Советы по выбору гаражного компрессора
На основе своего опыта и знаний расскажу о компрессорах и как сделать правильный выбор при их покупке. В основном конечно эти советы помогут тем кому они нужны для мастерской или гаража. И сразу уточню речь будет идти только о маслосмазываемых компрессорах способных создавать давление выше 6 атмосфер.
По типу способа сжатия они делятся, на: поршневые, винтовые и турбокомпрессоры.
При их одинаковой производительности поршневые самые дешевые и экономичные как по производительности воздуха в пересчете на киловатт энергии, так и по цене ремонта и покупки. Они также наименее требовательны к чистоте воздуха на всасе. Турбокомпрессоры самые малогабаритные, но при этом намного дороже поршневых. Используются только в виде крупных промышленных установок. Винтовые обычно советуют для замены поршневому они дешевле турбо- и меньше поршневых, но экономичность у них хуже поршневых примерно на 20%.
По типу привода: прямой, через муфту и ременный.
Самые дешевые (до 25тыс. рублей)
и дорогие (от 100 тыс. рублей)
компрессоры используют прямой тип привода. Для дешевых это упрощение конструкции за счет отказа от ремня, шкивов, шпонок, упрощение конструкции вала и т.д. Для дорогих более высокий механический К.П.Д. по сравнению с остальными из за отсутствия шкивов и муфт. Думаю в дальнейшем компрессоры с прямым приводом вытяснят компрессоры с ременным. За ними будушее, но не сейчас.
Недостатком этого типа привода является более высокие требования к качеству изготовления конструкции, к балансировке ротора электродвигателя. Требуется наличие тихоходных электродвигателей или при несоблюдении их (недорогие модели) более быстрый износ деталей и т.д. При включении такой компрессор не оснащенный системой мягкого пуска испытывает ударные нагрузки на свои механизмы. Поэтому желательно наличие защитных механизмов от перегрузки в виде пусковых, предохранительных и противопомпажных клапанов, систем частотного регулирования с мягким пуском. Что значительно поднимает стоимость компрессора с таким приводом.
На дешевых вариантах нет тихоходных двигателей и защитных систем даже у именитых производителей. За счет чего они быстрее выходят из строя чем комрессоры с ременной передачей.
Ременный привод является наиболее оптимальным типом привода по соотношению цена/качество для частных мастерских и гаражного использования.
К его достоинствам можно отнести:
Защита от перегрузки. В случае ее превышения ремень провернется или его порвет.
Качество балансировки ротора электродвигателя не сказывается на долговечности работы головки компрессора. Гибкий ремень сглаживает вибрации.
Не требуется наличия тихоходного двигателя. Скорость вращения можно уменьшить за счет подбора размеров шкивов. Что положительно сказывается на долговечности работы деталей компрессора.
Имеются и недостатки:
Более низкий механический К.П.Д. потери до 30% мощности. Ремень имеет свойство проскальзывать плюс трение о реборды шкива.
Требутся периодическая подтяжка и замена ремня.
Дополнительная нагрузка на подшипники от натяжения ремня (требует более дорогих подшипников).
Привод через муфту. По своим качествам стоит посередине между прямым(дорогим) и ременным. Как по механическому К.П.Д., защите от перегрузок так и по стоимости покупки и эксплуатации. Все зависит от типа установленной муфты: зубчатая, прямая, цепная, кулачковая, фрикционная, комбинированная и т.д
По типу охлаждения: воздушные, жидкостного охлаждения, комбинированные.
Воздушное охлаждение самое простое и дешевое, но при нем невозможно обеспечить равномерный отвод тепла от всех деталей. Поэтому у компрессора с ним будет самая маленькая массогабаритная производительность.
Жидкостное охлаждение за счет более быстрого и равномерного отъема тепла помогает достичь максимальных характеристик массо/габаритной производительности. Но при этом оно намного сложнее воздушного, требует жидкостного насоса, радиатора и т.д. Обычно используется только в промышленности.
Комбинированное охлаждение. Это когда наиболее теплонагруженные детали охлаждаются жидкостью, а наименее воздушным потоком. В качестве примера воздушные компрессоры тормозной системы грузовиков. Являются компромиссом между двумя предыдущими системами охлаждения.
По типу смазки.
Смазка окунанием с разбрызгиванием наиболее простая и поэтому дешевая и смазка под давлением.
Смазка под давлением помогает значительно увеличить срок службы подшипников скольжения за счет создания более устойчивой и толстой маслянной пленки и лучшего отвода тепла от трущихся деталей, но требует наличия маслонасоса.
По количеству цилиндров на каждую ступень сжатия: одно-, двух- и многоцилиндровые компрессоры. Увеличение количества цилиндров помогает сгладить пульсации(скачки) давления компрессора. Чем больше тем лучше.
По количеству ступеней сжатия: увеличение количества ступеней сжатия компрессора помогает повысить производительность более эффективно чем увеличение количества цилиндров. Поэтому при выборе не стоит путать эти два понятия.
По объему ресивера. Тут принцип простой чем больше тем лучше. Увеличение объема ресивера помогает увеличить расход воздуха на величину большую чем производительность компрессора, уменьшить и сгладить пульсации(скачки) давления. Но существует одно но. Есть опасность выхода компрессора из строя при заполнении ресивера, поэтому компрессор должен быть способен критически не перегреваться хотя бы на время нужное для накачки ресивера.
Другими словами увеличение объем ресивера не решения проблемы производительности воздушной системы без соответствующего компрессора.
По способу изготовления, на самодельные и заводские.
Более подробно о самодельных.
Вариант №1 за основу берется голова компрессора заводского производства к ней электродвигатель, газовый баллон и собирается все вместе. Способ хорош только если у вас по какой то причине есть компрессорная голова или электродвигатель. Иначе дешевле будет купить заводской.
Вариант №2 за основу берется 4-х тактный двигатель внутреннего сгорания и переделывается под компрессор. На выходе получается компрессор с жидкостной системой охлаждения и принудительной системой смазки и хорошим ресурсом. Для гаража могут подойти двигатели от мотоцикла Урал (воздушное охлаждение) или двигатель от автомобиля Ока (жидкостное охлаждение).Такие компрессора могут работать непрерывно. С ними уже можно использовать ресивер любого объема.
Вариант №3. Использовать компрессоры от тормозных систем грузовиков+ масло- и жидкостные насосы + вентилятор и радиатор к нему. Получается компрессор с комбинированной системой охлаждения и принудительной системой смазки с возможностью непрерывной работы. И вытекающими отсюда плюсами.
Полезные опции для гаражных компрессоров.
Пусковой (стартовый, разгрузочный) клапан компрессора.
При пуске электродвигателю компрессора нужно преодолеть быстро нарастающее сопротивление воздуха. Основная причина почему он может не включится. Особенно при слабой электросети с пониженным напряжением. Одним из способов борьбы с этим является установка пускового клапана между компрессором и обратным клапаном ресивера. Это позволяет плавно повышать давление перед компрессором и значительно уменьшить динамическую нагрузку на двигатель с компрессором от сопротивления воздуха .
При первоначальном пуске компрессора, стартовый клапан открыт, избыточное давление в воздухопроводе от узла насоса до обратного клапана нарастает более медленно (часть сжатого воздуха стравливается через открытый стартовый клапан), что позволяет запуститься электродвигателю и набирать обороты без дополнительной нагрузки (аналог режима холостого хода). После запуска двигателя давление в воздухопроводе нарастает и при его достижении определенной величины пусковой клапан закрывается. При остановке компрессора, когда компрессор работает в автоматическом режиме или, когда компрессор выключается выключателем на реле давления (прессостате), через выпускной клапан, расположенный на реле давления, происходит сброс воздуха с нагнетательного воздухопровода, пусковой клапан открывается. При включении компрессора цикл повторяется.
Более простой способ разгрузить двигатель при пуске, сделать маленькое дросельное отверстие в воздуховоде между компрессором и обратным клапаном. Но при этом придется смирится с потерями воздуха. Размер которых напрямую зависит от размера отверстия.
Наличие у ресивера, дополнительного выхода. Это позволит без проблем подключить еще один ресивер.
Наличие частотного регулирования у электродвигателя. Позволяет регулировать обороты двигателя без лишних потерь электроэнергии и крутящего момента и обеспечивать его мягкий запуск . У аппаратов ценой до 50000 рублей я его не встречал.
Рейтинг фирм производящих компрессоры.
На рынке огромное количество фирм занимающихся компрессорным оборудованием. И качество их изделий сильно разнится. Для себя я составил рейтинг нескольких из них, расположенных по убыванию качества и цены.
Высшая лига. Отличаются высоким качеством и ценой. Аtlas Copco
Выше среднего. Хорошее качество. Хватающего в большинстве с лихвой не только для СТО. Abac, Бежецкий компрессорный завод
Средняя лига. Качественные компрессора которых вполне достаточно для СТО, гаражей, мастерских и домашнего использования. Фирма: Remeza/Fiac/AirCast, NORDBERG и похуже Metabo, Интерскол.
Голимый китай. Качество на троечку. Fubag, Зубр, Aurora, Inforce, Concorde и многое другое.
В результате напрашиваеться вывод оптимальным выбором гаражного компрессора на данный момент является поршневой компрессор, смазка окунанием с разбрызгиванием и принудительным воздушным охлаждением. Если есть сеть с 380 вольт лучше выбрать двигатель с этим напряжением.
С прямым приводом (дешевые модели) для накачки колес, покраски стен, продувки небольших деталей и редкого использования.
С ременным приводом и расходом на выходе 300-500 литров в минуту для работ с гайковертами, покраски кузовных элементов. Расходом выше 500 литров в минуту покраски, работой пневмоболгаркой и пескоструйки. Хотя для пескоструйки лучше 1000 литров в минуту.
Для тех у кого много денег и мало места в гараже можно присмотреться к винтовым.
Модели для гаражного использования в будущем думаю будут с прямым приводом и частотным электродвигателем.
Для себя я выбрал компрессор фирмы Remeza с ременным приводом, пусковым клапаном, рессивером 50 литров и электродвигателем 220 вольт. Присматривался к Бежецкому, но они идут только с электродвигателями на 380 вольт.
Полезные советы по устройству пневмосистемы.
Для работы можно использовать кислородные шланги. Они обойдутся дешевле хороших воздушных.
Елочку для кислородных шлангов нужно брать на 1 мм больше чем диаметр его отверстия.
Червячные хомуты желательно чтобы были изготовлены методом накатки, а не просечки. Они меньше повредят шланг.
Вместо компрессорного масла можно использовать масло для двигателей внутреннего сгорания. Их характеристики очень схожи. Благодаря такой замене компрессор можно будет без проблем запускать при минусовых температурах. Индекс вязкости (температурный диапазон в котором масло остается с одинаковой вязкостью) моторных масел выше компрессорных. Такой показатель как температура вспышки обычно тоже. Да и цена из-за более массового распространения ниже.На работе сервисные специалисты по компрессорам лили в свои Жигули компрессорное масло.
Конечно то что я описал далеко не в полной мере отражает многочисленные конструкции компрессоров и устройств используемых в них. Например байпастный клапан и регулирование им производительности компрессора, синхронные двигатели, оппозитники, дроссельное регулирование, крейцкопфные компрессоры, зачем нужен противопомпажный клапан, прямоточный клапан и т.д. Так как не вижу смысла описывать их здесь.
Компрессоры. Виды, характеристики компрессоров
Компрессорами называют газодувные машины для перемещения воздуха и газа. Они потребляют энергию от привода (например, электродвигателя) и сообщают ее рабочему веществу – воздуху или другому газу.
Компрессоры предназначены для сжатия и перемещения газа или пара. По принципу действия компрессоры делятся на два класса:
- Компрессоры объемного действия. Рабочие органы этого класса засасывают определенный объем рабочего вещества, сжимают его благодаря уменьшению замкнутого объема и затем перемещают (нагнетают) в камеру нагнетания. Это машины дискретного действия, рабочие процессы в которых совершаются строго последовательно, повторяясь циклически. Объемные компрессоры условно можно также назвать машинами статического действия, поскольку перемещение рабочего вещества в процессе сжатия в них совершается сравнительно медленно.
- Компрессоры динамического действия. В данных машинах рабочее вещество непрерывно перемещается («течет») через проточную часть компрессора, при этом кинетическая энергия потока преобразуется в потенциальную. Плотность в потоке рабочего вещества постепенно повышается от входа в машину к выходу. Это машины непрерывного действия.
По конструктивному признаку основных рабочих деталей компрессоры делятся на следующие типы:
- поршневые, винтовые, пластинчатые ротационные, ротационные с катящимся поршнем и многие другие, основанные на объемном принципе действия;
- лопаточные компрессорные машины, к которым относятся радиальные (центробежные), осевые и вихревые, основанные на динамическом принципе действия.
1. Поршневые компрессоры
Поршневой компрессор – объемная машина, у которой всасывание, сжатие и вытеснение газа производятся поршнем, перемещающимся в цилиндре.
На рис. 1 представлена схема поршневого компрессора простого действия. В цилиндре 1 расположен поршень 2, который под действием кривошипного механизма совершает возвратно-поступательное движение. На крышке 12 цилиндра расположены всасывающий 7 и нагнетательный 10 клапаны, которые составляют механизм распределения, регулирующий поступление газа в цилиндр и подачу его из цилиндра в нагнетательный трубопровод.
При движении поршня вниз давление между цилиндром и поршнем становится меньше, чем давление во всасывающем патрубке, открывается всасывающий клапан и газ попадает в цилиндр. При достижении поршнем крайнего нижнего положения давление в цилиндре и всасывающем трубопроводе практически выравнивается. Клапан под действием пружины прижимается к седлу и перекрывает отверстие, соединяющее полость цилиндра с всасывающим трубопроводом. В течение периода всасывания отверстие нагнетательного клапана закрыто.
Рис. 1. Схема вертикального одноступенчатого компрессора простого действия: 1 – цилиндр; 2 – поршень; 3 – водяная рубашка для охлаждения цилиндра; 4 – шатун; 5 – кривошип коленчатого вала; 6 – станина-картер; 7 – всасывающий клапан; 8 – всасывающий патрубок; 9 – нагнетательный патрубок; 10 – нагнетательный клапан; 11 – водяная рубашка для охлаждения крышки цилиндра
При движении поршня вверх происходит сжатие газа, находящегося в цилиндре. Когда давление газа в цилиндре превысит давление газа в нагнетательном трубопроводе, нагнетательный клапан открывается и газ «выталкивается» из цилиндра. При достижении поршнем крайнего верхнего положения процесс «выталкивания» заканчивается и нагнетательный клапан закрывается. Далее процесс всасывания и нагнетания повторяется.
Процессы всасывания и нагнетания совершаются за один оборот коленчатого вала, составляют полный цикл работы компрессора.
Недостатком рассмотренного компрессора является то, что полезная работа совершается только при движении поршня в одном направлении.
Более экономичной и производительной является конструкция компрессоров двойного действия (рис. 2). При движении поршня вправо в левой части цилиндра создается разряжение. Газ через левый всасывающий клапан 15 поступает в цилиндр. В правой части цилиндра происходит сжатие газа, вошедшего в рабочее пространство в предыдущем цикле, и выталкивание его через правый нагнетательный клапан 4 в нагнетательный трубопровод. При движении поршня влево всасывание осуществляется через правый всасывающий клапан, а выталкивание сжатого газа – через левый нагнетательный клапан. В данном случае обе стороны являются рабочими.
Рис. 2. Схема горизонтального одноступенчатого компрессора двойного действия: 1 – цилиндр; 2 – поршень; 3 – нагнетательный патрубок; 4 – нагнетательный клапан; 5 – задняя крышка цилиндра; 6 – сальник; 7 – шток; 8 – ползун; 9 – шатун; 10 – кривошип коленчатого вала; 11 – коленчатый вал; 12 – станина; 13, 17 и 18 – рубашки для охлаждения задней и передней крышек цилиндра; 14 – всасывающий патрубок; 15 – всасывающие клапаны; 16 – передняя крышка цилиндра
Компрессоры простого и двойного действия могут иметь один или несколько цилиндров.
Компрессор, который имеет несколько цилиндров, работающих параллельно и выталкивающих сжатый газ в один и тот же нагнетательный коллектор, называется многоцилиндровым одноступенчатым компрессором.
Если в компрессоре несколько цилиндров работают последовательно, т.е. сжатый воздух из одного цилиндра поступает для дальнейшего сжатия в следующий, то такой компрессор называется многоступенчатым. Если же в каждой рабочей полости компрессора давление повышается (от давления во всасывающей полости до давления в нагнетательном трубопроводе), то независимо от числа цилиндров и рабочих полостей такой компрессор является одноступенчатым.
Схемы поршневых компрессоров
Выбор схемы компрессоров зависит от назначения компрессора, условий эксплуатации, производительности (подачи), рабочего давления, числа ступеней и распределения давления между ними. От схемы компрессора в значительной степени зависят размеры, масса и динамическая уравновешенность машины.
Схемы компрессоров характеризуются следующими параметрами: числом ступеней, кратностью подачи, расположением цилиндров, конструкций механизма движения (рис. 13).
По характеру расположения осей цилиндров компрессоры подразделяются на три основные группы: вертикальные, горизонтальные и угловые.
В вертикальных компрессорах смазочный материал, поступающий в цилиндр, равномерно распределяется по рабочей поверхности, а попадающие вместе с ним или газом твердые частицы оседают не на цилиндрической, а на торцевой поверхности поршня, которая не соприкасается с внутренней поверхностью цилиндра. Поэтому вертикальные компрессоры меньше изнашиваются и имеют лучшую герметичность уплотнений.
Силы инерции возвратно-поступательно движущихся масс в вертикальных компрессорах на фундамент действуют вертикально, что повышает устойчивость компрессоров и позволяет использовать фундаменты меньшей массы. Отмеченные преимущества позволяют выполнять вертикальные компрессоры более быстроходными.
Рис. 13. Схема поршневых компрессоров: а – одноцилиндровый двойного действия; б – двухступенчатый дифференциальный; в – двухцилиндровый трехступенчатый; г – двухцилиндровый одноступенчатый; д – трехцилиндровый двухступенчатый V-образный; е – двухцилиндровый двухступенчатый угловой; ж – двухцилиндровый двухступенчатый оппозитный; з – однорядный двухцилиндровый двухступенчатый; ———- — движение газа при прямом ходе поршня; — — — — — — движение газа при обратном ходе поршня; I-III – номера ступеней
Горизонтальные компрессоры лишены преимуществ вертикальных машин. Однако они более просты в обслуживании.
Наиболее совершенными с точки зрения динамической устойчивости являются угловые компрессоры. Эти компрессоры выполняют высокооборотными, их фундаменты имеют большую массу.
Перечисленные особенности поршневых компрессоров предопределяют области их применения. Вертикальная схема наиболее целесообразна для высокооборотных компрессоров с малым числом ступеней. Горизонтальная схема используется в основном для относительно тихоходных стационарных компрессоров большой подачи. Угловая схема обычно применяется для передвижных компрессорных установок.
По числу рядов цилиндров компрессоры подразделяют на однорядные и многорядные. Число рядов цилиндров в компрессоре обусловлено расположением осей цилиндров, а число ступеней – подачей и рабочим давлением компрессора.
Основное преимущество однорядных компрессоров заключается в их простой конструкции.
Многоступенчатые горизонтальные компрессоры обычно выполняют по однорядной или двухрядной схеме, а компрессоры, имеющие более пяти ступеней, — по двухрядной схеме.
К наиболее прогрессивным схемам относятся горизонтальные компрессоры с оппозитным (взаимно противоположным) расположением цилиндров относительно вала в двух или более рядах (рис. 14).
Рис. 14. Схемы баз компрессоров: а и б – оппозитных W-образных с движением поршней соответственно взаимно противоположным и однонаправленным; в – оппозитного Н-образного
Совокупность узлов кривошипно-шатунного механизма поршневого компрессора называют его базой. Оппозитное исполнение баз характеризуется расположением шатунов и ползунов по обе стороны коленчатого вала.
В комплект узлов, повторяющихся в ряде компрессоров, входят станина с коренными подшипниками и направляющими ползуна, коленчатый вал, шатуны, ползуны, узлы смазочной системы кривошипно-шатунного механизма.
На рис. 15 приведена схема компрессора для подачи реакционной смеси в колонну синтеза аммиака. Подача компрессора 1800 м 3 /ч, конечное давление 32 МПа. Компрессор имеет шесть ступеней сжатия. Диаметр цилиндров первой ступени 1000 мм.
Рис. 15. Схема многоцилиндрового компрессора
Важной характеристикой технического уровня промышленных компрессоров является максимальное давление. В промышленности эксплуатируются компрессоры сверхвысокого давления до 45 МПа подачей до 4000 кг/ч. Обычно компрессоры сверхвысокого давления имеют гидравлический привод.
В ряде технологических процессов соприкосновение сжимаемого газа с маслом смазочной системы недопустимо. В этих случаях смазочное масло используют в смазочной системе механизма движения. Цилиндры выполнены с лабиринтным уплотнением или с уплотнением из самосмазывающих материалов. На рис. 16 представлен вертикальный трехступенчатый компрессор без смазывания цилиндров.
Большую группу компрессоров различных типов составляют машины с приводом от двигателя внутреннего сгорания (ДВС). Это и небольшие передвижные воздушные компрессоры и крупные компрессорные установки, используемые на магистральных газопроводах.
Рис. 16. Вертикальный трехступенчатый компрессор без смазывания цилиндров: 1 – поршень; 2 – цилиндр; 3 – клапан; 4 – фонарь; 5 – шток; 6 – ползун; 7 – палец; 8 – шатун; 9 – коленчатый вал; 10 – противовес
На рис. 17 представлен компрессор с ДВС с V-образным расположением гидроцилиндров.
Рис. 17. Горизонтальный компрессор с V-образно расположенными цилиндрами: 1 – коленчатый вал; 2 – станина; 3 – шток; 4 – цилиндр; 5 – клапан; 6 – ползун
2. Спиральные компрессоры
Спиральные компрессоры (СПК) относятся к одновальным машинам объемного принципа действия (рис. 18). Идея такой машины известна более ста лет, но реализовать ее и довести до промышленного производства и широкого применения удалось только в 80-е гг. ХХ в. Причина – не было достаточно точного оборудования для изготовления такой формы деталей, как спирали.
В настоящее время СПК используют в основном в бытовых и транспортных кондиционерах, тепловых насосах, холодильных машинах малой и средней холодопроизводительности до 50 кВт.
Спиральные компрессоры выполняются маслозаполненными, с впрыском капельной жидкости (например, холодильного агента), сухого сжатия. По исполнению – герметичные, бессальниковые и сальниковые, с горизонтальным и вертикальным расположением вала.
Рис. 18. Схема спирального компрессора: 1 – неподвижная спираль; 2 – вращающаяся спираль; 3 – центральное выходное отверстие; 4 – верхняя крышка; 5 – входное отверстие; 6 – электродвигатель; 7 – выпускное отверстие
В спиральном компрессоре пары хладагента поступают через входное отверстие 5 (см. рис. 18) в цилиндрической части корпуса, охлаждают электродвигатель 6, затем сжимаются между спиралями 1 и 2 и выходят через выпускное отверстие 7 в верхней части корпуса компрессора.
Рабочий орган компрессора образуют две спирали: подвижная (ПСП) 2 и неподвижная (НСП) 1. Неподвижность спирали НСП обеспечивается креплением ее на неподвижной платформе. Платформа приблизительно в центре имеет сквозное нагнетающее отверстие 3 для выхода сжатого газа. Оно расположено рядом с носиком неподвижной спирали.
Стальные спирали 1 и 2 вставлены одна в другую, с эксцентриситетом имеют особый профиль (эвольвента), позволяющий перекатываться без проскальзывания. Подвижная спираль компрессора установлена на эксцентрике и перекатывается по внутренней поверхности неподвижной спирали (рис. 19 и 20).
Рис. 19. Поперечное сечение неподвижной (НПС) и подвижной (ПСН) спиралей в рабочем положении: — толщина спирали
Рис. 20. Взаимное положение спиралей (через 90 О ) при перемещении ПСП по орбите: а — φ = 0 О ; б — φ = 90 О ; в — φ = 180 О ; г — φ = 270 О
При работе компрессора между стенками спиралей образуются полости, в том числе и замкнутые серповидные ячейки. При перемещении подвижной спирали по замкнутой орбите (без поворота вокруг своей оси) образованные спиралями серповидные ячейки перемещаются по направлению к центру спиралей, уменьшаясь в объеме. На периферии спиралей в определенном положении ПСП образуется открытая полость, которая при дальнейшем перемещении подвижной спирали перекрывается и осуществляется прогонка локализованного объема газа к центру спиралей с уменьшением его объема. Пары хладагента сжимаются и выталкиваются в центральное отверстие 3 в крышке компрессора.
На рис. 20, а видно, что внешние элементы спиралей сомкнуты, далее при повороте ПСП четко прослеживается раскрытие и образование внешней ячейки, которая в позиции г имеет максимальный объем и при возврате в положение а закроется, образовав ячейки 1 и 1′. По позициям а, б и в четко прослеживается процесс уменьшения объема ячейки, сообщающейся с нагнетающим отверстием, это и есть цикл нагнетания.
Основные достоинства спиральных компрессоров:
- высокая энергетическая эффективность (их эффективный КПД составляет 80-86%);
- высокая надежность и долговечность, определяемая долговечностью подшипников;
- хорошая уравновешенность, незначительное во времени изменение крутящего момента на валу; малые скорости движения газа в машине; все это в совокупности с наличием противовеса ПСП обеспечивает низкий уровень вибрации и шума спирального компрессора;
- высокая быстроходность (число оборотов вала компрессора изменяется в пределах 1000-1300 об/мин);
- отсутствие мертвого объема, малая доля внутренних перетечек, и, как следствие, высокий коэффициент подачи (0,8-0,95);
- всасываемый компрессором газ не соприкасается с нагретыми элементами конструкции компрессора, вследствие чего не уменьшается масса всасываемого газа;
- процессы всасывания и особенно нагнетания газа растянуты по углу поворота вала и поэтому даже при большой частоте вращения его скорости движения перемещаемого хладагента невелики, что определяет низкие внутренние гидродинамические потери;
- отсутствие клапанов на всасывании и часто на нагнетании;
- может работать на любом газе (хладагенте), в том числе и с впрыском жидкой фазы перемещаемого газа;
- малое число деталей, отсутствие быстро изнашиваемых деталей.
К недостаткам спиральных компрессоров следует отнести следующее: для изготовления спиралей и некоторых других элементов компрессора требуются совершенные технологии и высокоточные станки для обработки металлов; на подвижную спираль действует сложная система осевых, тангенциальных и центробежных сил, требующих реализации сложных мероприятий по их уравновешиванию.
3. Роторные компрессоры
Роторные компрессоры, действующие по принципу передачи энергии сжимаемому газу, относятся к классу объемных компрессоров. В них, как и у поршневых компрессоров, сжатие газа происходит в замкнутом пространстве при уменьшении его объема. В отличие от поршневых двигателей у роторных компрессоров нет поршня, совершающего возвратно-поступательное движение.
К роторным компрессорам относятся пластинчатые, винтовые, жидкостно-кольцевые и компрессоры типа «Рутс».
Пластинчатый компрессор. На рис. 21 приведен ротационный пластинчатый компрессор.
Рис. 21. Ротационный пластинчатый компрессор: 1 – цилиндр; 2 – ротор; 3 – пластины; 4 – рубашка для охлаждения цилиндра; 5 – нагнетательный патрубок; 6 – напорный патрубок; 7 – всасывающий патрубок
В корпусе 1 компрессора вращается эксцентрично установленный ротор 2. В роторе расположены пазы 3, в которые вставлены рабочие пластины 4, способные свободно перемещаться в радиальном направлении. При вращении ротора под действием центробежной силы пластины выдвигаются из ротора и прижимаются к корпусу, образуя при этом замкнутые камеры 5 в серповидном пространстве между корпусом и ротором. Объем этих камер, начиная от всасывающего патрубка 7 в направлении вращения ротора (указано стрелкой), вначале увеличивается, а потом уменьшается. Минимальный объем имеет камера нагнетательного патрубка 6.
При вращении ротора газ, попавший в камеры у всасывающего патрубка, сжимается и нагнетается в патрубок 6.
Для предотвращения прорыва сжатого газа из зоны нагнетания в зоны всасывания ротор плотно прижимается к поверхностям нижней части корпуса. Корпус компрессора имеет водяную рубашку для охлаждения.
На рис. 22 представлен ротационный пластинчатый холодильный компрессор Р-90.
Пластинчатые компрессоры выпускаются одно- и двухступенчатые с конечным давлением до 0,7 МПа.
Преимуществом пластинчатых компрессоров является плавная подача сжатого газа. Эти компрессоры можно использовать для создания вакуума.
Рис. 22. Ротационный пластинчатый холодильный компрессор: 1 – корпус; 2, 5 – подшипники; 4 – сальник; 6 – ротор
Жидкостно-кольцевой компрессор. Жидкостно-кольцевые компрессоры (рис. 23) используются обычно только для откачки воздуха и создания вакуума.
Рис. 23. Жидкостно-кольцевой компрессор: 1 – корпус; 2 – рабочее колесо; 3 – водяное колесо; 4 – всасывающий штуцер; 5 – всасывающее окно; 6 – нагнетательное окно; 7 – напорный штуцер
Компрессор состоит из цилиндрического корпуса 1, в котором эксцентрично расположен ротор 2. Ротор компрессора имеет связанные с ним профилированные лопатки. В корпус залита вода, которая при вращении ротора отбрасывается к стенкам и образует жидкостное кольцо. В центральной зоне корпуса из-за эксцентриситета ротора образуется рабочее пространство серповидной формы, разделенное на камеры переменного объема. Принцип работы жидкостно-кольцевого компрессора аналогичен пластинчатому. Для уплотнения лопаток рабочего колеса предназначено кольцо вращающейся жидкости. Всасывание воздуха в жидкостно-кольцевом компрессоре происходит через окно 5, а нагнетание – через окно 6.
Винтовые компрессоры. К преимуществам винтовых компрессоров относится простота их конструкции. На рис. 24 изображен винтовой компрессор, который состоит из корпуса 3, ведущего 4 и ведомого 5 роторов, редуктора 1 с кожухом 2, присоединительной муфты 8 и подшипников 6 и 7.
Роторы винтовых компрессоров представляют собой крупномодульные винтовые колеса с зубьями специального профиля. Зоны всасывания и нагнетания расположены у торцов роторов (рис. 24, 25). При вращении роторов, начиная от зоны всасывания, зубья выходят из зацепления, открывая между собой полости, в которых давление ниже, чем во всасывающем трубопроводе, и в которые засасывается газ. При дальнейшем вращении происходит отсекание объема всасываемого газа от окна в стенке корпуса и его сжатие.
Полость между роторами уменьшается при вращении роторов, и процесс сжатия газа продолжается до тех пор, пока сжимаемый объем газа не подойдет к противоположным торцам роторов и не переместится в зону нагнетания, расположенную в стенке корпуса.
Рис. 24. Разрез винтового компрессора: 1 – редуктор; 2 – кожух; 3 – корпус; 4 – ведущий ротор; 5 – ведомый ротор; 6, 7 – подшипники; 8 – полумуфта
В нижней части корпуса компрессора (см. рис. 25) находится механизм регулирования производительности 2, перемещающийся параллельно осям винтов. Производительность регулируется золотником 1 (рис. 26), который штоком 2 связан с сервопоршнем 10 гидроцилиндра 5. В направлении нагнетательной секции для уменьшения производительности механизм перемещается под давлением масла, подаваемого в левую полость гидроцилиндра 5 по трубке 6. В обратном направлении для увеличения производительности компрессора он перемещается вследствие разности давлений нагнетания и всасывания.
Рис. 25. Винтовой компрессор: а – общий вид; б – профиль винтов; 1 – сальник; 2 – механизм регулирования производительности; 3 – крышка; 4, 5 – разгрузочные поршни; 6 – винт ведущий; 7 – винт ведомый; 8, 10-12 – подшипники; 9 – корпус; 13 – секция нагнетания; 14 – секция винтовая; 15 – секция всасывающая; 16 – корпус
Винтовые компрессоры выпускают одно- и двухступенчатыми с максимальным давлением нагнетания соответственно 0,4 и 1,15 МПа.
Винтовые компрессоры по способу охлаждения бывают маслозаполненными и сухого сжатия.
Винтовые компрессоры сухого сжатия подают сухой газ, не содержащий масло. Винты вращаются в корпусе без контактов, отсутствует и взаимный контакт роторов, что обеспечивается парой зубчатых колес, синхронизирующих вращение роторов. Охлаждение таких машин осуществляется через водяные рубашки в отливке корпуса.
Рис. 26. Механизм регулирования производительности компрессора: 1 – золотник; 2 – шток; 3 – уплотнитель; 4 – стержень; 5 – цилиндр; 6 – штуцер; 7 – потенциометр; 8 – штифт; 9 – крышка; 10 – сервопоршень; 11 – сливная пробка
В маслозаполненных компрессорах охлаждение газа происходит за счет впрыскивания в рабочие полости роторов масла или другой жидкости. Впрыск масла позволил получить отношение давлений до 10-15 в одноступенчатой машине против 4-5 в компрессоре сухого сжатия. Зазоры в маслозаполненном компрессоре в 2 раза меньше, чем в компрессоре сухого сжатия, в связи с менее напряженным температурным режимом. Кроме того, масло, заполняя зазоры, способствует уменьшению внутренних перетечек.
В результате подачи масла в рабочую полость винтового компрессора:
- повышается производительность (за счет уменьшения внутренних перетечек);
- упрощается конструкция компрессора, возможно непосредственное соприкосновение зубьев роторов, отпадает необходимость в синхронизирующих шестернях;
- увеличивается отношение давлений в ступенях;
- повышается энергетическая эффективность, надежность и долговечность.
Маслозаполненные винтовые компрессоры не нуждаются в глушителях из-за снижения уровня шума благодаря низким окружным скоростям, поглощения звуковых волн маслом, а также потому, что роль глушителя на нагнетании выполняют маслоотделитель и маслосборник. Снижение температурного перепада уменьшает тепловые деформации его деталей.
Следует отметить, что маслосистема увеличивает габариты компрессорной установки и ее стоимость и усложняет эксплуатацию. Масляная смазка положительно влияет на эксплуатационные качества винтовых компрессоров. Однако использование минеральных масел приводит к загрязнению газа парами масел. Поэтому промышленностью разработаны водозаполненные компрессоры, в которых роль смазки и уплотнителя зазоров играет чистая, не содержащая агрессивных примесей вода.
На рис. 27 представлен винтовой маслозаполненный холодильный компрессор ВХ-350.
Рис. 27. Винтовой маслозаполненный компрессор
4. Компрессоры динамического действия
В компрессорах динамического действия процессы сжатия проходят непрерывно в потоке движущегося вещества. Рабочими органами таких компрессоров являются колеса с расположенными на них рабочими лопатками. От вращающихся лопаток механическая энергия непрерывно передается движущемуся веществу. При этом в рабочем колесе обычно увеличивается кинетическая и потенциальная энергии вещества, т.е. его скорость и давление возрастают. В расположенных за колесом неподвижных лопаточных аппаратах уже без подвода энергии извне происходит преобразование кинетической энергии в потенциальную. Процессы сжатия в компрессорах динамического действия совершаются при больших скоростях и главным образом за счет использования сил инерции. К этому классу относятся центробежные, осевые и вихревые компрессоры.
Компрессоры динамического действия имеют следующие преимущества перед объемными поршневыми.
- Значительно меньшие габаритные размеры и массу по сравнению с объемными компрессорами той же производительности. Это обусловлено непрерывностью потока вещества и высокими скоростями движения.
- Надежность в работе вследствие малого износа при сжатии незагрязненных веществ. Единственными узлами, где имеются механические трения, являются подшипники.
- Практически полная уравновешенность вращающегося ротора, что позволяет устанавливать компрессоры на легких фундаментах.
- Равномерность подачи сжатого вещества.
- Отсутствие загрязнения вещества смазочным маслом.
- Возможность получения значительно большей производительности.
- Возможность непосредственного соединения с высокооборотным приводом двигателя – паровой или газовой турбиной, высокочастотным электродвигателем. Это позволяет повысить КПД агрегата за счет уменьшения механических потерь и сделать его более компактным.
Основными недостатками компрессоров динамического действия являются следующие.
- Трудность выполнения их для получения малой производительности, так как это сопряжено с необходимостью иметь очень высокую частоту вращения ротора. К тому же при малых абсолютных размерах рабочих колес относительные зазоры между лопаточными аппаратами и корпусом, а также в лабиринтных уплотнениях становятся значительными, что приводит к снижению КПД. Кроме того, когда числа Рейнольдса в потоках сжимаемого вещества становятся меньше определенного значения, это сопровождается дополнительными потерями из-за усиления влияния вязкости и также вызывает снижение КПД компрессора.
- Сравнительно узкий диапазон устойчивой работы при изменении производительности. Если не применять специальных методов регулирования, то уменьшение расхода вещества до 60–80% от расчетного объема сопровождается потерей устойчивости течения, проявляющейся в возникновении пульсаций давления и периодическом движении потока вещества в обратном направлении – от нагнетания к всасыванию. Данное явление называют помпажом компрессора. Работа в режиме помпажа вызывает большие динамические нагрузки на ротор и может привести к выходу компрессора из строя.
- Трудность получения высоких отношений давления – свыше 30–40.
- Существенная зависимость характеристик компрессора динамического действия от термодинамических свойств рабочего вещества, что не позволяет, как правило, эксплуатировать компрессоры этого типа на других рабочих веществах без изменения конструкции или режима работы.
4.1. Центробежные компрессоры
Рассмотрим схему двухступенчатой секции центробежного компрессора (рис. 28). Рабочее вещество поступает во входное устройство А, с помощью которого оно подводится к рабочему колесу (РК) В первой промежуточной ступени. Перед РК располагается входной регулирующий аппарат (ВРА) Б.
Площадь сечения Н входного устройства обычно больше площади сечения 0 при входе в колесо. Движение газа в нем сопровождается увеличением скорости и уменьшением давления. Его называют конфузорным.
При осевом положении лопаток, когда регулирования производительности нет, скорость в сечениях 8 и 9 практически одинакова. Поворот лопаток ВРА приводит к уменьшению площади потока в сечении 9 и, значит, к увеличению скорости газа. В рабочем колесе В газ проходит два различных участка. На участке 0–1 радиальнокольцевого поворота энергия к газу не подводится, его скорость меняется незначительно. В сечении 1 газ поступает на рабочие лопатки, которые подводят к нему механическую энергию. Вследствие этого давление и скорость газа на участке 1-2 увеличиваются.
Рис. 28. Схема двухступенчатого холодильного центробежного компрессора
Из рабочего колеса газ, движущийся с большой скоростью, поступает в безлопаточный диффузор (БЛД) Г и затем в лопаточный диффузор (ЛД) Д. Площадь потока в обоих диффузорах по мере движения увеличивается, а его скорость уменьшается. При этом увеличивается давление газа. Такое движение называют диффузорным. На участке 2-3 и 3-4 происходит преобразование кинетической энергии потока в энергию давления.
После диффузора газ проходит радиально-кольцевой поворот Е и поступает на лопатки обратно-направляющего аппарата (ОНА) Ж. В ОНА закрученный поток, вышедший из ЛД, раскручивается и с помощью лопаток, имеющих расположенные по радиусу выходные кромки, подается на вход в колесо второй ступени.
Процессы во второй концевой ступени идут в основном так же, как и в первой. После ЛД газ поступает в выходное устройство – улитку И – и выводится за пределы корпуса компрессора через патрубок Л. При движении в улитке скорость пара изменяется незначительно.
За рабочим колесом концевой ступени располагается разгрузочный поршень – думмис М. С его помощью уменьшается осевая сила от рабочих колес, передаваемая на упорный подшипник компрессора. Для этого задуммисная полость О соединяется трубопроводом П с всасывающим патрубком А. В результате давление за думмисом становится близким к давлению всасывания. Так как давление перед думмисом значительно выше и равно давлению при выходе из колеса второй ступени, то возникает сила, направленная в сторону, противоположную осевым силам от рабочих колес, и разгружающая упорный подшипник. Протечки газа от нагнетателя ко всасыванию между ступенями и через думмис снижаются с помощью специальных лабиринтных уплотнений.
Треугольники скоростей при входе и выходе из рабочего колеса центробежного компрессора аналогичны треугольникам скоростей центробежного вентилятора (см. рис. 8).
Теоретическая удельная работа, затрачиваемая на перемещение и сжатие рабочего вещества в компрессоре, определяется по уравнению Л.Эйлера
Уравнение Л.Эйлера доказывает, что удельная работа зависит только от окружных скоростей и проекций абсолютных скоростей потока на направление вращения. Удельная работа не зависит явно от
формы канала, но его форма может оказать сильное влияние на величину проекций скоростей и на КПД компрессора.
Характеристики центробежных компрессоров. Характеристикой компрессора динамического действия называется зависимость его основных рабочих параметров (таких, как отношение давлений π = PК/ PН, внутренняя мощность Ni, политропный (или изоэнтропный) КПД ηПОЛ(или ηS) от параметра, характеризующего производительность компрессора (массовая или объемная производительность) при постоянной (рис. 29, а) или различных фиксированных значениях частоты вращения n (рис. 29, б).
Рис. 29. Характеристика центробежного компрессора: 1 – характеристика сети
Характеристики получают при испытаниях компрессора на специальных стендах, изменяя производительность дросселированием на нагнетании с помощью специальной заслонки или вентиля. При максимальной производительности из-за больших потерь в проточной части значения отношений давлений и КПД невелики. С уменьшением производительности потери в проточной части снижаются. При этом отношение давлений и КПД возрастает. Оптимальному режиму работы соответствуют наименьшие потери и максимальное значение КПД. Дальнейшее уменьшение производительности сопровождается снижением КПД. При минимальной или критической производительности наступает помпаж компрессора. Помпаж – это автоколебательный процесс в системе «компрессор–сеть», при котором давление нагнетания периодически резко снижается, а направление движения газа изменяется на обратное. При этом обычно слышны характерные «хлопки».
Положение критической точки А (см. рис. 29, а) начала помпажа зависит не только от компрессора, но и от свойств сети: ее объема и частоты собственных колебаний находящегося в ней газа. Помпажу обычно предшествует вращающийся срыв в колесе или диффузоре. Работа компрессора в режиме помпажа недопустима, так как она сопровождается колебаниями ротора и может привести к аварии.
Регулирование режимов работы центробежного компрессора. Регулирование работы компрессора осуществляется для обеспечения потребителя сжатым газом с требуемыми параметрами. Например, компрессоры, подающие сжатый воздух в домны, должны обеспечивать постоянную производительность; компрессоры для пневматических силовых установок — постоянное давление нагнетания; компрессоры газотурбинных установок – регулирование давления нагнетания, производительность и пр.
Работа компрессора на нерасчетных режимах связана с существенным снижением экономичности, возникновением дополнительных нагрузок, вибраций и пр. В среднем время работы компрессоров на нерасчетных режимах составляет почти половину времени промышленной эксплуатации.
Для повышения эффективности и надежности работы установки необходимо согласование характеристик компрессора с изменяющимися условиями работы системы.
Регулирование может осуществляться изменением характеристики системы или изменением характеристики компрессора. В процессе регулирования должны удовлетворяться следующие требования:
- компрессор должен обеспечивать необходимые значения производительности и давления при устойчивой работе;
- нельзя допускать попадание компрессора в зону неустойчивых режимов (помпажа).
Регулирование перепуском, или байпасированием, при котором сжатый газ со стороны нагнетания перепускается через дроссельное устройство на сторону всасывания. Энергетически – это самый неэффективный из методов регулирования, однако он очень просто осуществляется и обладает неограниченной глубиной регулирования. Поэтому его часто применяют в процессе эксплуатации.
Регулирование дросселированием на нагнетании достигается за счет установки дроссельного устройства между компрессором и сетью. С его помощью можно уменьшить производительность при n = const только до точки Б (см. рис. 29, б), в которой наступает помпаж компрессора. Этот метод также энергетически невыгоден.
Регулирование изменением частоты вращения (см. рис. 29, б) позволяет работать при достаточно высоких значениях КПД, но его возможности для характеристики сети 1 также невелики, так как производительность может быть уменьшена только до точки В.
Рис. 30. Характеристика центробежного компрессора при регулировании дросселированием на всасывании: 1 – характеристика сети
Регулирование дросселированием на всасывании (рис. 30) осуществляется с помощью дроссельного устройства, располагаемого перед входом в компрессор. По мере прикрытия дросселя характеристики компрессора сдвигаются в сторону меньших расходов с одновременным уменьшением отношения давления и КПД. Таким способом можно уменьшить производительность до точки Г. Энергетическая эффективность дросселирования на всасывании выше, чем дросселирования на нагнетании, но уступает регулированию частоты вращения.
Регулирование закруткой потока при входе в рабочее колесо с помощью входного регулирующего аппарата получило широкое распространение в центробежных компрессорах. Такое регулирование позволяет уменьшить производительность компрессора до 40–45% от номинальной. Следует отметить, что уменьшение производительности уменьшает и отношение давлений.
Комбинированное регулирование производительности позволяет получать наилучшие показатели компрессора при его работе на сеть с заданной характеристикой.
На рис. 31 в качестве примера представлена конструкция холодильного центробежного компрессора. Пропановый четырехступенчатый компрессор ТКП-435 изготавливается на Казанском компрессорном заводе. Корпус 1 литой с горизонтальным разъемом. Компрессор выполнен двухсекционным, поэтому в нижней половине корпуса имеются два всасывающих и два нагнетательных патрубка. Ротор 5 вращается в подшипниках скольжения: опорно-упорным 2 и опорном 9. Рабочие колеса 4 радиального типа, закрытые с загнутыми назад лопатками. Диффузоры 7 – безлопаточные. Секции расположены оппозитно, так что всасывающие отверстия колес каждой секции направлены в противоположные стороны. Это позволяет уменьшить осевые силы, передаваемые на опорно-упорный подшипник, и избежать применения разгрузочного поршня. Перед входом в каждую секцию установлен входной регулирующий аппарат 3. Неподвижные элементы проточной части – диффузоры – и обратные направляющие аппараты расположены в пакетах диафрагм 6. Диафрагмы литые и тоже имеют горизонтальный разъем. В центральных частях диафрагм, прилегающих к валу, и покрывающих дисках колес, устанавливаются лабиринтные уплотнения. Сборные выходные камеры – улитки 8 – выполнены непосредственно в отливке корпуса. Торцевое уплотнение 10 препятствует утечке хладагента в атмосферу. Масляная система компрессора герметичная, так как масло находится в контакте с хладагентом.
На рис. 32 представлен хладоновый двухступенчатый компрессор для водоохлаждающей холодильной машины. Особенностью его конструкции является неразъемный корпус 13 цилиндрической формы, в котором осевой сборкой размещаются детали компрессора. Внутренние полости диафрагм 9–11 образуют проточную часть компрессора. Ротор 8 вращается в опорно-упорном 7 и опорном 12 подшипниках скольжения. На роторе располагаются разгрузочный поршень – думмис 6 – и рабочие колеса 5 закрытого типа с лопатками, загнутыми назад.
Рис. 31. Пропановый центробежный компрессор ТКП-435
Рис. 32. Хладоновый центробежный компрессор со встроенным мультипликатором
Для обеспечения осевой сборки компрессора рабочее колесо первой ступени установлено на шлицах. Перед первой ступенью расположен входной регулирующий аппарат 4. Диффузоры – безлопаточные. Промежуточный подсос пара во вторую ступень осуществляется через специальный патрубок корпуса и внутреннюю полость диафрагмы 10, соединенную отверстиями с выходным участком обратного направляющего аппарата первой ступени. Мультипликатор 3 – встроенный, планетарного типа, с заторможенным корпусом сателлитов 2. Коронная шестерня 1 соединена с тихоходным валом, а центральная шестерня 15 – с ротором компрессора. Торцевое уплотнение 14 расположено на тихоходном валу, что увеличивает надежность его работы.
Преимуществом такой конструкции компрессора является повышение качества сборки, так как центровка деталей обеспечивается «технологически» за счет обработки соосных цилиндрических поверхностей деталей за одну установку. Применение встроенного мультипликатора позволило уменьшить металлоемкость и габаритные размеры компрессора.
На рис. 33 представлен бессальниковый одноступенчатый малорасходный хладоновый центробежный компрессор со встроенным электродвигателем. Компрессор предназначен для автономных систем кондиционирования воздуха.
Рис. 33. Бессальниковый одноступенчатый малорасходный центробежный компрессор: 1 – рабочее колесо; 2 – улитка; 3 – подшипник; 4 – коробка клеммная; 5 – электродвигатель; 6 – рубашка охлаждающая
4.2. Нагнетатели природного газа
Нагнетателями природного газа (НПГ) принято называть лопаточные компрессорные машины с соотношением давления выше 1,1 и не имеющие специальных устройств для охлаждения газа в процессе сжатия.
Все нагнетатели условно можно разделить на два класса: неполнонапорные (одноступенчатые) (рис. 34) и полнонапорные (рис. 35). Первые, имеющие степень сжатия в одном нагнетателе 1,25-1,27, используются при последовательной схеме сжатия газа на компрессорной станции, вторые — полнонапорные, имеющие степень сжатия 1,45-1,51, используются при коллекторной схеме обвязки компрессорной станции.
Рис. 34. Неполнонапорный одноступенчатый нагнетатель НЗЛ типа 370-18: 1 – корпус; 2 – крышка; 3 – лопаточный диффузор; 4 – рабочее колесо; 5 – гильза; 6 – зубчатая муфта; 7 – клиновые прокладки; 8 – анкерные болты
Одно из общих требований к НПГ – достаточно массивный и жесткий газоплотный корпус, способный без существенных деформаций воспринимать как внутреннее давление, так и значительные усилия и опрокидывающие моменты от труб обвязки. Большинство одноступенчатых нагнетателей на отечественных газопроводах имеет один вертикальный разъем для доступа к газовой полости.
Рис. 35. Полнонапорный двухступенчатый нагнетатель НЦ-16/76: 1 – опорный подшипник; 2 – крышка; 3 – корпус; 4 – внутренний корпус; 5 – ротор; 6 – крышка; 7 – уплотнение; 8 – опорно-упорный подшипник; 9 – блок масляных насосов; 10 – думмис; 11 – улитка; 12 – обратный направляющий аппарат
Двухступенчатые нагнетатели выполняют и с одним, и с двумя вертикальными стыками: при литом корпусе достаточен один разъем, при сварно-кованом технологичнее иметь два. Корпуса с горизонтальным разъемом затрудняют удобный подвод и отвод патрубков большого сечения, небезопасны при аварийных ситуациях, когда разъем может потерять плотность, и в НПГ большой размерности не применяются.
Корпус НПГ крепят к опорной раме с помощью достаточно жестких лап, для восприятия усилий от труб используют также шпонки.
Одноступенчатые НПГ имеют обычно консольные роторы и глухую крышку, а для двухступенчатых характерны межопорные роторы с размещением одного или обоих подшипников на крышках. В двухступенчатых нагнетателях ротор вместе со съемными деталями проточной части образует один или два сборных узла. Рабочие колеса насаживают на вал на горячей посадке, иногда с помощью жидкости высокого давления.
Осевые усилия в НПГ могут достигать больших значений. Для снижения осевого усилия при межопорных роторах используют лабиринтное уплотнение большого диаметра со стороны высокого давления, называемое разгрузочным поршнем, или думмисом. Газ, прошедший думмис, обычно направляется на всасывание.
Для восприятия осевых усилий используют двухсторонние упорные подшипники с самоустанавливающимися колодками.
Опорные подшипники применяют только типа скольжения (не качения) – двухклиновые или многоклиновые (сегментные). Последние хорошо демпфируют поперечные колебания ротора и обеспечивают более спокойную работу ГПА.
Для снижения протечек между вращающимися и неподвижными вентилями используют лабиринтные уплотнения с острыми гранями, а для обеспечения плотности между полостями статора с различным давлением применяют кольцевые резиновые шнуры. Для сохранения КПД нагнетателя важное значение имеет поддержание малых зазоров в небольшом лабиринтном уплотнении на втулке покрывающего диска.
На рис. 34 представлена конструкция неполнонапорного нагнетателя типа 370-18. Нагнетатель имеет непосредственный привод от силовой турбины ГТУ и рассчитан на давление 5,5 и 7,45 МПа. Корпус нагнетателя имеет один вертикальный разъем и тангенциальные соосные входные и выходные патрубки. Нагнетатель снабжен лопаточным диффузором. Ротор нагнетателя вместе с подшипником, уплотнениями, диффузором и другими элементами образует единый сборочный узел, называемый гильзой. Этот узел имеет горизонтальный разъем, что позволяет легко проверять правильность взаимного расположения деталей. При необходимости гильза в сборе может быть заменена запасной, что позволяет осуществлять агрегатноузловой метод ремонта. Конструкцией предусмотрена возможность ремонта и замена вкладышей и уплотнений без вскрытия газовой полости.
Конструкция рабочего колеса – клепаная. Межлопаточные каналы выфрезерованы в теле основного диска. Такая конструкция хорошо демпфирует колебания, вызываемые лопаточным диффузором. Изготавливают также сварные рабочие колеса.
Некоторые особенности конструкции основных узлов НПГ рассмотрим на примере двухступенчатых нагнетателей НЦ-16/76 и типа 235-НЗЛ. Оба эти нагнетателя широко распространены на компрессорных станциях газопроводов, и конструкции их являются развитием ряда проверенных в эксплуатации решений.
Нагнетатель НЦ-16/76 (см. рис. 35) с номинальной частотой вращения 4900 об/мин для ГПА мощностью 16 МВт имеет кованый цилиндрический корпус с двумя жесткими вертикальными и тоже коваными крышками, на которых смонтированы узлы подшипников и уплотнений. Крышки зафиксированы в корпусе с помощью упорных разрезных колец. Всасывающий и нагнетательный патрубки – кованы, приварены к корпусу снаружи, опорные лапы корпуса также приварены. Для герметизации соединений «крышки – корпус» и внутренних полостей проточной части используют кольцевые резиновые шнуры различного диаметра.
Конструкция кованого наружного корпуса позволяет использовать его и для перспективного давления 10 МПа при умеренной толщине стенки (около 120 мм). Необходимые полости получены с помощью тонкостенного литого внутреннего корпуса, также не имеющего горизонтального разъема. Внутренний корпус при сборке вкатывается в наружный на специальных роликах. На внутреннем корпусе закреплены входной направляющий аппарат, представляющий собой систему радиальных ребер, лопаточные диффузоры обеих ступеней и наружная часть обратного направляющего аппарата (ОНА). Внутренняя разъемная часть ОНА извлекается вместе с ротором.
Ротор имеет ступенчатый вал с максимальным диаметром (посередине) около 300 мм, на который насажены рабочие колеса, думмис (разгрузочный поршень), втулки уплотнений, полумуфта для восприятия крутящего момента и упорный гребень. Лопатки рабочего колеса выфрезерованы из тела основного диска, соединены с покрывающим (покрывным) диском с помощью пайки. Ротор приспособлен для многоплоскостной балансировки. Для извлечения ротора нет необходимости доставать внутренний корпус и диффузоры.
Воспринимающий осевые усилия упорный подшипник имеет пакеты колодок с обеих сторон. Каждый опорный подшипник сегментного типа состоит из пяти самоустанавливающихся сегментов. Уплотнения имеют лабиринтную часть и масляную концевую часть в виде щелевого уплотнения с плавающими кольцами.
Выходная сборная камера образована с помощью кольцевого углубления на торцевой крышке и специально присоединенной к ней улитки. Из статорных деталей разъем имеет только внутренняя часть ОНА.
Общее конструктивное решение нагнетателя позволяет сравнительно легко заменять при необходимости детали проточной части и получать различные модификации.
Двухступенчатый нагнетатель типа 235-21 (рис. 36) разработан Невским заводом им. В.И. Ленина (НЗЛ) также в нескольких модификациях по параметрам на расчетную частоту вращения 4800 об/мин для ГПА мощностью 10 МВт. Отличительная его особенность – литой корпус и литая крышка с обычным фланцевым соединением. Корпус снабжен достаточно жесткими лапами, которые обеспечивают надежное крепление нагнетателя к опорной раме. Присоединительные сечения патрубков нагнетателя расположены соосно.
Рис. 36. Полнонапорный двухступенчатый нагнетатель типа 235-21 (с горизонтальным разъемом): 1 – рабочее колесо; 2 — лопаточный диффузор; 3 – корпус; 4 – крышка; 5 – сборная камера; 6 – думмис; 7 – опорный подшипник
Ротор нагнетателя конструктивно объединен с закладными деталями проточной части так, что образует единый сборочный блок (пакет). Это позволяет заметно сократить затраты времени на ремонт, так как для группы нагнетателей поставляется запасной комплект. Существует две сборочные модификации нагнетателя: с горизонтальным разъемом закладных частей и без горизонтального разъема. В первом случае при разборке — сборке есть хороший доступ для контроля за зазорами и взаимным положением деталей в проточной части и уплотнениях. Во втором случае (только вертикальные стыки) конструкция лабиринтных уплотнений допускает осевую сборку, а для разборки – сборки ОНА, конструктивно объединенного с лопаточными диффузорами, снимают, а затем устанавливают рабочее колесо первой ступени, которое фиксируется в осевом положении на валу резьбовой втулкой.
Рабочие колеса имеют цилиндрические лопатки, которые выфрезерованы в теле основного диска; покрывающий диск приварен к лопаткам. За рабочим колесом второй ступени на валу расположен разгрузочный поршень.
Упорный подшипник находится в картере, прикрепленном к крышке с помощью болтов и шпилек. Вкладыши опорных подшипников представляют собой разъемные втулки. Картер опорного подшипника со стороны привода конструктивно объединен с корпусом муфты. Достаточно просторная выходная сборная камера образована несколькими деталями нагнетателя.
Рассмотренные примеры конструктивного решения нагнетателей свидетельствуют о достаточно высоком совершенстве отечественных конструкций современных двухступенчатых нагнетателей.
4.3. Осевые компрессоры
Осевой компрессор (рис. 37) состоит из входного устройства 1, с помощью которого газ подводится к входному направляющему аппарату (ВНА) 2. ВНА придает потоку необходимое направление движения, после чего он поступает на рабочее колесо (РК) 3. От лопаток РК к газу подводится механическая энергия, вследствие чего его давление возрастает. В ступенях скорость газа в РК увеличивается (коэффициент реактивности Ω < 1), а в отдельных случаях (Ω = 1) остается практически постоянной по величине, изменяясь только по направлению.
Рис. 37. Схема осевого компрессора
Из РК газ поступает в направляющий аппарат (НА) 4, в котором изменяется направление движения потока. В ступенях с Ω < 1 в НА также происходит уменьшение скорости и повышение давления, а при Ω = 1 скорость в НА изменяется только по направлению.
При выходе из последней ступени газ проходит спрямляющий аппарат (СА) 5, который придает выходной скорости осевое направление. Обычно СА выполняют совмещенным с НА последней ступени. Из СА сжатый газ поступает в выходное устройство 6.
Ступенью осевого компрессора принято считать РК и расположенные за ним НА (рис. 38, а). Элементарной ступенью осевого компрессора называют ступень, расположенную между двумя соосными цилиндрическими поверхностями, радиусов r и r + dr. Развертка одной из этих поверхностей на плоскость и треугольники скоростей для двух ступеней с различным коэффициентом реактивности представлены на рис. 38, б, в. Видно, что РК и НА представляют собой лопаточные решетки, составленные из аэродинамических профилей, установленных под определенными углами. Решетка РК движется относительно решетки НА со скоростью u. Углы установки профилей выбирают такими, чтобы вход потока в решетку был безударным и сопровождался наименьшими потерями.
Рис. 38. Ступень осевого компрессора: а – схема ступени; б – ступень с Ω1-2 = 0,5; в – ступень с Ω1-2 = 1,0
На рис. 39 представлена конструкция осевого компрессора газовой холодильной машины ТХМ-1-25. Компрессор – осевой семиступенчатый. Расход воздуха 2 кг/с, степень сжатия 2,3, диаметр проточной части 190 мм, частота вращения ротора 21 200 об/мин. Компрессор состоит из статора и ротора. На роторе расположено семь рядов профилированных рабочих лопаток. Рабочее колесо и спрямляющий аппарат образуют ступень компрессора. Основными составными частями компрессора являются: ротор, патрубок всасывания, корпус передний, корпус нагнетателя (статор) и корпус диффузора.
Рис. 39. Осевой компрессор газовой холодильной машины ТХМ-1-25
Рабочая лопатка ротора состоит из пера и замка. Лопатки разных ступеней отличаются друг от друга длиной пера и углом установки их в диске. Лопатки с дисками соединяются замком типа «ласточкин хвост». Диски ротора и лопатки изготовлены из стали 13Х14НВФРА.
Патрубок всасывания является входным устройством компрессора и предназначен для обеспечения равномерного входа воздуха в первое колесо ротора. Корпус передний является продолжением входного устройства компрессора и служит передней опорой ротора.
Корпус компрессора имеет продольный разъем в вертикальной плоскости. В кольцевых проточках установлены полукольца спрямляющих аппаратов, которые совместно с ротором и корпусом компрессора образуют проточную часть. Спрямляющий аппарат состоит из наружного и внутреннего полуколец и спрямляющих лопаток и крепится к корпусу нагнетателя болтами.
Корпус по объему соединен болтами. К торцевым фланцам корпуса крепятся корпус передний и корпус диффузора. Последний состоит из наружного и внутреннего корпусов. Во внутреннем корпусе установлен корпус задней опоры. В наружном корпусе – спрямляющий аппарат седьмой ступени.
Поршневой компрессор: устройство, характеристики, принцип работы
Поршневой компрессор — это устройство, предназначенное для повышения давления (сжатия) и перемещения газообразных веществ.
Назначение поршневого компрессора заключается в подаче сжатого воздуха или газа под избыточным давлением, более 0,2 – 0,3 МПа.
Электрические поршневые компрессоры, воздействующие с помощью поршня на определенный замкнутый объем воздуха в цилиндре в период нагнетания, могут создавать значительную степень сжатия при относительно ограниченной подаче воздуха или газа.
Содержание статьи
- Принцип работы поршневого компрессора
- Устройство
- Характеристики компрессора
- Регулирование подачи
- Типы поршневых компрессоров
Поршневой компрессор обладает высоким коэффициентом полезного действия и его применение наиболее целесообразно при давлении более 1 МПа и при малой подаче.
Компрессор поршневой центробежный конструктивно и по принципу действия похож на многоступенчатый центробежный насос. Отличие заключается в том, что рабочим телом является сжимаемый газ.
Работа поршневого компрессора
Принцип работы поршневого компрессора похож на действие поршневого насоса. Отличием является то, что поршень насоса выталкивает жидкость в течение всего нагнетательного хода, а компрессор поршневой выталкивает воздух или газ лишь после того, как давление в цилиндре превысит давление в нагнетательной линии.
Принцип действия поршневого компрессора основан на совместной работе:
цилиндра;
поршня;
клапана нагнетания;
клапана всасывания;
шатуна;
коленчатого вала.
Всё начинается с того, что привод поршневого компрессора приводит в движение коленчатый вал. Работа поршневого компрессора состоит в подаче сжатого воздуха или газа под избыточным давлением и происходит это следующим образом.
При движении поршня вправо из крайнего левого положения всасывающий клапан k1 открыт и воздух всасывается в цилиндр. Давление на протяжении всего хода всасывания постоянно и равно атмосферному.
При ходе поршня из крайнего правого положения влево всасывающий клапан k1 закрывается и газ, замкнутый в левой полости цилиндра сжимается.
При достижении давления p2, равного давлению газа в нагнетательном сборнике, открывается нагнетательный клапан m1, и газ будет выталкиваться из цилиндра при постоянном давлении p2.
По окончании нагнетания, если принять полное опорожнение цилиндра от газа, начнется снова всасывание. При этом должно произойти мгновенное падение давления.
В зависимости от конструкции поршневые компрессоры бывают: простого и двойного действия.
Устройство поршневого компрессора
В устройство поршневого компрессора входят рабочий цилиндра и поршень, а также всасывающий и нагнетательный клапаны, расположенные обычно в крышке цилиндра.
Для сообщения поршню возвратно-поступательного движения в большинстве поршневых компрессорах имеется кривошипно-шатунный механизм с коленчатым валом. Компрессоры промышленные поршневые бывают одно и многоцилиндровые, с вертикальным, горизонтальным, V или W — образным и другим расположением цилиндров.
В зависимости от назначения различается конструкция поршневого компрессора одинарного действия (когда поршень имеет одну рабочую сторону) и двойного действия (когда поршень работает обеими сторонами).
По степени сжатия газа бывают модели одноступенчатого или многоступенчатого сжатия.
Схема работы поршневого компрессора заключается в следующем. При вращении коленчатого вала 1 соединённый с ним шатун 2 сообщает поршню 3 возвратные движения.
При этом в рабочем цилиндре 4 из-за, увеличения объёма, заключённого между днищем поршня и крышкой цилиндра 5, возникает разрежение и атмосферный воздух, преодолев своим давлением сопротивление пружины, удерживающей всасывающий клапан 9, открывает его и через воздухозаборник (с фильтром) 8 поступает в рабочий цилиндр поршневого компрессора.
При обратном ходе поршня воздух будет сжиматься, а затем, когда его давление станет больше давления в нагнетательном патрубке на величину, способную преодолеть сопротивление пружины, прижимающей к седлу нагнетательный клапан 7, воздух открывает последний и поступает в трубопровод 6. При сжатии газа в компрессоре его температура значительно повышается.
По расположению цилиндров подразделяются на горизонтальные, вертикальные и с наклонными цилиндрами.
По способу охлаждения – с воздушным и водяным охлаждением.
По числу ступеней сжатия компрессор бывает 2, 4 и 6 поршневой. При такой конструкции все цилиндры имеют одинаковый размер и процессы всасывания и сжатия воздуха происходят в каждом из цилиндров по очереди. Каждый элемент работает в противофазе.
Двухступенчатый поршневой компрессор напротив оборудуется цилиндрами разных размеров. Первая ступень сживает воздух, затем он попадает в межступенчатый охладитель, в качестве которого выступает медная трубка.
В такой трубке сжатый воздух охлаждается и сжимается ещё больше. Потом он попадает на вторую ступень и сжимается ещё больше. Достоинством такого типа установки является большой показатель КПД при меньшем расходе энергии.
Характеристика поршневого компрессора.
В зависимости от способа монтажа, который предусматривает конкретная модель обращают внимание на следующие характеристики компрессора.
Давление нагнетания – избыточное давление, которое способен обеспечить компрессор. В зависимости от модели этот параметр может достигать значения более 300 кгс/см 2
Производительность поршневых компрессоров – количество всасываемого и сжимаемого газа или воздуха. Этот параметр зависит от диаметра поршня, длины хода поршня и скорости вращения вала.
Качество рабочего воздуха – такой показатель очень важен для оборудования используемого в промышленной отрасли, там где часто перекачиваемый воздух содержит примеси масла или других жидких сред.
Мощность поршневого компрессора относится в приводу конкретной модели и измеряется в килоВаттах. Отдельно такая характеристика считается редко, поскольку в подавляющем большинстве случаев покупателям интересна только производительность.
Шум является очень важной характеристикой, поскольку оборудование этого типа считается очень шумным. Этот параметр указывается в дБ. Для уменьшения показателя шума поршневой компрессор может оборудоваться специальным защитным кожухом.
Характеристика показывает, где будут использоваться поршневые компрессоры. В зависимости от конкретных показателей это могут быть:
на компрессорных установках для сжатия воздуха – оборудования низкого давления
поршневая компрессорная установка для сжижения газа, его разделения и транспортирования – модели среднего давления
на установках для синтеза газов – оборудование высокого давления.
В поршневых компрессорах обычно предусматривается автоматическое регулирование производительности в зависимости от расхода сжатого газа для обеспечения постоянного давления в нагнетательном трубопроводе. Существует несколько способов регулирования.
Регулирование подачи поршневого компрессора.
Наиболее простым и удобным способом регулировать поршневой компрессор по подаче, который сразу приходит на ум является изменение частоты вращения привода вала. Однако при более глубоком анализе выясняется, что такой способ применим только в том случает, если привод поршневого компрессора осуществляется от двигателя внутреннего сгорания.
При электроприводе, как одном из наиболее распространенных в настоящее время способе привода компрессоров, регулирование изменение частоты вращения оказывается неприемлемым как с конструктивных, так и с энергетических соображений.
Если приводной двигатель работает с постоянной частотой вращения, то регулирование подачи компрессора может быть осуществлено следующими способами.
1. Регулирование за счет полного или частичного принудительного открытия всасывающих клапанов. Это приводит к полному или частичному переводу поршневого компрессора на холостой ход. При полном открытии всасывающих клапанов сжатие газа в цилиндре не происходит и засасываемый газ снова выталкивается во всасывающую трубу. Если всасывающие клапаны закрываются не полностью или только на части хода поршня, то, подача газа уменьшается. В практике предпочтительнее, как из конструктивных, так и энергетических условий, применять полное открытие всасывающих клапанов на части хода поршня.
2. Регулирование за счет перепуска газа из нагнетательного трубопровода во всасывающий. Такой перепуск может быть свободным или дроссельным. При дроссельном способе регулирования происходит более плавное изменение подачи компрессора, но без уменьшения потребляемой мощности. Поэтому в практике чаще применяется более простой и более экономичный способ – свободный перепуск с помощью байпасного вентиля.
3. Регулирование за счет установки дросселя во всасывающем трубопроводе. Установка дросселя на всасывающем трубопроводе вызывает падение давления при всасывании компрессора. Значит, при неизменном давлении нагнетания степень сжатия будет увеличиваться, а объемный КПД уменьшаться. Следовательно будет уменьшаться и подача компрессора.
4. Регулирование за счет подключения дополнительного пространства. Если крышки компрессора сделать пустотелыми и разделить полости на несколько ячеек, подключаемых к вредному пространству, или каким-либо другим способом подключить к вредному пространству некоторый регулируемый объем, то общий объем вредного пространства будет переменным. В этом случае регулирование объема вредного пространства будет заключаться в подключении или отключении части или всего дополнительного вредного пространства.
Каждый из описанных выше способов регулирования подачи компрессоров разработан и может использоваться как в ручном варианте так и автоматическим способом, с помощью различных устройств. В наше время автоматические способы регулирования показывают достаточную надежность, поэтому ручное регулирование подачи компрессоров все больше уступает место автоматическому.
Типы поршневых компрессоров
По конструктивным особенностям и принципу действия встречаются различные типы поршневых компрессоров. Большим спросом пользуются центробежные модели. Применяются также ротационные компрессоры, которые конструктивно и по способу привода сходны с центробежными машинами, однако по принципу действия (вытеснение) они относятся к поршневым машинам.
Если оборудование установлено на шасси то такая модель считается мобильной, если нет, то это стационарные поршневые компрессоры.
Масляный поршневой компрессор
К масляным поршневым компрессорам относится оборудование, в котором применяется смазка при работе цилиндров. К этому типу оборудования относятся воздушные, винтовые, судовые и др.
Принцип работы такого оборудования довольно прост. Цикл работы заключается в движении поршня. Одним движением поршень уходит из цилиндра и газ поступает в освободившийся объем, при возвращении поршня – газ сжимается, при этом сила давления растет. Пока совершается этот процесс всасывающий клапан закрывается и в работу включается клапан нагнетания, который выталкивает газ в магистраль.
Безмасляный поршневой компрессор
Безмасляные поршневые компрессоры используются тогда, когда необходима подача чистого воздуха или газа без риска попадания в них примесей смазочного материала.
Оборудования такого типа не требует масло для поршневых компрессоров, но это не значит, что оно работает без смазки. Конструктивно выполнено так, что масло не пересекается с воздушными потоками.
Первоначально это достигалось тем, что в корпусе компрессора делали специальные лабиринтные уплотнения. Такая конструкция не нашла широкого применения и в настоящее время безмасляные поршневые компрессоры комплектуются кольцами, выполненными из специальных композитных материалов.
Несмотря на особенности конструкции оборудование этого типа способно работать без ремонта более продолжительные периоды, чем компрессоры с использованием смазки цилиндров.
Устройство компрессора холодильника
Работа бытового и промышленного холодильного оборудования напрямую зависит от циркуляции хладагента, отвечает за этот процесс компрессорная установка. По сути, это самый важный элемент конструкции, без которого домашний холодильник заинтересует только приемщиков вторсырья. Чтобы произвести ремонт этого устройства или произвести замену, важно понимать принцип его работы. В данной публикации мы расскажем о внутреннем устройстве различных компрессоров бытовых холодильников и их особенностях.
Кратко о типах оборудования
По принципу работы данное оборудование можно разделить на четыре вида:
- Пароэжекторное, в качестве хладагента выступает, как правило, вода. Применяется в различных промышленных техпроцессах.
- Абсорбционное, для работы использует не электрическую, а тепловую энергию.
- Термоэлектрическое, на элементах Пельтье, широкое применение остается под вопросом ввиду низкого КПД (подробную информацию об этих устройствах можно найти на нашем сайте).
- Компрессорное.
Именно последний вид оборудования широко используется в бытовых и промышленных агрегатах.
Компрессор для холодильника: принцип работы
Чтобы понять назначения данного аппарата, следует рассмотреть схему работы оборудования. Упрощенный вариант, где указаны только основные элементы конструкции, приведен ниже.
Рис. 1. Принцип работы холодильной установки
Обозначения:
- А – Испарительный радиатор, как правило, изготовлен из медных трубок и расположен внутри камеры.
- B – Компрессорный аппарат.
- С – Конденсатор, представляет собой радиаторную сборку, расположенную на тыльной стороне установки.
- D – Капиллярная трубка, служит для выравнивания давления.
Теперь рассмотрим, алгоритм работы системы:
- При помощи компрессора (В на рис. 1), пары хладагента (как правило, это фреон) нагнетаются в радиатор конденсатора (С). Под давлением происходит их конденсация, то есть фреон меняет свое агрегатное состояние, переходя из пара в жидкость. Выделяемое при этом тепло радиаторная решетка рассеивает в окружающий воздух. Если обратили внимание, тыльная часть работающей установки ощутимо горячая.
- Покинув конденсатор, жидкий хладагент поступает в выравниватель давления (капиллярная трубка D). По мере продвижения через данный узел давление фреона снижается.
- Жидкий хладагент, теперь уже под низким давлением, поступает в испарительный радиатор (А), под воздействием тепла которого, он опять меняет агрегатное состояние. То есть становиться паром. В процессе этого происходит охлаждение испарительного радиатора, что в свою очередь привод к понижению температуры в камере.
Далее идет повторение цикла, до установления в камере необходимой температуры, после чего датчик подает сигнал на реле для отключения электроустановки. Как только происходит повышение температуры выше определенного порога, аппарат включается и установка работает по описанному циклу.
Исходя из вышеописанного, можно заключить, что данное устройство представляет собой насос, обеспечивающий циркуляцию хладагента в системе охлаждения.
Классификация компрессоров в холодильном оборудовании
Несмотря на общий принцип работы, конструкция механизмов может существенно отличатся. Классификация производится по принципу действия на три подтипа:
- Динамический. В таких устройствах циркуляция хладагента производится под воздействием вентилятора. В зависимости от конструкции последнего их принято разделять на осевые и центробежные. Первые устанавливаются внутрь системы, и в процессе работы нагнетают давление. Их принцип работы такой же, как у обычного вентилятора. Осевой компрессор
У вторых более высокий КПД за счет роста кинетической энергии, под воздействием центробежной силы.
Центробежный компрессор в разрезе
Основной недостаток таких систем – деформация лопастей вследствие эффекта кручения, возникающего под воздействием крутящего момента. Динамические установки не применяются в бытовом оборудовании, поэтому для нас они не представляет интереса.
- Объемный. В таких устройствах эффект сжатия производится при помощи механического приспособления, приводящегося в действие двигателем (электромотором). Эффективность данного типа оборудования значительно выше, чем у винтовых агрегатов. Широко применялся до появления недорогих роторных аппаратов.
- Роторный. Этот подвид отличается долговечностью и надежностью, в современных бытовых агрегатах устанавливается именно такая конструкция.
Учитывая, что в бытовых устройствах используются два последних подвида, имеет смысл рассмотреть их устройство более подробно.
Устройство поршневого компрессора холодильника
Данный аппарат представляет собой электрический мотор, у которого вертикальный вал, конструкция размещается в герметизированном металлическом кожухе.
Внешний вид поршневого компрессора со снятым верхним кожухом
При включении питания пусковым реле мотор приводит в движение коленчатый вал, благодаря чему закрепленный на нем поршень начинает совершать возвратно-поступательное движение. В результате этого происходит откачка паров фреона из испарительного радиатора (А на рис. 1) и нагнетание хладагента в конденсатор. Данному процессу способствует система клапанов, открывающаяся и закрывающаяся при смене давления. Основные элементы поршневой конструкции представлены ниже.
Конструкция поршневого компрессора в виде схемы
Обозначения:
- Нижняя часть металлического кожуха.
- Крепление статора электромотора.
- Статор двигателя.
- Корпус внутреннего электромотора.
- Крепеж цилиндра.
- Крышка цилиндра.
- Плита крепления клапана.
- Корпус цилиндра.
- Поршневой элемент.
- Вал с кривошипной шейкой.
- Кулиса.
- Ползунок кулисного механизма.
- Завитая в спираль медная трубка для нагнетания хладагента.
- Верхняя часть герметичного кожуха.
- Вал.
- Крепление подвески.
- Пружина.
- Кронштейн подвески.
- Подшипники, установленные на вал.
- Якорь электродвигателя.
В зависимости от конструкции поршневой системы данные устройства делятся на два типа:
- Кривошипно-шатунные. Используются для охлаждения камер большого объема, поскольку выдерживают значительную нагрузку.
- Кривошипно-кулисные. Применяются в двухкамерных холодильниках, где практикуется совместная работа двух установок (для морозильника и основной емкости).
В более поздних моделях поршень приводится в действие не электродвигателем, а катушкой. Такой вариант реализации более надежен, за счет отсутствия механической передачи, и экономичен, поскольку потребляет меньше электроэнергии.
Обратим внимание, что поршневые аппараты не подлежат ремонту в бытовых условиях, поскольку их разборка приводит к потере герметичности. Теоретически ее можно восстановить, но для этого необходимо специализированное оборудование. Поэтому при выходе аппаратов из строя, как правило, производится их замена.
Устройство роторных механизмов
Если быть точным, то такие устройства необходимо называть двухроторными, поскольку необходимое давление создается благодаря двум роторам со встречным вращением.
Внешний вид двухшнекового (ротационного) компрессора
Внутри компрессора фреон, попадая в сжимающийся «карман» выталкивается в отверстие небольшого диаметра, чем создается необходимое давление. Несмотря на относительно небольшую скорость вращения роторов, создается необходимый коэффициент сжатия. Отличительные особенности: небольшая мощность, низкий уровень шума. Основные элементы конструкции механизма представлены ниже.
Конструкция линейного роторного компрессора в виде схемы
Обозначения:
- Отводной патрубок.
- Отделитель масла.
- Герметичный кожух.
- Фиксируемый на кожухе статор.
- Обозначение внутреннего диаметра кожуха.
- Обозначение диаметра якоря.
- Якорь.
- Вал.
- Втулка.
- Лопасти.
- Подшипник на валу якоря.
- Крышка статора.
- Вводная трубка с клапаном.
- Камера-аккумулятор.
Устройство инверторного компрессора холодильника
По сути, это не отдельный вид, а особенность работы. Как уже рассматривалось выше, мотор установки отключается при достижении пороговой температуры. Когда она поднимается выше установленного предела, производится подключение двигателя на полной мощности. Такой режим запуска приводит к снижению ресурса электромеханизма.
Возможность избавиться от такого недостатка появилась с внедрением инверторных установок. В таких системах двигатель постоянно находится во включенном состоянии, но при достижении нужной температуры снижается его скорость вращения. В результате хладагент продолжает циркулировать в системе, но значительно медленней. Этого вполне достаточно для поддержки температуры на заданном уровне. При таком режиме работы продлевается срок службы и меньше потребляется электроэнергии. Что касается остальных характеристик, то они остаются неизменными.