Основные фотометрические величины и их единицы
Фотометрия — раздел оптики, занимающийся вопросами измерения интенсивности света и его источников. В фотометрии используются следующие величины:
1) энергетические — характеризуют энергетические параметры оптического излучения безотносительно к его действию на приемники излучения;
2) световые — характеризуют физиологические действия света и оцениваются по воздействию на глаз (исходят из так называемой средней чувствительности глаза) или другие приемники излучения.
1. Энергетические величины. Поток излучения Фе — величина, равная отношению энергии W излучения ко времени t, за которое излучение произошло:
Единица потока излучения — ватт (Вт).
Энергетическая светимость (излучательность) Re — величина, равная отношению потока излучения Фе, испускаемого поверхностью, к площади S сечения, сквозь которое этот поток проходит:
т. е. представляет собой поверхностную плотность потока излучения. Единица энергетической светимости — ватт на метр в квадрате (Вт/м 2 ).
Энергетическая сила света (сила излучения) Iе определяется с помощью понятия о точечном источнике света — источнике, размерами которого по сравнению с расстоянием до места наблюдения можно пренебречь. Энергетическая сила света Iе — величина, равная отношению потока излучения Фе источника к телесному углу , в пределах которого это излучение распространяется:
Единица энергетической силы света — ватт на стерадиан (Вт/ср).
Энергетическая яркость (лучистость)Be — величина, равная отношению энергетической силы света элемента излучающей поверхности к площади S проекции этого элемента на плоскость, перпендикулярную направлению наблюдения:
Единица энергетической яркости — ватт на стерадиан-метр в квадрате (Вт/(ср×м 2 )).
Энергетическая освещенность (облученность) Ее характеризует величину потока излучения, падающего на единицу освещаемой поверхности. Единица энергетической освещенности совпадает с единицей энергетической светимости (Вт/м 2 ).
2. Световые величины. При оптических измерениях используются различные приемники излучения (например, глаз, фотоэлементы, фотоумножители), которые не обладают одинаковой чувствительностью к энергии различных длин волн, являясь, таким образом, селективными (избирательными). Каждый приемник излучения характеризуется своей кривой чувствительности к свету различных длин волн. Поэтому световые измерения, являясь субъективными, отличаются от объективных, энергетических и для них вводятся световые единицы, используемые только для видимого света. Основной световой единицей в СИ является единица силы света — кандела(кд), определение которой дано выше (см. Введение). Определение световых единиц аналогично энергетическим.
Световой поток Ф определяется как мощность оптического излучения по вызываемому им световому ощущению (по его действию на селективный приемник света с заданной спектральной чувствительностью). Единица светового потока — люмен (лм): 1 лм — световой поток, испускаемый точечным источником силой света в 1 кд внутри телесного угла в 1 ср (при равномерности поля излучения внутри телесного угла) (1 лм = 1 кд×ср).
Светимость R определяется соотношением
Единица светимости — люмен на метр в квадрате (лм/м 2 ).
Яркость светящейся поверхности в некотором направлении есть величина, равная отношению силы света I в этом направлении к площади S проекции светящейся поверхности на плоскость, перпендикулярную данному направлению:
Единица яркости — кандела на метр в квадрате (кд/м 2 ).
ОсвещенностьЕ — величина, равная отношению светового потока Ф, падающего на поверхность, к площади S этой поверхности:
Единица освещенности — люкс (лк): 1 лк — освещенность поверхности, на 1 м 2 которой падает световой поток в 1 лм (1 лк = 1 лм/м 2 ).
Основные фотометрические величины
Фотометрия — раздел оптики, занимающийся вопросами измерения интенсивности света и его источников. В фотометрии используются следующие величины:
1) энергетические — характеризуют энергетические параметры оптического излучения безотносительно к его действию на приемники излучения;
2) световые — характеризуют физиологические действия света и оцениваются по воздействию на глаз (исходят из так называемой средней чувствительности глаза) или другие приемники излучения.
1. Энергетические величины. Поток излучения Фе — величина, равная отношению энергии Wизлучения ко времени t, за которое излучение произошло:
Единица потока излучения — ватт (Вт).
Энергетическая светимость (нзлучательность) Re, — величина, равная отношению потока излучения Фe испускаемого поверхностью, к площади S сечения, сквозь которое этот поток проходит:
т. е. представляет собой поверхностную плотность потока излучения.
Единица энергетической светимости — ватт на метр в квадрате (Вт/м 2 ).
Энергетическая сила света (сила излучения) Ie определяется спомощью понятия о точечном источнике света — источнике, размерами которого по сравнению с расстоянием до места наблюдения можно пренебречь. Энергетическая сила света 1е— величина, равная отношению потока излучения Ф, источника к телесному углу со, в пределах которого это излучение распространяется:
Единица энергетической силы света — ватт на стерадиан (Вт/ср).
Энергетическая яркость (лучистость) Вe, — величина, равная отношению энергетической силы света DIe элемента излучающей поверхности к площади DS проекции этого элемента на плоскость, перпендикулярную направлению наблюдения:
Единица энергетической яркости — ватт на стерадиан-метр в квадрате (Вт/(ср×м 2 )).
Энергетическая освещенность (облученность) Еехарактеризует величину потока из лучения, падающего на единицу освещаемой поверхности. Единица энергетической освещенности совпадает с единицей энергетической светимости (Вт/м 2 ).
2. Световые величины. При оптических измерениях используются различные приемники излучения (например, глаз, фотоэлементы, фотоумножители), которые не обладают одинаковой чувствительностью к энергии различных длин волн, являясь, таким образом, селективными (избирательными). Каждый приемник излучения характеризуется своей кривой чувствительности к свету различных длин волн. Поэтому световые измерения, являясь субъективными, отличаются от объективных, энергетических и для них вводятся световые единицы, используемые только для видимого света. Основной световой единицей в СИ является единица силы света — кандела (кд), определение которой дано выше (см. Введение). Определение световых единиц аналогично энергетическим.
Световой поток Ф определяется как мощность оптического излучения по вызываемому им световому ощущению (по его действию на селективный приемник света с заданной спектральной чувствительностью).
Единица светового потока — люмен (лм): 1 лм — световой поток, испускаемый точечным источником силой света в 1 кд внутри телесного угла в 1 ср (при равномерности поля излучения внутри телесного угла) (1 лм = 1 кд-ср).
Светимость R определяется соотношением
Единица светимости — люмен на метр в квадрате (лм/м 2 ).
Яркость Bvсветящейся поверхности в некотором направлении jесть величина, равная отношению силы света I в этом направлении к площади Sпроекции светящейся поверхности на плоскость, перпендикулярную данному направлению:
Единица яркости — кандела на метр в квадрате (кд/м 2 ).
Единица освещенности — люкс (лк): 1 лк — освещенность поверхности, на 1 м 2 которой падает световой поток в 1 лм (1 лм = 1 лм/м 2 ).
Освещенность Е— величина, равная отношению светового потока Ф, падающего на поверхность, к площади Sэтой поверхности:
Элементы электронной оптики
Область физики и техники, в которой изучаются вопросы формирования, фокусировки и отклонения пучков заряженных частиц и получения с их помощью изображений под действием электрических в магнитных полей в вакууме, называется электронной оптикой. Комбинируя различные электронно-оптические элементы — электронные линзы, зеркала, призмы, — создают электронно-оптические приборы, например электрон но-лучевую трубку, электронный микроскоп, электронно-оптический преобразователь.
1. Электронные линзы представляют собой устройства, с помощью электрических и магнитных полей которых формируются и фокусируются пучки заряженных частиц. Существуют электростатические и магнитные линзы. В качестве электростатической линзы может быть использовано электрическое поле с вогнутыми и выпуклыми эквипотенциальными поверхностями, например в системах металлических электродов и диафрагм, обладающих осевой симметрией. На рис. 240 изображена простейшая собирающая электростатическая линза, где А — точка предмета, В — ее изображение, пунктиром изображены линии напряженности поля.
Магнитная линза обычно представляет собой соленоид с сильным магнитным полем, коаксиальным пучку электронов. Чтобы магнитное поле сконцентрировать на оси симметрии, соленоид помещают в железный кожух с узким внутренним кольцевым разрезом.
Если расходящийся пучок заряженных частиц попадает в однородное магнитное поле, направленное вдоль оси пучка, то скорость каждой частицы можно разложить на два компонента: поперечный и продольный. Первый из них определяет равномерное движение по окружности в плоскости, перпендикулярной направлению поля (см. § 115), второй—равномерное прямолинейное движение вдоль поля. Результирующее движение частицы будет происходить по спирали, ось которой совпадает с направлением поля. Для электронов, испускаемых под различными углами, нормальные составляющие скоростей будут различны, т. е. будут различны и радиусы описываемых ими спиралей. Однако отношение нормальных составляющих скорости к радиусам спиралей за период вращения (см. § 115) будет для всех электронов одинаково; следовательно, через один оборот все электроны сфокусируются в одной и той же точке на оси магнитной линзы.
«Преломление» электростатических и магнитных линз зависит от их фокусных расстояний, которые определяются устройством линзы, скоростью электронов, разностью потенциалов, приложенной к электродам (электростатическая линза), и индукцией магнитного поля (магнитная линза). Изменяя разность потенциалов или регулируя ток в катушке, можно изменить фокусное расстояние линз. Стигматическое изображение предметов в электронных линзах получается только для параксиальных электронных пучков. Как и в оптических системах (см. § 167), в электронно-оптических элементах также имеют место погрешности: сферическая аберрация, кома, дисторсия, астигматизм. При разбросе скоростей электронов в пучке наблюдается также и хрома тическая аберрация. Аберрации ухудшают разрешающую способность и качество изображения, а поэтому в каждом конкретном случае необходимо их устранять.
2.Электронный микроскоп — устройство, предназначенное для получения изображения микрообъектов; в нем в отличие от оптического микроскопа вместо световых лучей используют ускоренные до больших энергий (30—100 кэВ и более) в условиях глубокого вакуума (примерно 0,1 мПа) электронные пучки, а вместо обычных линз — электронные линзы. В электронных микроскопах предметы рассматриваются либо в проходящем, либо в отраженном потоке электронов, поэтому различают просвечивающие и отражательные электронные микроскопы.
На рис. 241 приведена принципиальная схема просвечивающего электронного микроскопа. Электронный пучок, формируемый электронной пушкой 1, попадает в область действия конденсорной линзы 2, которая фокусирует на объекте 3 электронный пучок необходимого сечения и интенсивности. Пройдя объект и испытав в нем отклонения, электроны проходят вторую магнитную линзу — объектив 4— и собираются ею в промежуточное изображение 5. Затем с помощью проекционной линзы 6на флуоресцирующем экране достигается окончательное изображение 7.
Разрешающая способность электронного микроскопа ограничивается, с одной стороны, волновыми свойствами (дифракцией) электронов, с другой — аберрациями электронных линз. Согласно теории, разрешающая способность микроскопа пропорциональна длине волны, а так как длина волны применяемых электронных пучков (примерно 1 им) в тысячи раз меньше длины волны световых лучей, то разрешение электронных микроскопов соответственно больше и составляет 0,01 — 0,0001 мкм (для оптических микроскопов приблизительно равно 0,2 — 0,3 мкм). С помощью электронных микроскопов можно добиться значительно больших увеличений (до 10 6 раз), что позволяет наблюдать детали структур размерами 0,1 нм.
4. Электронно-оптический преобразователь — это устройство, предназначенное для усиления яркости светового изображения и преобразования невидимого глазом изображения объекта (например, в инфракрасных или ультрафиолетовых лучах) в видимое. Схема простейшего электронно-оптического преобразователя приведена на рис. 242. Изображение предмета А спомощью оптической линзы 1 проецируется на фото катод 2. Излучение от объекта вызывает с поверхности фотокатода фотоэлектронную эмиссию, пропорциональную распределению яркости спроецированного на него изображения. Фотоэлектроны, ускоренные электрическим полем (3— ускоряющий электрод), фокусируются с помощью электронной линзы 4на флуоресцирующий экран 5, где электронное изображение преобразуется в световое (получается окончательное изображение А"). Электронная часть преобразователя находится в высоковакуумном сосуде 6.
Из оптики известно, что всякое увеличение изображения связано с уменьшением его освещенности. Достоинство электронно-оптических преобразователей заключается в том, что в них можно получить увеличенное изображение А" даже большей освещенности, чем сам предмет А, так как освещенность определяется энергией электронов, создающих изображение на флуоресцирующем экране. Разрешающая способность каскадных (нескольких последовательно соединенных) электронно-оптических преобразователей составляет 25—60 штрихов на 1 мм. Коэффициент преобразования — от ношение излучаемого экраном светового потока к потоку, падающему от объекта на фотокатод, —- у каскадных электронно-оптических преобразователей достигает « 10*. Недостаток этих приборов — малая разрешающая способность и довольно высокий темновой фон, что влияет на качество изображения.
Задачи
21.1. На плоскопараллельную стеклянную пластинку (n = 1,5) толщиной 6 см падает под углом 35° луч света. Определить боковое смещение луча, прошедшего сквозь эту пластинку. [1,41 см]
21.2. Необходимо изготовить плосковыпуклую линзу с оптической силой 6 дптр. Определить радиус кривизны выпуклой поверхности линзы, если показатель преломления материала линзы равен 1,6. [10 см]
21.3. Определить, на какую высоту необходимо повесить лампочку мощностью 300 Вт, чтобы освещенность расположенной под ней доски была равна 50 лк. Наклон доски составляет 35°, а световая отдача лампочки равна 15 лм/Вт. Принять, что полный световой поток, испускаемый изотропным точечным источником света, Ф0 = 4pI. [2,42 м]
ФОТОМЕТРИЯ
ФОТОМЕТРИЯ, раздел прикладной физики, занимающийся измерениями света. С точки зрения фотометрии, свет – это излучение, способное вызывать ощущение яркости при воздействии на человеческий глаз. Такое ощущение вызывает излучение с длинами волн от
0,78 мкм, причем самым ярким представляется излучение с длиной волны ок. 0,555 мкм (желто-зеленого цвета). Поскольку чувствительность глаза к разным длинам волн у людей неодинакова, в фотометрии принят ряд условностей. В 1931 Международная комиссия по освещению (МКО) ввела понятие «стандартного наблюдателя» как некоего среднего для людей с нормальным восприятием. Этот эталон МКО – не что иное, как таблица значений относительной световой эффективности излучения с длинами волн в диапазоне от 0,380 до 0,780 мкм через каждые 0,001 мкм. На рис. 1 представлен график, построенный по данным этой таблицы, причем на нем указаны интервалы длин волн, соответствующие цветам солнечного спектра. Яркость, измеренная в соответствии с эталоном МКО, называется фотометрической яркостью или просто яркостью.
Фотометрические величины.
Поток световой энергии измеряется в люменах. Определить световой поток в 1 лм невозможно, не обращаясь к светящимся телам, и основной мерой света долгое время была «свеча», которая считалась единицей силы света. Настоящие свечи уже более века не используются в качестве меры света, так как с 1862 стала применяться специальная масляная лампа, а с 1877 – лампа, в которой сжигался пентан. В 1899 в качестве единицы силы ответа была принята «международная свеча», которая воспроизводилась с помощью поверяемых электрических ламп накаливания. В 1979 была принята несколько отличающаяся от нее международная единица, названная канделой (кд). Кандела равна силе света в данном направлении источника, испускающего монохроматическое излучение частоты 540 Ч 10 12 Гц ( l = 555 нм), энергетическая сила светового излучения которого в этом направлении составляет 1/683 Вт/ср.
Чтобы дать определение люмена, рассмотрим точечный источник с силой света 1 кд во всех направлениях. Такой источник испускает полный световой поток, равный 4 p лм. Если источник с силой света 1 кд освещает обращенную к нему небольшую пластинку, находящуюся на расстоянии 1 м, то освещенность поверхности этой пластинки равна 1 лм/м 2 , т.е. одному люксу.
Протяженный источник света или освещенный предмет характеризуется определенной яркостью (фотометрической яркостью). Если сила света, испускаемого 1 м 2 такой поверхности в данном направлении, равна 1 кд, то ее яркость в этом направлении равна 1 кд/м 2 . (Яркость большинства тел и источников света в разных направлениях неодинакова.)
Виды фотометрических измерений.
Основные виды фотометрических измерений таковы: 1) сравнение силы света источников; 2) измерение полного потока от источника света; 3) измерение освещенности в заданной плоскости; 4) измерение яркости в заданном направлении; 5) измерение доли света, пропускаемой частично прозрачными объектами; 6) измерение доли света, отражаемой объектами.
ОБЩИЕ МЕТОДЫ ФОТОМЕТРИИ
Существуют два общих метода фотометрии: 1) визуальная фотометрия, в которой при выравнивании механическими или оптическими средствами яркости двух полей сравнения используется способность человеческого глаза ощущать различия в яркости; 2) физическая фотометрия, в которой для сравнения двух источников света используются различные приемники света иного рода – вакуумные фотоэлементы, полупроводниковые фотодиоды и т.д. При обоих методах для того, чтобы результаты имели универсальную значимость, условия наблюдения (или работы приборов) должны быть такими, чтобы фотометр реагировал на разные длины волн в точном соответствии со «стандартным наблюдателем» МКО. Важно также, чтобы световой выход лампы не изменялся в ходе измерений. Для стабилизации и измерения тока и напряжения в таких условиях обычно требуется довольно сложная электрическая аппаратура. В самых точных фотометрических измерениях приходится стабилизировать ток через лампу с точностью до (2 – 3) Ч 10 –3 %.
Визуальная фотометрия.
История визуальной фотометрии начинается с П.Бугера (1698–1758), замечательного ученого, который в 1729 изобрел способ сравнения двух потоков света и сформулировал почти все основные принципы фотометрии. И.Ламберт (1728–1777) далее систематизировал теорию фотометрии, и дальнейшее ее развитие шло в основном по линии совершенствования методов. В настоящее время визуальная фотометрия применяется ограниченно – при измерении весьма слабых световых потоков, когда трудно однозначно интерпретировать результаты физической фотометрии. Дело в том, что при уровнях яркости в диапазоне 0,01–1 кд/м спектральная чувствительность глаза плавно изменяется от соответствующей адаптации к свету (дневной, или фотопической) до соответствующей адаптации к темноте (суперечной, или скотопической), а потому здесь невозможно предсказать, какой должна быть спектральная чувствительность физического (электрического) фотометра, чтобы обеспечивалось согласие с возможными результатами визуальной фотометрии. Правильная методика для этого диапазона яркостей состоит в визуальном сравнении с источником света, энергетическое распределение которого соответствует высокотемпературному полому телу, фигурирующему в определении канделы. (Таким источником света может служить электрическая лампа накаливания при некотором значении силы тока.) При очень низких уровнях световых потоков используется второй (сумеречный) эталон, принятый международным соглашением в 1959, что позволяет проводить фотоэлектрические измерения без каких-либо неоднозначностей.
Визуально невозможно определить, насколько яркость одной поверхности больше, чем яркость другой. Но если две поверхности непосредственно примыкают друг к другу, то по исчезновению разграничивающей линии между ними равенство их яркостей можно установить визуально с точностью до 1% и даже еще точнее. Было разработано много различных устройств для образования таких полей сравнения; одно из них, т.н. кубик Люммера – Бродхуна, показано на рис. 2,а. Это две сложенные вместе трехгранные призмы из оптического стекла, причем контактная грань одной призмы слегка закруглена. Вследствие этой закругленности призмы имеют лишь частичный оптический контакт, через который свет может проходить прямо. Но в тех местах, где грани призм не соприкасаются, свет полностью отражается. Часто бывает желательно, чтобы свет от двух источников падал с противоположных сторон, и поэтому применяются схемы типа показанной на рис. 2,б. Наблюдатель, глядя в микроскоп с небольшим увеличением, видит поля сравнения, показанные на рис. 2,в.
Чтобы добиться одинаковой яркости двух полей сравнения, нужно регулировать световой поток хотя бы одного из сравниваемых источников света. В лабораторных измерениях сравниваемые лампы закрепляют в держателях, которые можно перемещать по направляющей. Такая направляющая, прямая и достаточно жесткая, называется фотометрической скамьей. Фотометрическая головка (типа показанной на рис. 2,б) устанавливается неподвижно. Если одна лампа закреплена на расстоянии (рис. 3) от экрана, а другая отодвинута на расстояние и при этом яркость полей сравнения одинакова, то отношение сил света и двух ламп определяется равенством I1 /x1 2 = I2 /x2 2 .
Это равенство выражает т.н. закон обратных квадратов расстояний И.Кеплера (1604), который является основным законом фотометрии. Согласно этому закону, если яркость двух полей сравнения одинакова, то силы света двух ламп обратно пропорциональны квадратам расстояний от соответствующих ламп до экрана фотометра. В справедливости этого соотношения легко убедиться, рассмотрев световую пирамиду с лампой в вершине (рис. 4). Свет, проходящий через сечение A пирамиды на единичном расстоянии от лампы, будет распределен по площади 4А на удвоенном расстоянии, по площади 9А – на утроенном расстоянии и т.д. Единственное условие применимости этого закона требует, чтобы размеры источника были малы по сравнению с расстоянием.
В некоторых специальных измерениях применяются другие средства изменения яркости поля сравнения, например, поляризатор с анализатором, которые поляризуют и ослабляют проходящий световой поток соответственно своей взаимной ориентации, клинья из серого стекла и быстро вращающиеся диски с секторными вырезами («вращающиеся секторы»). Диски имеют форму плоской крыльчатки вентилятора. Если диск вращается достаточно быстро, так что не заметно никакого мерцания, то свет ослабляется пропорционально доле полного круга, приходящейся на секторные вырезы. Каков бы ни был выбранный способ регулировки яркости, важно, чтобы изменялась только яркость, но не цвет поля.
Относительно световых источников разного цвета установлено, что если цвета различаются более или менее заметно, то результаты сравнения приобретают субъективный характер и даже у одного и того же наблюдателя могут меняться. При этом точность визуальной фотометрии сильно снижается.
Физическая фотометрия.
Начало физической фотометрии положили Ю.Эльстер и Г.Гейтель, открывшие в 1889 фотоэффект. В 1908 Ш.Фери разработал электрический фотометр, чувствительность которого к разным длинам волн была близка к чувствительности человеческого глаза. Но лишь в 1930-х годах, после усовершенствования вакуумных фотоэлементов и изобретения селенового фотодиода, физическая (электрическая) фотометрия стала широко применяемым методом, особенно в промышленных лабораториях.
Электрические фотоприемники, используемые в физической фотометрии, реагируют на свет с разными длинами волн не в точном соответствии с эталоном МКО. Поэтому для них требуется светофильтр – тщательно изготовленная пластинка из цветного стекла или окрашенного желатина, которая пропускала бы свет разных длин волн так, чтобы фотоприемник со светофильтром по возможности точно соответствовал «стандартному наблюдателю». Следует учитывать, что если световые потоки, различающиеся цветом, сравниваются с применением такого устройства, то результаты сравнения верны лишь условно. На самом деле невозможно гарантировать, что источники, яркость которых одинакова по оценке, основанной на эталоне МКО, покажутся одинаково яркими любому человеку. Выделение признака яркости из общего внешнего вида по-разному окрашенных источников света есть акт мысленного абстрагирования, который даже у одного и того же индивидуума протекает по-разному в разное время, а потому в тех случаях, когда требуются численные оценки, необходима стандартизованная методика измерений.
Фотодиод (иногда называемый вентильным фотоэлементом) представляет собой металлическую пластинку, на которую нанесен тонкий слой полупроводникового материала (например, селена с напыленной поверх него тонкой пленкой золота или другого неокисляющегося металла) (рис. 5). Толщина пленки подобрана так, что она проводит электричество, но прозрачна и пропускает свет. Свет, падающий на селен, вызывает дрейф свободных электронов, которые заряжают металлическую пленку отрицательно относительно селена.
Если к такому фотодиоду присоединить микроамперметр с малым сопротивлением, то показываемый им ток будет почти строго пропорционален освещенности фотодиода. Если же сопротивление цепи велико, то это соотношение прямой пропорциональности нарушается, и в лабораторных условиях применяют специальные схемы, имитирующие нулевое внешнее сопротивление. Простая комбинация фотодиода с микроамперметром используется в фотографических экспонометрах.
На фотометрической скамье рис. 3 вместо визуального фотометра можно установить фотодиод. Более того, можно установить рядом два фотодиода, обращенных в противоположные стороны, и измерять разность их токов. В таком варианте лампа 1 служит лампой сравнения и остается на своем месте в ходе эксперимента, а лампа, которую требуется сравнить, устанавливается в положение 2, после чего ее перемещают так, чтобы разность токов была равна нулю.
Существуют люксметры, состоящие из фотодиода, корректирующего светофильтра и микроамперметра, широко применяемые инженерами по освещению и другими специалистами. В частности, фотодиод с корректирующим светофильтром используется для повседневных фотометрических измерений всех видов в заводских лабораториях. Если точность 1–2% приемлема, а сила света достаточно велика, то с такими устройствами можно работать без каких-либо затруднений.
В случае слабых источников света, а также в тех случаях, когда требуются повышенная точность и более надежная калибровка, фотометристы обращаются к вакуумным фотоэлементам. Такой фотоэлемент имеет фотокатод в виде металлической пластинки, обычно покрываемой одним или несколькими тонкими слоями металлов и их оксидов, и второй электрод – анод, причем оба они находятся в стеклянном высоковакуумном баллоне. Когда на фотокатод падает свет с длиной волны, превышающей некоторое «пороговое» значение (зависящее от материала фотокатода), из него выбиваются электроны. Если фотоэлемент включить последовательно с батареей и чувствительным измерительным прибором, как показано на рис. 6, то электроны, высвобождающиеся с катода, будут притягиваться анодом. Поток таких электронов, а следовательно, и ток в цепи пропорциональны освещенности.
Вместо измерительного прибора можно использовать электронный усилитель, и тогда слабые токи будут усиливаться. Можно также добавить дополнительные усилительные каскады; тщательно спроектированная аппаратура такого рода позволяет измерять свет звезд, слишком слабый, чтобы его можно было видеть простым глазом. Для повышения чувствительности и стабильности измерений перед фотоэлементом можно установить вращающийся прерыватель света и усиливать полученный переменный ток. Такой метод особенно эффективен, если усиливаемый ток выпрямляется в точном синхронизме с прерывателем. Это позволяет подавить шумы электронной схемы и прочие помехи.
Для усиления тока можно обойтись без внешнего усилителя, если использовать явление вторичной электронной эмиссии. Соответствующие устройства называются фотоэлектронными умножителями (ФЭУ); некоторые типы ФЭУ схематически изображены на рис. 7. Электроны, высвобождающиеся с фотокатода, притягиваются к первому из ряда электродов, называемых динодами. Каждый из них находится под более высоким напряжением, чем предыдущий. Электрон, падающий на динод, высвобождает несколько вторичных электронов; вторичные электроны идут к следующему диноду, и каждый высвобождает еще несколько электронов и т.д. Среднее отношение числа испущенных электронов к числу падающих (коэффициент усиления) можно легко регулировать, изменяя напряжение между соседними динодами. Коэффициент усиления может достигать миллиона и более, причем предел обусловлен только тем обстоятельством, что некоторое количество электронов высвобождается с фотокатода даже в темноте и они умножаются так же, как и другие.
Ни у одного фотоэлемента или фотоэлектронного умножителя кривая спектральной чувствительности не соответствует в точности кривой чувствительности для глаза. Спектральная чувствительность зависит от материала фотокатода. Поэтому в тех случаях, когда приходится сравнивать световые потоки разного цвета, необходим светофильтр, а расчет и градуировка светофильтра для точной фотометрии могут составить основную часть затрат на аппаратуру.
Измерение светового потока.
Одна из характеристик лампы или осветительной арматуры, необходимая инженеру по освещению, – это испускаемое ею полное количество света. Только измерив эту величину, можно определить относительную эффективность осветительных устройств. Имеются два существенно различающихся способа измерения полного светового потока: гониометрический метод и метод «интегрирующей сферы» («сферы Ульбрихта»).
Гониометр – это приспособление, позволяющее измерять освещенность, создаваемую лампой, в любом желаемом направлении. Лампа либо неподвижна, либо вращается вокруг вертикальной оси так, чтобы распределение света лампы не изменялось. Поэтому фотометр (обычно фотоэлектрический) закрепляют на конце длинного качающегося держателя, или используют подвижные зеркала. Во избежание больших поправок расстояние от лампы до фотометра выбирают на порядок больше максимального размера лампы; поэтому гониометр для больших люминесцентных ламп занимает много места. После того как измерена освещенность во многих направлениях, вычисляют полный световой поток.
Интегрирующая сфера (рис. 8) представляет собой полый шар, выкрашенный изнутри матовой белой краской. Внутри сферы подвешивается лампа или арматура с экраном, закрывающим ее со стороны небольшого окошка из опалового стекла (освещенность которого измеряется). Внутри подвешивается также эталонная лампа (световой поток которой точно измерен при помощи гониофотометра), закрытая экранами со стороны первой лампы и окошка. Освещенность окошка при включенной той или другой лампе пропорциональна ее полному световому потоку (если не считать поправок, которые существенны, когда лампы имеют разные размеры или форму либо заметно различаются цветом испускаемого света).
Специальные фотометры.
Кроме рассмотренных приборов, существуют специальные фотометры для измерения яркости поверхностей, коэффициентов пропускания и отражения разных образцов, характеристик световозвращающих отражателей (дорожно-маркировочной краски, дорожных знаков), освещенности улиц и пр.
Сапожников Р.А. Теоретическая фотометрия. Л., 1977
Гуревич М.М. Фотометрия: Теория, методы и приборы. Л., 1983
Кулагин С.В., Гоменюк А.С. и др. Оптико-механические приборы. М., 1984
Цифровой люксметр (измеритель освещённости) своими руками
Люксметром называют прибор для измерения освещенности. Это разновидность фотометров – устройств, используемых для определения фотометрических, т. е. световых величин.
Единицей измерений люксметра выступает люкс, принятый в Международной системе единиц (СИ). Один люкс – это освещенность поверхности площадью 1 м2 при величине падающего светового потока, равном 1 люмену (лм). К примеру, если лампа освещает 1 м2 и дает излучение 100 лм, то освещенность составит 100 лк. Для примера можно привести типичные значения освещенности:
- Светлая комната, освещенная солнцем – 100 лк.
- На улице в солнечный день – 100 тыс. лк.
- На улице в пасмурный день – 1 тыс. лк.
- Свет ночью при полной луне – 0,2 лк.
В свою очередь, люмен – это световой поток от точечного однородного источника с силой света от 1 кд в телесный угол, равный 1 стерадиану. То есть 1 лм = 1 кд · ср или 1 лк · м2.
Таким образом, освещенность в условиях внутреннего или уличного освещения – это то, что можно измерить с помощью люксметра. Для каждого объекта жилого и нежилого назначения законом устанавливаются свои нормы освещенности. Обычно их учитывают еще при проектировании здания или сооружения. Освещенность обозначается буквой E и вычисляется по формуле E = Ф/S, где Ф – световой поток (лм), S – освещаемая площадь (м2).
Устройство люксметра
Принцип работы люксметра заключается в преобразовании светового потока в электрическую энергию. Они находятся между собой в прямо пропорциональной зависимости. После попадания света прибор фиксирует фототок, измеряет его и выводит величину на табло. Если рассматривать более подробно, то прибор работает следующим образом:
- Световой поток попадает на фотоэлемент и высвобождает электроны.
- Световой поток преобразуется в электрическую энергию.
- Устройство фиксирует ток, после чего показывает результаты на шкале или дисплее.
Для выполнения этого процесса внутри устройства предусмотрены:
- Фотоэлемент (фотоприемник), чаще всего селеновый. Это полупроводник, принимающий на себя свет и преобразующий его в ток. Прием светового потока и передача энергии электронам – это и есть то, для чего предназначен фотодатчик люксметра.
- Аналоговый или цифровой индикатор. Аналоговый представляет систему из шкалы и стрелки, которая двигается при фиксации электрического тока. Цифровые люксметры оснащены ЖК-дисплеем, на котором результат регистрации фототока отражается в цифрах.
Виды ламп для освещения помещения
Искусственная освещенность выполняется за счет использования электрических ламп, которые преобразовывают электроэнергию в световой поток.
В свое время самыми распространенными являлись лампы накаливания. Широкий диапазон этих ламп по мощности позволяло подобрать источник света с требуемым под определенные условия световым потоком.
Последнее время они стали менее востребованы, поскольку являются экономически затратными.
Второй вид ламп, применяемых для освещения – люминесцентные.
Эти источники света являются газоразрядными, в которых световой поток возникает за счет преобразования электрического разряда люминофором в световой поток.
Эти лампы более экономичны, поскольку при работе они не расходуют часть потребляемой энергии на выделение тепла, как это происходит в лампах накаливания.
Третий вид ламп, используемых для освещения помещений – светодиодные. Данный тип ламп является самым экономичным.
Экономическая эффективность данных всех видов ламп берется из расчета количества светового потока, выделяемого лампой и затрат электроэнергии, которые идут на обеспечение освещенности.
Согласно этого расчета таблица расхода электроэнергии на выделение определенного светового потока выглядит так:
Виды люксметров
Как было сказано выше, люксметры могут быть аналоговыми и цифровыми. У каждого есть свои особенности:
- Аналоговые. Более простые и недорогие, но дают не слишком точные результаты. Аналоговый индикатор представляет собой шкалу со стрелкой.
- Цифровые. Более новые устройства с дисплеями. Такие приборы дают максимально точные показания.
Еще люксметры делятся на виды в зависимости от характера устройства:
- Моноблоки. Датчик и индикатор находятся в одном корпусе. Лишь у нескольких моделей датчик может сниматься. В труднодоступных местах измерение может доставлять неудобства.
- С выносным датчиком. Фотоэлемент и индикатор – 2 отдельных устройства, соединенные между собой гибким проводом. Подобные приборы удобнее всего, когда нужно измерить величину освещенности под разными углами.
При выборе люксметра стоит учитывать, в каких условиях он будет применяться. Для применения в быту подойдут моноблоки. Для измерения освещенности на рабочем месте удобнее будут люксметры с выносным датчиком. Такие устройства дают более точные результаты. В профессиональной сфере используют люксметры, оснащенные дополнительными деталями:
- светорассеивающими насадками (позволяют измерять освещенность при очень ярких источниках света);
- светофильтрами, приближающими чувствительность фотоэлемента к уровню, свойственному человеческому глазу;
- насадками для уменьшения погрешности измерений при косо падающем свете и пр.
Также существуют люксметры, способные определять неравномерность и среднее значение освещенности. В них может быть встроенная память, позволяющая переносить информацию на компьютер. В зависимости от дополнительных функций люксметры могут быть представлены еще несколькими видами. Среди них:
- Люксметр-яркомер. Кроме основной функции может измерять яркость светящихся объектов.
- Люксметр-пульсомер. Дополнительно способен определять коэффициент пульсации, например, свечения экранов мобильных устройств и компьютерных мониторов.
- Универсальные люксметры. Многофункциональные приборы, сочетающие в себе функции люксметра, яркомера и пульсомера.
Измерение цветовых характеристик источников оптического излучения
Общая концепция построения приборов
Приборы ООО «НТП «ТКА» для определения цветовых характеристик источников (спектроколориметры) основаны на измерении спектрального состава оптического излучения с последующей математической обработкой результатов.
Координаты цвета источников определяются значениями трех интегралов, взятых в пределах видимого спектра:
где Феλ(λ) — спектральная плотность потока излучения; x‾(λ),y‾(λ),z‾(λ) — удельные координаты цветности.
Координаты цветности рассчитываются:
Фотоприемное устройство спектроколориметра показано на рис. 16.
Излучение исследуемого источника, пройдя отделение для формирования пространственной характеристики (1), попадает в диспергирующее устройство. Устройство представляет собой полихроматор (2) с регистрацией разложенного излучения фотодиодной линейкой (3). Рабочий спектральный диапазон обусловлен характером поставленных задач.
При определении коррелированной цветовой температуры спектральная плотность энергетической светимости Меλ (Вт·м3) абсолютно черного тела (АЧТ) определяется в соответствии с законом Планка по формуле:
Координаты цвета АЧТ при данной температуре Т рассчитываются по формулам (17). Затем применяется переход от системы цветовых координат х, у МКО 1931 г. в более равноконтрастную систему u’, v’ МКО 1976 г. по следующим формулам:
Такой же пересчет цветности производится для исследуемого источника излучения. Затем определяется массив координат цветности АЧТ и соответствующий массив температур.
Минимальное расстояние в пространстве u, v между точкой цветности исследуемого источника (u0’, v0’) и точками цветности массива линии АЧТ (ui’, vi’) (рис. 17) определяется по формуле:
Рис. 17. Линия АЧТ в системе цветовых координат u’,v’ jj
Разработанный спектроколориметр «ТКА-ВД» предназначен для определения спектрального состава источника оптического излучения с последующим вычислением цветовых координат в выбранной системе координат (рис. 18). Оптическая схема прибора представляет собой полихроматор на дифракционной решетке с регистрацией разложенного излучения фотодиодной линейкой. Рабочий спектральный диапазон прибора (380–760) нм. Диапазон линейности сигналов достигает шести порядков. В зависимости от конфигурации входного устройства прибор работает как в режиме яркомера, так и в режиме измерения освещенности. Спектральное разрешение прибора не превышает 3 нм.
Рис. 18. Внешний вид спектроколориметра «ТКА-ВД»
Как пользоваться люксметром
При определении освещенности люксметром важно правильно направлять устройство. Здесь стоит учитывать, что максимальные показатели получаются, когда световой поток падает перпендикулярно.
В целом для проведения измерений люксметр нужно включить и расположить на рабочей поверхности, наклонной или горизонтальной. Конкретные особенности работы будут зависеть от модели устройства. Здесь стоит воспользоваться инструкцией по эксплуатации от производителя.
Важные правила работы с люксметром:
- Предварительно убедиться, что стрелка прибора установлена на 0.
- В процессе измерения прибор должен быть в неподвижном состоянии, поскольку движения могут повлиять на результат.
- При измерении не должно быть посторонних источников света, поскольку они также влияют на конечные результаты. Оставляют только те, светильники, от которых требуется учесть освещенность помещения.
Нормы освещенности в разных видах помещений
Люмен – единица измерения освещенности
Как уже было сказано, минимальное освещение определяется требованиями, предъявляемыми к освещению тех или иных видов помещений. Очевидно, что требования к количеству выделяемого света осветительными приборами в промышленных зданиях будут отличаться от стандартов освещенности жилых домов.
Пример нормы
Для наглядности пример того, какая освещенность лк должна быть в помещениях:
- жилые комнаты — 300 лк;
- медицинские кабинеты — 500 лк;
- комнаты, предназначенные для приготовления пищи — 300 лк;
- ванные, туалеты и вестибюли — 200 лк;
- учебные классы — 400 лк.
Конечно, это далеко не весь перечень норм, закрепленных к видам тех или иных помещений.
Важно! Перед настройкой уровня лк следует внимательно ознакомиться с санитарными нормами, тогда находиться в комнате будет комфортно и безопасно
Калибровка
Ток Ікз = 0.16 мкА/100lux, согласно паспорта на S1087. Он станет на уровне 2 мкА при 1250 ЛК. Для тестирования выведен вход (ТР1), куда подают строго 100 мВ — это эквивалентно 1250 Lux на фотодиоде. Для выполнения калибровки, через резистор несколько килоом нужно подать на вход указанное питание. Низкий диапазон калибруется при -100 мВ на ТР1, высокий диапазон калибруется при -1 В на ТР1. Естественно фотодиода должен быть закрыт во время калибровки, иначе результат будет недействительным. Файлы платы и прошивки микроконтроллера тут.
Работа с прибором
Начинают работать с люксметром-яркомером после того, как дисплей укажет на завершение обратного отсчета от момента включения прибора, то есть с момента его готовности к работе. При помощи меню измерений подбирается необходимый для контроля параметр. Тщательно изучив инструкцию, можно сказать, что люксметр — это довольно непростой с точки зрения конструктивного решения прибор. Но при этом он несложен в эксплуатации. Поэтому вы без проблем получите и зафиксируете необходимые значения.
Принцип работы микрометра и его устройство
Данный прибор предназначен для линейных измерений (длины/ширины) объекта. Диапазон измерений и точность устройства зависит от его конструкции.
Основа прибора – подковообразная деталь (скоба), через отверстия в концах которой проходит ось перемещения винтовой пары. Винт (шпиндель), движущийся по неподвижно закрепленной гайке, позволяет прижать измеряемый объект к стационарной опоре (пятке) и тем самым определить измеряемый размер.
Поскольку при такой точности замера (до 2 мкм) важную роль играет температура замеряемой детали и, соответственно, ее температурное расширение, скоба прибора снабжена термоизолирующей пластиной. Это исключает влияние тепла человеческого тела на погрешность измерений.
Перемещение шпинделя пропорционально его повороту в гайке, поэтому для точного определения размера используется две шкалы. Одна разметка, двойная, нанесена непосредственно на стебле шпинделя и дает информацию о количестве полных оборотов винта. Нижняя ее часть дает информацию о количестве полных миллиметров измеряемого размера, верхняя – половинах. Вторая шкала, круговая (на скошенном барабане), позволяет мерить доли оборота, а именно сотые доли миллиметра.
Важно: поскольку винт с ходом более 25 мм и достаточно малым шагом изготовить крайне сложно, микрометры в основном выпускаются с шагом измерений в 25 мм.
Современные изделия с цифровым дисплеем также работают на винтовой микропаре, но данные измерений фиксируются автоматически и выдаются на дисплей, что заметно упрощает работу.
Стрелочные измерители
Предшественниками современных цифровых люксметров были стрелочные измерители. Но базируется конструкция любого из этих приспособлений на полупроводниковом устройстве — фотоэлементе или фотоприемнике. В первых же громоздких аналоговых люксметрах измерения демонстрировались и рассчитывались путем контроля за отклонением стрелки в гальванометре. Они заметно отличаются от современных удобоносимых цифровых приборов с неразбиваемыми корпусами, в которых результаты измерений чувствительных элементов выводятся на жидкокристаллический экран. В продвинутых моделях измерительный модуль соединяется кабелем с блоком индикации. Благодаря этому провести обследование можно в любом, даже неудобном месте. В более дешевых приборах блок с фотоэлементом вмонтирован непосредственно в корпус люксметра.
Цифровой
Цифровой люксметр, пришедший на замену стрелочному, используется при проверках соблюдения условий труда на рабочих местах. Освещенность влияет на процессы, протекающие в человеческом мозгу. И слабый, и излишне яркий свет действует неблагоприятно, поэтому может снижаться концентрация внимания, падать работоспособность, сонливость не даст сосредоточиться на выполнении производственных задач. Все это в целом увеличивает травмоопасность и количество несчастных случаев. Своевременные измерения люксметром освещенности в производственных цехах, на стройках, на площадках предприятий, связанных с опасным производством и сложными условиями труда, предотвратят неприятные инциденты, а то и смертельные случаи.
Устройство с пульсметром. Особенности
Люксметр-пульсметр — это устройство не только для контроля за состоянием сердечно-сосудистой системы пациентов больниц, но и для здоровых людей, увлеченных спортом или оздоровительными занятиями. Для последних важно контролировать сердечные нагрузки, чтобы не допустить болезненных приступов и прекращения тренировок. С учетом показаний пульсметра разрабатываются тренировочные программы и нагрузки. Прибор незаменим, потому что прост в использовании, мал в объеме (для него предусмотрен чехол с ремешком), и всегда должен быть в любой спортивной сумке.
Для людей, страдающих гипертонией или другими отклонениями в работе сердечной мышцы, пульсметр, как одна из разновидностей люксметра, становится палочкой-выручалочкой, когда возникает потребность в длительном контроле за состоянием крови и частотой пульса. Важно, что отпадает необходимость в потребности делать заборы артериальной крови. Простым в использовании прибор становится благодаря четкой инструкции, прилагаемой к нему, а эргономические показатели конструкции делают его прочным и ударобезопасным.
Что такое люксметр и для чего он нужен?
«Измеряй все, поддающееся измерению, а что не поддаётся — сделай измеряемым» — этот афоризм, приписываемый Галилею, подтверждает, что освещённость тоже можно измерить. Поскольку её единицей служит люкс (по-гречески — свет), то и прибор для измерения освещённости называется люксметр (метр — измеряю). Применяется как внутри помещения, так и на открытом пространстве. В каких случаях он используется?
Установлено, что как слабый, так и чрезмерно яркий свет действует неблагоприятно на протекающие в мозгу процессы. При недостатке освещения падает работоспособность, снижается концентрация внимания, возникает сонливость. Излишне яркий свет приводит к возбуждению нервной системы. И то, и другое создаёт предпосылки для несчастного случая. Поэтому в число плановых мероприятий по охране труда на рабочих местах входит и проверка освещения рабочих мест. ГОСТ Р 55710-2013 устанавливает нормы освещённости (в люксах) помещений различного назначения. Упрощенно, в офисе согласно санитарным нормам и правилам (СНИП) освещённость должна быть от 200 до 300 лк.
Процесс фотосинтеза у растений, в результате которого вырабатываются питательные вещества из углерода воздуха, происходит под воздействием света. При этом растения по-разному реагируют на температурные условия и уровень освещённости. Практически все культурные растения и большинство овощей хорошо развиваются в условиях умеренного освещения. Другие виды требовательны к высокой температуре и освещённости. Поэтому люксметры используют для контроля и поддержания требуемой освещённости для различных культур в тепличных хозяйствах, оранжереях, ботанических садах.
Назначение и принцип действия люксметра
Главное назначение прибора – произведение замеров уровня освещенности в требуемой точке пространства.
Там, где используется люксметр, можно без труда производить корректировку этого показателя, который зависит от:
- количества источников света, включая искусственные и естественные;
- светового давления каждого из источников;
- расстояния между точкой измерения и источником света;
- отражающей способности находящихся поблизости поверхностей.
Прибор активно применяться в следующих случаях:
- Для контроля санитарных норм освещения жилых помещений.
- Для измерения уровня освещения рабочих мест, что позволяет поддерживать комфортные условия труда и гигиены работников.
- Для контроля освещенности помещений на производственных участках, в школах, библиотеках, медицинских заведениях, музеях и др.
- Для подбора яркости ламп в оранжереях, тепличных хозяйствах, где выполняется разведение и содержание растений.
- Для определения съемочной экспозиции при фотографировании.
- Для настройки яркости сигнальных огней, световой рекламы.
- В составе пульсметр-яркомеров – для измерения степени пульсации изображения мониторов и освещенности в целом, вызванной мерцанием светодиодов, люминесцентных и энергосберегающих ламп.
- Для проверки соответствия фактической освещенности расчетному уровню при монтаже осветительных систем.
При работе прибора световой поток определенного спектра преобразовывается в электрический ток с соответствующими интенсивности первого характеристиками.
Результаты выводятся на экран устройства.
С учетом того, как работает люксметр, имеет смысл использовать модели, позволяющие выбирать рабочий режим под конкретный световой спектр.
Принцип работы устройства:
• Электроны фотоэлемента, изготовленного из полупроводника, активизируются под действием света. Чем ярче световой поток, тем активнее высвобождаются электроны.
• Пропускная способность фотоэлемента изменяется, что регистрирует электроника прибора, которая, после обработки процессором, отображается на экране.
• Измеритель освещенности в работе выдает результаты, корректность которых зависит от правильности ориентирования датчика относительно светового потока.
Важные факторы
Одним из важных факторов, который учитывается как при строительстве здания, так и при его эксплуатации является уровень освещенности.
Данный показатель очень важен, поскольку влияет на здоровье глаз человека, его трудоспособность, физическое и психоэмоциональное состояние.
Поэтому освещенность помещения входит в положения по охране труда.
Освещение здания делится на две составные – естественное освещение и искусственное.
Естественным является дневное солнечное освещение, которое попадает в здание через технологические проемы, сделанные в нем при строительстве – окна.