Расчёт заземления
Расчёт заземления (расчёт сопротивления заземления) для одиночного глубинного заземлителя на основе модульного заземления производится как расчёт обычного вертикального заземлителя из металлического стержня диаметром 14,2 мм.
Формула расчёта сопротивления заземления одиночного вертикального заземлителя:
где:
ρ – удельное сопротивление грунта (Ом* м )
L – длина заземлителя (м)
d – диаметр заземлителя (м)
T — заглубление заземлителя (расстояние от поверхности земли до середины заземлителя) (м)
π — математическая константа Пи (3,141592)
ln — натуральный логарифм
Для готовых комплектов модульного заземления ZANDZ формула расчёта сопротивления упрощается до вида:
— для комплекта ZZ-000-015
— для комплекта ZZ-000-030
где:
ρ – удельное сопротивление грунта (Ом* м )
Для расчета взяты следующие величины:
L = 15 (30) метров
d = 0,014 метра = 14 мм
T = 8 (15,5) метров: с учетом заглубления электрода на глубине 0,5 метра
Расчёт электролитического заземления
Расчёт электролитического заземления (расчёт сопротивления заземления) производится как расчет обычного горизонтального электрода в виде трубы, имеющей длину 2,4 метра с учетом влияния электролита на окружающий грунт (коэффициент С).
Формула расчёта сопротивления заземления одиночного горизонтального электрода с добавлением поправочного коэффициента:
где:
ρ – удельное сопротивление грунта (Ом* м )
L – длина заземлителя (м)
d – диаметр заземлителя (м)
T — заглубление (расстояние от поверхности земли до заземлителя) (м)
π — математическая константа Пи (3,141592)
ln — натуральный логарифм
С – коэффициент содержания электролита в окружающем грунте
Коэффициент C варьируется от 0,5 до 0,05.
Со временем он уменьшается, т.к. электролит проникает в грунт на бОльший объем, при это повышая свою концентрацию. Как правило, он составляет 0,125 через 6 месяцев выщелачивания солей электрода в плотном грунте и через 0,5 — 1 месяц выщелачивания солей электрода в рыхлом грунте. Процесс можно ускорить путем добавления воды в электрод при монтаже.
Для электролитического заземления ZANDZ формула расчёта сопротивления заземления упрощается до вида:
— для комплекта ZZ-100-102
где:
ρ – удельное электрическое сопротивление грунта (Ом* м )
Для расчёта взяты следующие величины:
L = 2,4 метра
d = 0,065 метра = 65 мм
T = 0,6 метра
С = 0,125
Расчёт заземления: практические данные
Стоит обратить внимание на тот факт, что получаемые практически результаты ВСЕГДА отличаются от теоретических расчетов заземления.
В случае глубинного / модульного заземления — разница связана с тем, что в формуле расчёта чаще всего используется НЕИЗМЕННОЕ ОЦЕНОЧНОЕ удельное сопротивление грунта НА ВСЕЙ глубине электрода. Хотя в реальности, такого никогда не наблюдается.
Даже если характер грунта не меняется — его удельное сопротивление уменьшается с глубиной: грунт становится более плотным, более влажным; на глубине от 5 метров часто находятся водоносные слои.
Фактически, получаемое сопротивление заземления будет ниже расчётного в разы (в 90% случаев получается сопротивление заземления в 2-3 раза меньше).
В случае электролитического заземления — разница связана с тем, что в формуле расчета используется коэффициент «С» , берущийся в расчёт как усредненная поправочная величина, которую нельзя описать в виде формул и зависимостей. Определяется он исходя из множества характеристик грунта (температура, влажность, рыхлость, диаметр частиц, гигроскопичность, концентрации солей и т.п.)
Процесс выщелачивания длителен и относительно постоянен. Со временем концентрация электролита в окружающем грунте растёт. Также растёт объём грунта с присутствием электролита вокруг электрода. Через 3-5 лет после монтажа этот получившийся «полезный» объём можно описать трёхметровым радиусом вокруг электрода.
Из-за этого, сопротивление электролитического заземления ZANDZ со временем существенно падает . Замеры показали уменьшение в разы:
- 4 Ома сразу после монтажа
- 3 Ома через 1 год
- 1,9 Ома спустя 4 года
Расчёт заземления в виде нескольких электродов
Расчёт заземления (расчёт сопротивления заземления) для нескольких электродов модульного заземления производится как расчёт параллельно-соединенных одиночных заземлителей.
Формула расчёта с учетом взаимного влияния электродов — коэффициента использования:
где:
R1 – сопротивление одиночного заземлителя/электрода (Ом)
Ки – коэффициент использования
N – количество электродов в заземлителе
Вклад соединительного заземляющего проводника здесь не учитывается.
Расчёт необходимого количества заземляющих электродов
Проведя обратное вычисление получим формулу расчёта количества электродов для необходимой величины итогового сопротивления сопротивления (R):
![]()
где:
] [ — округление результата в бОльшую сторону.
R – необходимое сопротивление многоэлектродного заземлителя (Ом)
R1 – сопротивление одиночного заземлителя/электрода (Ом)
Ки – коэффициент использования
Вклад соединительного заземляющего проводника здесь не учитывается.
Расстояние между заземляющими электродами
При многоэлектродной конфигурации заземлителя на итоговое сопротивление заземления начинает оказывать свое влияние еще один фактор — расстояние между заземляющими электродами. В формулах расчёта заземления этот фактор описывается величиной «коэффициент использования».
Для модульного и электролитического заземления этим коэффициентом можно пренебречь (т.е. его величина равна 1) при соблюдении определенного расстояния между заземляющими электродами:
- не менее глубины погружения электродов — для модульного
- не менее 7 метров — для электролитического
Соединение электродов в заземлитель
Для соединения заземляющих электродов между собой и с объектом в качестве заземляющего проводника используется медная катанка или стальная полоса.
Сечение проводника часто выбирается — 50 мм² для меди и 150 мм² для стали. Распространено использование обычной стальной полосы 5*30 мм.
Для частного дома без молниеприёмников достаточно медного провода сечением 16-25 мм² .
Подробнее о прокладке заземляющего проводника можно ознакомиться на отдельной странице «Монтаж заземления».
Сервис расчёта вероятности удара молнии в объект
Если помимо заземляющего устройства Вам предстоит установить систему внешней молниезащиты, Вы можете воспользоваться уникальным сервисом расчета вероятности удара молнии в объект, защищённый молниеприёмниками. Сервис разработан командой ZANDZ совместно с ОАО «Энергетический институт им.Г.М.Кржижановского» (ОАО «ЭНИН»)
Этот инструмент позволяет не просто проверить надёжность системы молниезащиты, но и выполнить наиболее рациональный и правильный проект защиты от молнии, обеспечивая:
- меньшую стоимость конструкции и монтажных работ, уменьшая ненужный запас и используя менее высокие, менее дорогие в монтаже, молниеприёмники;
- меньшее количество ударов молнии в систему, сокращая вторичные негативные последствия, что особенно важно на объектах со множеством электронных приборов (количество ударов молнии уменьшается с уменьшением высоты стержневых молниеприёмников).
Функционал сервиса позволяет рассчитать эффективность запланированной молниезащиты в виде понятных параметров:
- вероятность прорыва молнии в объекты системы (надёжность системы защиты определяется как 1 минус величина вероятности);
- число ударов молнии в систему в год;
- число прорывов молнии, минуя защиту, в год.
Имея подобную информацию, проектировщик может сравнить требования заказчика и нормативной документации с полученной надежностью и принять меры по изменению конструкции молниезащиты.
Правила и алгоритм расчета заземляющих устройств
Система заземления обеспечивает безопасность жильцов и бесперебойное функционирование электробытовой техники. Заземление предотвращает поражение током в случае утечек электричества на нетоковедущие элементы из металла, возникающих при повреждении изоляции. Создание системы безопасности — ответственное мероприятие, поэтому перед его проведением необходимо произвести расчет заземления.
Естественное заземление
Во времена, когда перечень электробытовой техники в жилище ограничивался одним телевизором, холодильником и стиральной машиной, заземляющие устройства использовались редко. Защита от утечки тока возлагалась на естественные заземлители, такие как:
- неизолированные металлические трубы;
- обсадка водяных скважин;
- элементы металлических заборов, уличные фонари;
- оплетка кабельных сетей;
- стальные элементы фундаментов, колонн.
Лучший вариант естественного заземления — водопроводная магистраль из стали. За счет своей большой длины водопроводы сводят к минимуму сопротивление току растекания. Эффективность водопроводов достигается еще и благодаря их прокладке ниже уровня сезонного промерзания, а потому на их защитные качества не влияют ни жара, ни холод.
Металлические элементы подземных железобетонных изделий подходят для заземлительной системы, если соответствуют следующим требованиям:
- имеется достаточный (по нормам Правил устройства электроустановок) контакт с глинистой, супесчаной или влажной песчаной основой;
- при строительстве фундамента арматура на двух или более участках была выведена наружу;
- металлические элементы имеют сварные соединения;
- сопротивление арматуры соответствует регламенту ПУЭ;
- имеется электросвязь с шиной заземления.
Обратите внимание! Из всего перечня указанных выше естественных заземлений рассчитываются только подземные железобетонные конструкции.
Эффективность функционирования естественного заземления устанавливается на основе измерений, проведенных уполномоченным лицом (представителем Энергонадзора). На основе проведенных замеров специалист даст рекомендации относительно необходимости установки дополнительного контура к естественному контуру заземления. Если естественная защита отвечает требованиям нормативов, Правила устройства электроустановки указывают на нецелесообразность дополнительного заземления.
Расчеты для устройства искусственного заземления
Абсолютно точный расчет заземления произвести практически невозможно. Даже профессиональные проектировщики оперируют приблизительным количеством электродов и дистанциями между ними.
Причина сложности расчетов состоит в большом количестве внешних факторов, каждый из которых оказывает существенное влияние на систему. К примеру, нельзя предсказать точный уровень влажности, не всегда известна фактическая плотность грунта, его удельное сопротивление и так далее. В связи с неполной определенностью вводных данных итоговое сопротивление организованного контура заземления в конечном счете отличается от базового значения.
Разницу в проектируемых и реальных показателях нивелируют за счет монтажа дополнительных электродов или путем увеличения длины стержней. Тем не менее, предварительные расчеты важны, так как позволяют:
- отказаться от лишних трат (или хотя бы уменьшить их) на покупку материалов, на земляные работы;
- подобрать наиболее подходящую конфигурацию заземлительной системы;
- выбрать правильный план действий.
Для облегчения расчетов существует разнообразное программное обеспечение. Однако чтобы разобраться в их работе, необходимы определенные познания о принципах и характере вычислений.
Компоненты защиты
Защитное заземление включает электроды, установленные в землю и соединенные электросвязью с заземляющей шиной.
В системе имеются такие элементы:
- Металлические стержни. Один или несколько металлических стержней направляют ток растекания в грунт. Обычно в качестве электродов используют отрезки длинномерного металла (трубы, уголок, круглые металлические изделия). В некоторых случаях используется листовая сталь.
- Металлический проводник, объединяющий несколько заземлителей в единую систему. Обычно в этом качестве используют установленный по горизонтали проводник в виде уголка, прута или полосы. Металлическую связь приваривают к концам закопанных в землю электродов.
- Проводник, соединяющий находящийся в грунте заземлитель с шиной, которая имеет связь с защищаемым оборудованием.
Два последних элемента называются одинаково — заземляющий проводник. Оба элемента выполняют идентичную функцию. Различие кроется в том, что металлосвязь находится в грунте, а проводник подключения заземления к шине располагается на поверхности. В связи с этим к проводникам предъявляются неодинаковые требования по устойчивости к коррозии.
Принципы и правила вычислений
Грунт — один из составляющих элементов системы заземления. Его параметры имеют важное значение и участвуют в расчетах так же, как и длина металлических деталей.
При проведении расчетов используют формулы, указанные в Правилах устройства электроустановок. Применяются переменные данные, собираемые установщиком системы, и постоянные параметры (есть в таблицах). К постоянным данным относится, например, сопротивление грунта.
Определение подходящего контура
Прежде всего необходимо выбрать форму контура. Конструкция обычно выполняется в виде определенной геометрической фигуры или простой линии. Выбор конкретной конфигурации зависит от размеров и формы участка.
Проще всего реализовать линейную схему, так как для монтажа электродов понадобится выкопать лишь одну прямую траншею. Однако установленные в линию электроды станут экранировать, что ухудшит положение с током растекания. В связи с этим при расчетах линейного заземления применяется поправочный коэффициент.
Наиболее распространенной схемой для создания защитного заземления выступает треугольная форма контура. По вершинам геометрической фигуры устанавливают электроды. Металлические штыри должны быть достаточно отдалены друг от друга, чтобы не препятствовать рассеиванию поступающих в них токов. Для обустройства защитной системы частного дома считается достаточным три электрода. Для организации эффективной защиты необходимо еще и правильно подобрать длину стержней.
Расчет параметров проводников
Длина металлических стержней важна, поскольку влияет на эффективность системы защиты. Имеет значение и длина элементов металлосвязи. Кроме того, от длины металлических деталей зависят расход материала и общие затраты на обустройство заземления.
Сопротивление вертикальных электродов определяется их длиной. Другой параметр — поперечные размеры — не влияет существенным образом на качество защиты. И все же сечение проводников регулируется Правилами устройства электроустановок, так как данная характеристика важна с точки зрения устойчивости к коррозии (электроды должны служить 5 – 10 лет).
При соблюдении прочих условий существует правило: чем больше металлических изделий участвует в схеме, тем выше безопасность контура. Работы по организации заземления довольно трудоемкие: чем больше заземлителей, тем больше земляных работ, чем длиннее стержни, тем глубже их нужно забивать.
Что выбрать: количество электродов или их длину — решать организатору работ. Однако на этот счет есть определенные правила:
- Стержни необходимо устанавливать ниже горизонта сезонного промерзания по крайней мере на 50 сантиметров. Это позволит отстранить сезонные факторы от влияния на эффективность системы.
- Дистанция между вертикально установленными заземлителями. Расстояние определяется конфигурацией контура и длиной стержней. Для выбора правильной дистанции нужно воспользоваться соответствующей справочной таблицей.
Нарезанный металлопрокат вбивают в грунт на 2,5 – 3 метра при помощи кувалды. Это довольно трудоемкая задача, даже если учесть, что из указанной величины нужно вычесть примерно 70 сантиметров глубины траншеи.
Экономное расходование материала
Так как сечение металла — не самый важный параметр, рекомендуется приобретать материал с наименьшей площадью сечения. Однако при этом нужно оставаться в пределах минимально рекомендуемых значений. Наиболее экономичные (но способные выдержать удары кувалды) варианты металлоизделий:
- трубы диаметром 32 миллиметра и толщиной стенок от 3 миллиметров;
- уголок равнополочный (сторона — 50 или 60 миллиметров, толщина — 4 или 5 миллиметров);
- круглая сталь (диаметр от 12 до 16 миллиметров).
В качестве металлосвязи оптимальным выбором станет полоса из стали толщиной 4 миллиметра. В качестве альтернативы подойдет 6-миллиметровый стальной прут.
Обратите внимание! Горизонтальные стержни приваривают к вершинам электродов. Поэтому к расчетной дистанции между электродами следует добавить еще 18 – 23 сантиметра.
Наружный участок заземления можно изготовить из 4-миллиметровой полосы (ширина — 12 миллиметров).
Формулы для расчетов
Далее расскажем о том, как рассчитать заземление по формулам, и приведем пример расчетов. Выбираем формулу, исходя из типа заземлителей.
Подойдет универсальная формула, с помощью которой рассчитывают сопротивление вертикального электрода.
При проведении вычислений не обойтись без справочных таблиц, где указаны примерные значения. Данные параметры определяются составом грунта, его средней плотностью, способностью задерживать воду, климатическим поясом.
Устанавливаем нужное количество стержней, не принимая во внимание показатель сопротивления горизонтального проводника.
Вычисляем данные по горизонтальной части заземлительной системы.
Определяем уровень сопротивления вертикального стержня на основе показателя сопротивления заземлителя горизонтального типа.
На основании полученных результатов приобретаем нужное количество материала и планируем начало работ по созданию системы заземления.
Заключение
Поскольку самое высокое сопротивление грунта отмечается в сухое и морозное время, организацию заземлительной системы лучше всего запланировать именно на этот период. В среднем сооружение заземления занимает 1 – 3 рабочих дня.
До засыпки траншеи землей следует проверить работоспособность заземлительных устройств. Оптимальная среда для проверки должна быть как можно более сухой, в почве не должно быть много влаги. Поскольку зимы не всегда бывают бесснежными, проще всего заняться строительством системы заземления в летний период.
Расчет заземления
Без грамотно рассчитанного контура заземления (ЗК) надеяться на эффективность работы защитной конструкции было бы большой ошибкой. Только убедившись в том, что для токов стекания подготовлена цепочка с минимальным сопротивлением можно быть уверенным в безопасности людей, работающих на линии. Поэтому так важно сразу же разобраться со всеми тонкостями и особенностями расчета контуров заземления.
Цель расчета защитного заземления
Обустраиваемое на стороне потребителя заземляющее устройство предназначено для защиты не только персонала, обслуживающего электроустановки, но и рядовых пользователей.
Важно! Опасный потенциал может попасть на металлические части оборудования во время работы с ним совершенно случайно (из-за повреждения изоляции проводов, например).
Полноценный расчет заземления гарантирует образование надежного контакта защитного устройства с землей, приводящего к растеканию тока и снижению уровня опасного напряжения.
Таким образом, назначение расчета заземляющих устройств – создание условий, исключающих риск поражения живых организмов высоким потенциалом путем его снижения в точке замыкания. В отсутствие хорошо просчитанного и функционального заземлителя любое прикосновение к корпусу поврежденного оборудования равнозначно прямому контакту с фазной жилой.
Выбор контура
Перед расчетом контура Вам предоставляется возможность выбрать один из следующих вариантов заземляющих устройств:
- Треугольная конструкция, параметры которой определяются еще на этапе проектирования.
- Линейное сооружение протяженного типа, монтируемое по периметру защищаемого объекта.
- Модульно-штыревая заземляющая конструкция.
Каждый из перечисленных выше способов сборки и последующего монтажа заземляющих устройств нуждается в подробном рассмотрении.
Треугольная конструкция
Этот вариант изготовления ЗК – самый известный и распространенный среди профессионалов и любителей. Для обустройства такой конструкции потребуется приготовить следующие элементы:
- Двухметровые металлические стержни (арматурные прутья) в количестве 3-х штук.
- Столько же стальных перемычек, предназначенных для объединения прутьев в единую конструкцию.
- Медная шина, необходимая для соединения ЗК с точкой сбора жил от заземляемого оборудования в распределительном шкафу (ГЗШ – главная заземляющая шина).
Плоскость сварного контура с уже вбитыми в землю штырями при обустройстве ЗУ должна располагаться на глубине примерно 30-60 см.
Линейный контур
Линейное заземление выбирается в случае, когда к защитному сооружению требуется подключить несколько единиц оборудования, размещенных на удалении один от другого. Оно состоит из нескольких вбитых в землю штырей (3), расположение которых относительно друг друга выбирается из расчетных данных.
От собранной по этой схеме конструкции, как и в случае с треугольником в сторону распределительного щитка с ГЗШ делается отвод (2). Перед тем как рассчитать такой ЗК – следует учесть, что общее число штырей ограничено взаимным влиянием аварийных токов, протекающих в каждом одиночном заземлителе.
Модульно-штыревое заземление
Модульный тип ЗУ применяется в ситуациях, когда площадь на участке перед домом ограничена небольшими размерами и допускается обустройство одной штыревой конструкции.
Она содержит в своем комплекте следующие элементы:
- Стальной стержень полутораметровой длины с медным покрытием и имеющейся на
- рабочей части резьбой.
- Специальную муфту из латуни, обеспечивающую получение резьбового соединения вертикально вбиваемого штыря с заземляющим отводом.
- Латунные зажимы особой конструкции, гарантирующие надежное сочленение металлических штырей с соединительной полосой.
- Наконечники для самих заземляющих стержней.
- Насадку с ударной площадкой, позволяющую передавать импульс от забивающего инструмента (вибромолота).
Обратите внимание: Для надежной защиты от коррозии все резьбовые элементы стержней покрываются графитной пастой, входящей в комплект фирменной поставки.
Защитная смазка сохраняется долгое время и не растекается при нагревании штырей и других элементов такого ЗУ. Входящая в состав антикоррозийная лента устойчива к воздействию агрессивных сред и защищает от разрушения всю конструкцию в целом.
Подробно о монтаже модульно-штыревого заземления читайте на этой странице.
Исходные данные для расчета заземления
Перед началом обустройства заземления расчет которого нужно провести, необходимо заранее определиться с такими исходными данными, как:
- Линейные размеры забиваемых в грунт стальных штырей.
- Расстояние между ними (шаг монтажа).
- Допустимая глубина погружения.
- Характеристики почвы в месте обустройства заземления.
Дополнительное замечание: Перед проведением расчета также потребуется знать величину сопротивления грунта Ом на участке проведения монтажных работ.
При его определении важно помнить о том, что он сильно отличается от места к месту и в значительной степени зависит от климатической зоны, к которой относится регион. Помимо этих данный придется учесть конфигурацию и материал заготовок, из которых сваривается готовое сооружение (либо обычный стальной уголок, либо медная широкая полоска).
Согласно ПУЭ минимальные размеры элементов для треугольной или линейной контурной конструкции должны быть:
- полоса – сечение 48 мм2;
- уголок 4х4 мм;
- круглый брусок – сечение 10 мм2;
- стальная труба диаметром 2,5 см со стенками толщиной не менее 3,5 мм.
Полезное замечание: Минимальную длину штырей вычисляют с учетом технических требований (необходимостью получения требуемого сопротивления стеканию в землю).
В соответствие с этими требованиями ее выбирают не менее 2-2,5 метра. Расстояние между соседними точками погружения стержней должно быть кратным их длине. В зависимости от размеров и конфигурации площадки для обустройства ЗУ элементы конструкции устанавливаются либо в ряд, либо в виде правильного треугольника (иногда для этого выбирается квадратная форма). Используемые в этом случае методики расчета различных вариантов ЗУ ставят своей задачей получение данных по числу стержней и параметрам соединительной полосы (ее длины и сечения).
Расчет элементов заземляющего устройства
Определение параметров проводников, используемых в конструкции любого заземлителя, проводится с учетом следующих соображений:
- Длина металлических стержней или штырей в значительной мере определяет эффективность всей системы защитного заземления.
- Большое значение имеет и протяженность элементов металлических связей.
- От линейных размеров этих конструктивных составляющих зависят расход материала, а также суммарные затраты на обустройство ЗУ.
- Сопротивление вертикально забиваемых электродов в первую очередь определяется длиной.
- Их поперечные размеры не оказывают существенного влияния на качество и эффективность обустраиваемой защиты.
Обратите внимание: Порядок выбора сечения проводников определяется в ПУЭ, поскольку этот показатель характеризует устойчивость к коррозии (электроды должны служить 5-10 лет).
Помимо этого всегда нужно помнить о «золотом» правиле, согласно которому чем больше металлических заготовок предусмотрено в схеме – тем лучше характеристики безопасности контура.
Также следует учесть, что мероприятия по организации заземления нельзя назвать легким занятием. При большом количестве составляющих системы увеличиваются объемы земляных работ. А решение вопроса о том, каким конкретно способом улучшать качество заземления (за счет длины или количества электродов) остается за самим исполнителем.
В любом случае при обустройстве ЗУ произвольного типа рекомендуется придерживаться следующих правил:
- стержни необходимо вбивать до отметки, находящейся ниже уровня промерзания почвы минимум на 50 сантиметров;
- такое их расположение позволит учесть сезонные факторы и исключить их влияние на работоспособность защитной системы;
- расстояние между вертикально вбитыми элементами зависит от формы выбранной конструкции и длины самих стержней.
Для корректного выбора этого показателя рекомендуется воспользоваться справочными таблицами.
С целью сокращения объема предстоящих расчетов (их упрощения) сначала желательно определить величину сопротивления
стеканию токов КЗ для одиночного стержня.
С учетом влияния, оказываемого на искомую величину горизонтальными элементами конструкции, сопротивление для вертикальных штырей вычисляется по следующей формуле:
Если монтируемое ЗУ обустраивается в разнородном грунте (другое его название – двухслойный), удельное сопротивление можно определить так:
где Ψ – это так называемый «сезонный» коэффициент;
ρ1 и ρ2– удельные сопротивления слоев почвы (верхней и нижней прослойки соответственно), учитываемые при расчетах в Омах на•метр;
Н – толщина слоя грунта в метрах, расположенного в верхней части земляного покрова;
t – заглубление вертикальных штырей или стержней (оно соответствует глубине подготовленной траншеи), равное 0,7 метрам.
Достаточное для получения эффективного заземления число стержней (горизонтальные составляющие пока не учитываются) определяется так:
где Rн – это нормируемое ПТЭЭП сопротивление растеканию.
С учетом горизонтальных элементов ЗУ формула для определения количества вертикальных штырей принимает такой вид:
где под ηв понимается коэффициент использования конструкции, указывающий на взаимное влияние токов стекания различных единичных элементов друг на друга.
Дополнительная информация: При обустройстве системы из линейно расположенных штырей следует помнить о том, что в этом случае их взаимное влияние проявляется особенно сильно.
При уменьшении шага монтажа этих элементов защитного контура его общее сопротивление растеканию тока заметно увеличивается. Число элементов заземляющего сооружения, полученное по результатам описанных выкладок, следует округлить до большего значения.
Расчеты заземления онлайн удается автоматизировать, если воспользоваться разработанным для этого специальным онлайн калькулятором на нашем ресурсе.
Пример расчета заземления
В качестве «классического» примера расчета заземления рассмотрим вариант ЗУ с учетом заданных исходных данных, то есть проведем вычисления для одиночного металлического штыря. Сразу оговоримся, что такие простейшие конструкции применяются при организации повторного заземления высоковольтных опор. В рассматриваемой ситуации согласно положениям ПУЭ (смотрите п.1.7.103.) сопротивление растеканию тока не может быть более 15, 30 и 60 Ом для напряжений 660, 380 и 220 Вольт соответственно.
Расчет одиночного заземляющего элемента для опоры ВЛ 380 Вольт
Согласно оговоренной ранее методике сначала по таблице выбирается тип вертикального штыря со следующими характеристиками:
- Материал – сталь.
- Форма – округлый стержень диаметром 16 мм.
- Длина L — 2,5 метра.
Обратите внимание: В качестве грунта в соответствие с таблицей выбирается полутвердая глина с удельным сопротивлением ρ, равным 60 Ом на•метр.
Глубина траншеи берется равной полметра. Затем из той же таблицы находится поправочный коэффициент, вводимый для средней климатической зоны. Его значение при фактической длине стержней до 2,5 метров с учетом промерзания грунта в данной местности составляет ψ=1,45. Показатель нормированного сопротивления для этого типа ЗУ равен 30 Омам. Следующий показатель – удельное сопротивление грунта находится по формуле:
ρ (по факту) = ψ•ρ = 1.45х60 = 87 Ом•метр
Полученные расчетные данные выглядят так:
- заглубление одиночного штыря в грунт составляет h = 0,5l + t = 0,5х2,5 + 0,5 = 1,75 метра;
- его сопротивление для нашего примера (смотрите формулы выше) составляет не более 30 Ом, что соответствует требования ПУЭ для данного напряжения.
Когда одного заземляющего штыря для опоры ВЛ недостаточно – допускается добавлять еще один или даже несколько прутьев. В этом случае потребуется другая методика, используемая для линейного контура или треугольной конструкции.
Расчет переносного заземления
Перед расчетом переносного заземления (ПЗ) следует учесть, что для этого типа защитных приборов требования к сопротивлению стеканию тока еще более высокие, чем у стационарных ЗУ (фото ниже).
Обратите внимание: Самое главное в этой ситуации – правильно рассчитать сечение заземляющих проводов переносного устройства, определяющих эффективность его действия.
При решении этой проблемы, прежде всего, следует научиться различать сети и установки с различными действующими напряжениями. Провода ПЗ (согласно требованиям действующих стандартов) должны выдерживать продолжительный нагрев при замыкании в питающих линиях трехфазного и однофазного напряжения. Для электроустановок с этим показателем до 1000 Вольт выбирается шина сечением не менее 16 кв. мм.
В сетях, где напряжение превышает 1000 Вольт, предельная величина сечения проводов ПЗ не должна быть менее 25 мм2. Точный расчет этого значения производится обычно по следующей формуле:
S = ( Iуст √tф ) / 272
где Iуст – это ток короткого замыкания;
tф – время его действия в секундах;
272– коэффициент, указывающий на тип металла проводника и отличающийся для разных токов КЗ (для меди, в частности он равен 250, а в расчетах взят с небольшим запасом).
В случаях, когда действующее напряжение не превышает 6-10 кВ – требуемое для надежной защиты сечение провода колеблется в пределах от 120 до 185 мм2. Поскольку комплект переносных заземлений с такими шинами будет очень тяжелым и неудобным в работе – согласно ПУЭ допускается использовать несколько ПЗ с меньшим сечением. При подготовке рабочего места такие заземления включаются в защищаемую цепь параллельно.
В последнем случае в формулу подставляются максимальные значения по времени воздействия тока короткого замыкания, а в трехфазных цепях искомая величина определяется для каждой их фаз. Во втором случае особое внимание уделяется аккуратности обустройства ПЗ, чтобы избежать недопустимого в условиях наложения защитного заземления межфазного замыкания.
Дополнительная информация: При обустройстве переносной конструкции не допускается применять кабель в изоляции, не позволяющей визуально контролировать состояние рабочих жил.
Помимо этого комплект такого заземления обязательно оснащается достаточно «мощными» зажимами, посредством которых элементы переносной конструкции надежно закрепляются на токопроводящих частях. Для их фиксации на заземляющих проводах должны применяться крепления, позволяющие обходиться без переходных элементов. Такая предусмотрительность позволит увеличить площадь контакта и повысить надежность имеющегося соединения. В этом случае конструкция способна выдержать значительные по величине токи и сохранить свою работоспособность в течение длительного времени.
При наложении такого заземления в трехфазных силовых цепях с напряжениями выше 1000 Вольт для получения более надежного контакта допускается использовать сварку. В исключительных случаях согласно ПУЭ разрешено болтовое сочленение, но только при условии предварительной пайки контактной зоны. В заключение отметим, что в рассмотренной ситуации для образования надежного соединения потребуется комплексный подход (ограничиваться только одной пайкой, например, не допускается).
Примеры расчёта заземляющего устройства
Любой предварительный расчёт заземления сводится к определению сопротивления растекания тока заземлителя в соответствие с требованием ПУЭ, как уже отмечалось ранее, а также на количество требуемых материалов и затрат на изготовления заземляющего устройства (бурение, ручная забивка заземлителей, сварочные работы, электромонтажные работы).
Так же отметим, что любой расчёт начинается с расчёта одиночного заземлителя, одиночный заземлитель применяется в основном для повторного заземления ВЛ опор , где требования ПУЭ (п. 1.7.103.) общее сопротивление растеканию заземлителей должно быть не более 15, 30 и 60 Ом соответственно при тех же напряжениях: 660, 380 и 220 В.
1. Пример расчёта одиночного заземлителя для опоры ВЛ 380 В:
Выбираем арматуру из таблицы 1 для вертикальных заземлителей — круглую сталь ø 16 мм., длиной L — 2,5 м.В качестве грунта примем глину полутвердую (см. таблицу 5) с удельным сопротивлением ρ — 60 Ом·м. Глубина траншеи равна 0,5 м. Из таблицы 6 возьмем повышающий коэффициент для третей климатической зоны и длине заземлителей до 2,5 м. с коэффициентом промерзания грунта для вертикальных электродов ψ — 1,45. Нормированное сопротивление заземляющего устройства равно 30 Ом. Фактическое удельное сопротивление почвы вычислим по формуле: ρфакт = ψ·ρ = 1.45 · 60 = 87 Ом·м. Примечание: расчёт одиночного заземлителя проводим без учёта горизонтального сопротивления заземления.
Расчет:
а) заглубление равно (рис. 2): h = 0,5l + t = 0,5 · 2,5 + 0,5 = 1,75 м.;
б) сопротивление одного заземлителя вычислим по формуле, (ρэкв = ρфакт):
прим. автора, где ln — логарифм, смотри ⇒ формулы на Рис. 4
Нормируемое сопротивления для нашего примера должно быть не больше 30 Ом., поэтому принимается равным R1 ≈ 28 Ом., что соответствует ПУЭ для одиночного вертикального заземлителя (электрода) заземления опоры ВЛ — U ∼ 380 В.
Если недостаточно одного заземлителя для опоры, то можно добавить второй или третий, в этом случае для двух заземлителей расчёт выполняется как для заземлителей в ряд, для трёх заземлителей (треугольником) по контуру, при этом надо иметь в виду, что расчёт треугольником малоэффективный, из-за взаимного влияния электродов друг к другу.
2. Пример расчёта заземления с расположением заземлителей в ряд:
Воспользуемся данными из примера 1 , где R = 27,58 Ом·м для расчёт вторичного заземления электроустановок (ЭУ), где нормативное сопротивление требуется не более Rн = 10 Ом, на вводе в здания, при напряжении 380 В и каждого повторного заземлителя не более Rн = 30 (см. ПУЭ п.1.7.103 см. Заземлители) .
Расчет:
а) для расчёта заземления с расположением в ряд заземлителей, как уже отмечалось выше, возьмем данные из примера 1, где R1 = 27,58 Ом·м одиночного заземлителя и Ψ — 1,45 для третей климатической зоне;
б) предварительное количество стержней вертикального заземления без учета сопротивления горизонтального заземления находится по формуле 4.3 (см. Расчёт заземления):
n0 = 27,58 / 10 = 3,54 шт, где коэффициент спроса (использования) примем η = 1; далее по таблице 3 выберем число электродов n = 3 в ряд при отношение расстояние между электродами к их длине a = 1хL и коэффициент спроса η = 0,78, далее уточняем число электродов:
n = 27,58 / (10 · 0,78) = 3,26 шт; где потребуется увеличить число электродов или изменить расстояние к их длине a = 3хL, для экономии материалов примем отношение a = 3хL и количество вертикальных электродов равным — n = 3 шт . с коэффициентом спроса η = 0,91: n = 27,58 / (10 · 0,91) = 3,03 шт; т.к. общее сопротивление заземлителя уменьшиться за счёт горизонтального заземлителя;
в) длину самого горизонтального заземлителя найдем исходя из количества заземлителей расположенных в ряд, где а = 3· L = 3 · 2 = 6 м ; Lг = 6 · (3 — 1) = 12 м;
г) сопротивление растекания тока для горизонтального заземлителя находим по формуле 5 (см. Расчёт заземления), где в качестве верхнего грунта принято глина полутвердая с удельным сопротивлением 60 Ом·м., до глубины верхнего слоя нашей траншеи t = 0,5 м. см. пример 1; выберем полосу заземлителя 40 х 4 мм ., где коэффициент III климатической зоны для горизонтального (полосового) заземлителя возьмём Ψ — 2,2 и коэффициент спроса примем η = 1 , т.к. расстояние между электродами более 5 м., что исключает влияние около электродной зоны, по количеству принятых электродов, их длине и отношению расстояния между ними (см. таблицу 3 Расчёт заземления) :
ширина полки для полосы b = 0,04 м.
Rг = 0,366 · (100 · 2,2 / 12 · 1) · lg (2 · 12 2 /0,04 · 0,5) = 27,90 Ом·м, примем сопротивление горизонтального заземлителя — Rг = 27,9 Ом·м;
где, lg- десятичный логарифм ( смотри формулы формулы для расчёта рис. 4), b — 0,04 м. ширина полосы, t — 0,5 м. глубина траншеи.
д) Определим общее сопротивление вертикального заземлителя с учетом сопротивления растеканию тока горизонтальных заземлителей:
Rоб = (27,9 · 27,58) / (27,58 · 1) + (27,9 · 0,91 ·3) = 7,42 Ом·м
где Rоб — общее сопротивление заземлителей; R В — вертикального; RГ — горизонтального , ηВ и ηГ — коэффициенты использования вертикального и горизонтального заземлителя , n — шт количество вертикальных заземлителей.
Rоб = 7,42 Ом·м соответствует норме при напряжении U — 380 В для ввода в здание, где нормированное сопротивление не более Rн = 10 Ом (Общее сопротивление растеканию заземлителей (в том числе естественных) всех повторных заземлений PEN-проводника каждой ВЛ в любое время года должно быть не более 5, 10 и 20 Ом соответственно при линейных напряжениях 660, 380 и 220 В., ПУЭ п.1.7.103.)
3. Пример расчёта заземления с расположением заземлителей по контуру:
В качестве грунта примем сугли́нок — почва с преимущественным содержанием глины и значительным количеством песка с удельным сопротивлением ρ — 100 Ом·м. Вертикальный заземлитель из стальной трубы с наружным диаметром d — 32 мм., толщена стенки S — 4 мм., длиной электрода L — 2,2 м и расстоянием между ними 2,2 м ( a = 1хL). Заземлители расположены по контуру. Глубина траншеи равна t = 0,7 м. Из таблицы 6 возьмем повышающий коэффициент для второй климатической зоны и длине заземлителей до 5 м, его сезонное климатическое значение сопротивление составит Ψ — 1,5. Нормированное сопротивление заземляющего устройства равно Rн = 10 Ом·м . Фактическое удельное сопротивление почвы вычислим по формуле: ρ экв = Ψρ = 1.5 · 100 = 150 Ом·м.
а) вычислим сопротивление растекания тока одного вертикального заземлителя (стержня) по формуле 2 см. Расчёт заземления:
R О = 150 / (2π · 2,2) · ( ln (2 · 2,2 / 0,032) + 0,5 · ln (4 · 1,8 + 2,2) / (4 · 1,8 — 2,2)) = 10,85 · (ln 137,5 + 0,5 · ln 1,88) = 56,845 Ом·м., где T = 0,5 · L + t = 0,5 · 2,2 + 0,7 = 1,8 м. Примем RО = RВ = 56,85 Ом·м.,
б) предварительное количество стержней вертикального заземления без учета сопротивления горизонтального заземления находим по формуле (см. Расчёт заземления):
n = 56,85 /10 = 5,685 шт., округляем по таблице 3 до ближайшего значения, где n = 4 шт., далее по таблице 3 выберем число электродов n = 6 шт по контуру при отношение расстояние между электродами к их длине a = 1хL, где коэффициент спроса η = 0,62 и уточним количество
стержней с коэффициентом использования вертикальных заземлителей: n = 56,85 /10 · 0,62 = 9,17 шт., т.е требуется увеличить количество электродов до n = 10 шт., где коэффициент спроса η В = 0,55 ;
в) находим длину горизонтального заземлителя исходя из количества заземлителей расположенных по контуру: L Г = а · n , L Г = 2,2 · 10 = 22 м., где а = 1 · L = 1 · 2,2 = 2,2 м;
г) находим сопротивление растекания тока для горизонтального заземлителя по формуле 5 (см. Расчёт заземления), где коэффициент для II климатической зоны для горизонтального (полосового) заземлителя возьмём Ψ — 3,5 , коэффициент спроса примем по таблице 3 — η Г = 0,34 , ширина полосы горизонтального заземлителя b — 40 мм , (если из той же трубы d = 32 мм , то тогда ширина b полосы будет равна — b = 2 · d = 2 · 32 = 64 мм , b = 0,064 м .) и удельное сопротивление грунта — ρ = 100 Ом.м, по формуле 6:
R Г = 0,366 · (100 · 3,5 / 22 · 0,34) · lg (2 · 22 2 /0,040 · 0,7) = 17,126 · lg 34571,428 = 77,73 Ом·м, примем сопротивление горизонтального заземлителя — R Г = 77,73 Ом·м;
д) Определим полное сопротивление вертикального заземлителя с учетом сопротивления растекания тока горизонтальных заземлителей по формуле 6:
Rоб = (77,73 · 56,85) / (56,85 · 0,34) + (77,73 · 0,55 ·10) = 9,89 Ом·м , что соответствует заданной норме сопротивления не более Rн = 10 Ом·м.
Перейти далее: ⇒ Продолжение примеров расчёта заземления
Данный расчет следует применять как оценочный. После ок ончания монтажа заземляющего устройства необходимо пригласить специалистов электролаборатории для проведения электроизмерений (для ООО и ИП обязательно).
Вернутся:
Перейти в раздел: Паспорт ЗУ, Акт освидетельствования скрытых работ, Протокол испытания ЗУ
Примечание: данный раздел пока находится в разработке, могут быть опечатки.