых обозначений для проводников.

ВАЖНО: Необходимо узнать используемый стандарт на предприятии для предотвращения ошибок.

Точность измерения

Точность зависит от вида термопары, диапазона измеряемых температур, чистоты материала, электрических шумов, коррозии, свойств спая и процесса изготовления.

Термопарам присуждается класс допуска (стандартный или специальный), устанавливающий доверительный интервал измерений.

ВАЖНО: Характеристики на момент изготовления меняются в период эксплуатации.

Быстродействие измерения

Быстродействие обуславливается способностью первичного преобразователя быстро реагировать на скачки температуры и следующим за ними потоком входных сигналов измерительного прибора.

Что такое термопара, принцип действия, основные виды и типы

Факторы, увеличивающие быстродействие:

  1. Правильная установка и расчет длины первичного преобразователя;
  2. При использовании преобразователя с защитной гильзой необходимо уменьшить массу узла, подобрав меньший диаметр гильз;
  3. Сведение к минимуму воздушного зазора между первичным преобразователем и защитной гильзой;
  4. Использование подпружиненного первичного преобразователя и заполнения пустот в гильзе теплопроводящим наполнителем;
  5. Быстро движущаяся среда или среда с большей плотностью (жидкость).

Проверка работоспособности термопары

Для проверки работоспособности подключают специальный измерительный прибор (тестер, гальванометр или потенциометр) или измеряют напряжение на выходе милливольтметром. При наличии колебаний стрелки или цифрового индикатора термопара является исправной, в противном случае устройство подлежит замене.

Что такое термопара, принцип действия, основные виды и типы

Причины выхода из строя термопары:

  1. Неиспользование защитного экранирующего устройства;
  2. Изменение химического состава электродов;
  3. Окислительные процессы, развивающиеся при высоких температурах;
  4. Поломка контрольно-измерительного прибора и т.д.

Преимущества и недостатки использования термопар

Достоинствами использования данного устройства можно назвать:

  • Большой температурный диапазон измерений;
  • Высокая точность;
  • Простота и надежность.

К недостаткам следует отнести:

  • Осуществление постоянного контроля холодного спая, поверки и калибровки контрольной аппаратуры;
  • Структурные изменения металлов при изготовлении прибора;
  • Зависимость от состава атмосферы, затраты на герметизацию;
  • Погрешность измерений из-за воздействия электромагнитных волн.

Что такое термопара, принцип действия, основные виды и типы

Термометр сопротивления — датчик для измерения температуры: что это такое, описание и виды

Что такое термопара, принцип действия, основные виды и типы

Что такое тензодатчик, типы тензометрических датчиков, схема подключения и их применение

Что такое термопара, принцип действия, основные виды и типы

Что такое люминесцентная лампа и как она работает?

Что такое термопара, принцип действия, основные виды и типы

Что такое частотный преобразователь, основные виды и какой принцип работы

Терморегулятор для холодильника: устройство, проверка + тонкости замены при необходимости

Сложно представить свою жизнь без бытовой техники. Есть приборы, без которых мы смогли бы обойтись, а есть такие, без которых обустройство жилого пространства вполне обоснованно считается неполноценным. Одним из таких жизненно необходимых предметов является холодильник. Согласны?

Выполненный своими руками ремонт бытовой техники — хорошее подспорье для семейного бюджета. При желании можно освоить многие ремонтные операции. Например, заменить терморегулятор для холодильника не так уж трудно. Стоит только разобраться в особенностях конструкции и принципах действия прибора.

Мы расскажем о том, как обнаружить неисправность термостата. В предложенной нами статье подробно описано, как производится его замена во время ремонта холодильника марки Stinol. Информацию сопровождает тематическая подборка фото- и видеоматериалов с советами экспертов.

Конструкционные особенности и принцип работы

Терморегулятор или термостат — это один из основных элементов, без которого невозможна нормальная работа холодильника. Он фиксирует показания датчиков температуры в холодильной и морозильной камере и подает сигнал на пусковое реле компрессора.

В соответствии с этими сигналами компрессор включается, если в камере недостаточно холодно, и выключается, когда температура достигает заданного уровня. Технически терморегулятор представляет собой реле, на одном конце которого имеется герметичная трубочка, заполненная фреоном.

С другой стороны установлены контакты, размыкание и соединение которых подает сигнал на компрессор. Конец трубочки с фреоном, ее еще называют капиллярной трубкой, фиксируется на испаритель.

Хладагент, помещенный внутри, чутко реагирует на нагрев и охлаждение. Когда температура снижается или повышается, внутри трубки изменяется уровень давления, в результате чего соединяются или размыкаются контакты реле.

Движением контактов управляет небольшая пружинка. Она используется для установки уровня температуры, которая должна быть внутри холодильной камеры. К пружинке присоединена ручка регулировки температуры. При повороте этой ручки изменяется степень натяжения пружинки.

В результате для смыкания и размыкания контактов нужно приложить большее или меньшее усилие. Это влияет на уровень давления в капиллярной трубке, при котором контакты срабатывают.

Устройство терморегулятора

Так регулируется степень охлаждения воздуха в холодильнике. При использовании электронного регулятора этот процесс осуществляется несколько иначе, но принцип остается примерно таким же: нужный уровень температуры устанавливается на основании фактических показателей, которые фиксирует капиллярная трубка.

Но в подобных моделях используется электронный модуль управления, способный одновременно управлять данными с нескольких датчиков. Такой терморегулятор починить или заменить в домашних условиях возможно не всегда. Для обращения со сложной электроникой нужны знания и особое оборудование.

Обычно терморегулятор устанавливают внутри или снаружи холодильной камеры. Перед началом ремонта не помешает изучить устройство холодильника и техпаспорт прибора. Там может быть много полезной информации по устройству конкретной модели терморегулятора, а также о месте его расположения.

Обычно термореле находится рядом с ручкой для установки температурного режима. Внутреннее расположение характерно для относительно старых моделей. Внутри камеры элемент обычно заключен в пластиковый защитный корпус.

Ручка регулировки расположена прямо на нем. Для извлечения термореле нужно снять эту ручку и открутить крепежные винты, чтобы снять корпус.

Термореле вне камеры

Но искать терморегулятор нужно так же возле ручки управления, обычно под корпусом холодильника где-то вверху. Ручку точно так же снимают, отвинчивают крепеж и находят искомое за защитной панелью.

Способы обнаружить проблему

Если термореле сломалось, это не означает, что и весь холодильный аппарат сразу же прекратит работу. Но отсутствие корректных сведений о текущей температуре отразится на его работе.

Вариант #1 — проверить функционирование техники

Симптомы некорректной работы холодильного оборудования могут быть такими:

  • компрессор работает без перерывов или с очень короткими и редкими перерывами;
  • температура внутри камеры холодильника понижается до нуля, а иногда и ниже;
  • на стенках появляется большое количество изморози или даже льда;
  • внутри холодильника слишком тепло;
  • холодильник не включается после отключения и т.п.

Конечно, эти признаки могут быть связаны не только с поломками термореле, но и с неисправностями других элементов.

Диагностика холодильника

Вариант #2 — диагностика с помощью термометра

Для этого нужно полностью отключить холодильник от электропитания, а затем провести его полную разморозку в соответствии с инструкцией. Конечно, содержимое придется вынуть.

После этого нужно включить прибор в сеть и перевести ручку настройки терморегулятора в положение, которое позволит получить максимально низкую температуру. Если в модели холодильника предусмотрен режим заморозки, рекомендуется использовать его.

Диагностика поломки холодильника

В холодильную камеру примерно посередине нужно положить термометр, предназначенный для измерения температуры воздуха. Лучше использовать прибор, который позволяет делать измерения и ниже нуля. Холодильник оставляют в таком режиме примерно на два часа. После этого нужно проверить показания термометра.

Если в холодильной камере температура к этому моменту понизилась примерно до шести градусов, с терморегулятором проблем нет. Но когда внутри стало заметно теплее или холоднее этого уровня, термореле придется заменить.

Вариант #3 — визуальный осмотр камеры холодильника

Если после размораживания внутри камеры очень быстро образуется так называемая снежная шапка, первичную диагностику исправности терморегулятора можно выполнить очень просто.

Снежная шуба

Для этого в момент работы компрессора регулировочную ручку начинают поворачивать в сторону увеличения температуры внутри камеры. Если реле исправно, в определенный момент датчики зафиксируют нужный уровень температуры, после чего компрессор отключится. Если же двигатель продолжает работать — терморегулятор нужно менять.

После такой диагностики и при исправном термореле рекомендуется вынуть из камеры все содержимое и позволить прибору поработать вхолостую около шести часов. В этот период нужно обратить внимание на длительность перерывов в работе компрессора.

Если она составляет около 40 минут, все хорошо, можно пользоваться холодильником в обычном режиме. Если компрессор включается слишком часто или редко, нужно попытаться отрегулировать этот момент с помощью настроек реле. Если это не удается, скорее всего, придется поставить новый терморегулятор.

Правила демонтажа термореле

Если холодильник вообще не включается, провести описанную выше диагностику будет невозможно. Вероятной причиной поломки можно назвать сбой электрики этого элемента.

Но проблемой может стать и неисправность компрессора, например, сгоревшая обмотка двигателя. Чтобы понять, нуждается ли термореле в замене, его придется снять с холодильника для исследования.

Ручка регулировки температуры

Сначала нужно отключить холодильник от сети. Теперь следует обнаружить место, где он располагается, как было описано раньше. Обычно нужно снять регулировочную ручку, удалить крепеж и снять защитные элементы.

Затем необходимо внимательно осмотреть прибор, обратив пристальное внимание на провода, по которым подведено электропитание.

Все они имеют различную цветовую маркировку в зависимости от назначения. Обычно для заземления берут желтый провод с зеленой полоской. Этот кабель нужно оставить в покое, а вот все остальные следует отсоединить и замкнуть друг с другом.

Теперь холодильник снова включают в сеть. Если прибор по-прежнему не включается, вероятно, терморегулятор исправен, а вот с компрессором имеются серьезные проблемы.

Компрессор холодильника

Если же двигатель заработал, можно сделать однозначный вывод о том, что реле нуждается в замене. Перед началом работ не помешает вооружиться смартфоном или фотоаппаратом, чтобы последовательно фиксировать все операции. При установке нового термореле эти изображения могут оказаться очень полезными, особенно для новичков.

Нужно четко запомнить какая жила кабеля была использована для каких целей. Обычно для соединения термореле с электромотором используют провод черного, оранжевого или красного цвета. На ноль ведет коричневая жила, желто-зеленый провод обеспечивает заземление, а чисто желтый, белый или зеленый — соединен со световым индикатором.

Замена термореле

Иногда снять испорченный регулятор бывает непросто, особенно при его наружном размещении. Например, в некоторых моделях холодильников “Атлант” приходится полностью снимать с петель дверцу камеры. Для этого необходимо удалить накладку, которая установлена над верхней петлей, и открутить скрытые под ней болты.

Перед тем, как удалить ручку регулировки, приходится также снимать заглушки и откручивать крепеж. Все эти операции нужно проделывать аккуратно. Крепежные элементы и накладки лучше хранить в небольшой емкости, чтобы они не потерялись. Собственно терморегулятор обычно привинчен к кронштейну, его нужно аккуратно снять, открепить и вынуть.

Терморегулятор внутри холодильника

На его место устанавливают новый терморегулятор, придерживаясь обратного порядка сборки. Иногда поломка терморегулятора связана с неисправностью так называемой капиллярной трубки или сильфона. Если заменить только этот элемент, реле можно оставить.

Чтобы выполнить эту процедуру, придется вынуть термореле, придерживаясь описанного выше способа. Сильфон нужно отсоединить от испарителя и аккуратно вынуть из корпуса прибора. Теперь устанавливают новую капиллярную трубку, присоединяют ее к испарителю, а реле монтируют на прежнее место, и присоединяют отключенные провода.

Замена на примере холодильника Стинол

Для холодильников Stinol поломка реле — довольно распространенное явление, особенно после пяти-семи лет эксплуатации.

Чаще всего здесь выходит из строя сильфонная трубка, поскольку именно такой вариант заложен производителем этого элемента. Модель Stinol-101 имеет только один компрессор, а вот в Stinol-103 их два: отдельно для холодильной и морозильной камеры.

Схема контактов термореле

Автоматика разных моделей немного отличается, что отражено на соответствующих электрических схемах, в остальном же эти холодильники очень похожи, поэтому имеет смысл рассмотреть порядок их ремонта одновременно.

Чтобы понять, что холодильник Stinol нуждается в ремонте или замене термореле, нужно обратить внимание на следующие признаки:

  • компрессор работает без остановок и не реагирует, когда регулятор установлен на ВЫКЛ;
  • при переводе регулировочной ручки но отметку ВЫКЛ нет характерного щелчка;
  • температура в камерах холодильника заметно превышает параметры, установленные при регулировке.

В холодильной камере Stinol-103 используется термореле К-59, проверить маркировку несложно, она указана на корпусе. Чтобы снять регулировочные ручки, нужно использовать тонкое шило. Их нужно просто поддеть и снять. В модели Stinol-101 имеется только одна регулировочная ручка, а в Stinol-103 — две, по одной для каждого компрессора.

Удаление регулировочной ручки

После того, как ручка удалена, нужно снять декоративную накладку, имеющую шесть выступов. Это хрупкий элемент, следует действовать осторожно, чтобы не повредить его. Под накладкой находятся гайки, которые следует отвернуть. После этого нужно открутить винты, которые фиксируют панель управления.

Крепежные винты термореле

Винты, удерживающие навеску дверцы холодильника, лучше снимать последними. Чтобы избежать возможных повреждений, дверь необходимо придерживать. Теперь можно приподнять панель и снять дверцу с петель.

Следующий этап — удаление верхней крышки холодильника.

Крепеж навески двери

Необходимые крепежные элементы располагаются на задней стороне. Их отвинчивают и снимают крышку. Таким образом будет получен свободный доступ к терморегулятору.

Сначала нужно отключить контактные соединители реле, после чего можно извлекать элемент из панели управления холодильника.

Извлечение термореле

На этом этапе нужно запомнить или записать цветовую маркировку отдельных проводов. Чтобы снять изношенную капиллярную трубку, следует убрать пластмассовую накладку.

Теперь нужно открутить крепежный винт и снять блок освещения. Трубку вынимают через предназначенное для этого отверстие.

Пластиковая накладка

Новый элемент устанавливают таким образом, чтобы неизолированный участок в его нижней части был надежно скрыт под накладкой. Отверстие закрывают пластиковой заглушкой, чтобы восстановить герметичность камеры.

Обычно капиллярная трубка выступает за пределы терморегулятора. Ее нужно осторожно поместить под верхней крышкой холодильника, места там достаточно.

Блок освещения

Теперь нужно выполнить обратную сборку термореле и холодильника: подключить все необходимые соединения, установить и закрепить крышку холодильника, навесить дверцу.

И снова завинчивание крепежа навески дверцы выполняют последним, когда остальные аналогичные винты уже установлены.

Заделка отверстия

Чтобы выполнить проверку состояния термореле холодильника Stinol в домашних условиях, можно использовать простую диагностику. Контакты 3 и 4 такого прибора при комнатной температуре должны оставаться в замкнутом состоянии.

Если после их соединения перемычкой наблюдается включение компрессора, термореле неисправно, требуется его замена. Если настройки терморегулятора сбились, их можно откорректировать, поворачивая регулировочные винты, но делать это следует в сервисном центре, располагающем необходимым оборудованием.

Не менее важным функциональным узлом в конструкции холодильника является пусковое реле, с устройством, назначением и методами ремонта которого ознакомит рекомендуемая нами статья.

Выводы и полезное видео по теме

Наглядно процесс замены термореле продемонстрирован в следующем видеосюжете, в котором мастер делится нюансами проведения ремонта холодильной техники типа Стинол:

Интересные советы по диагностике состояния реле и его замене на примере двух моделей холодильников содержатся в этом видео:

Процедуру замены терморегулятора нельзя назвать слишком сложной. Однако при неправильном обращении с этим элементом можно только ухудшить ситуацию. Подробное изучение процедуры выполнения ремонта и внимание к деталям помогут восстановить работоспособность холодильника.

Расскажите о том, как подбирали терморегулятор для восстановления работоспособности холодильника. Делитесь полезными сведениями и ценной информацией по теме статьи, которая сможет пригодиться посетителям сайта. Оставляйте, пожалуйста, комментарии, публикуйте фото и задавайте вопросы в находящемся ниже блоке.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *