Какие фотодатчики применяются в сканерах
Перейти к содержимому

Какие фотодатчики применяются в сканерах

Фотодатчики, применяемые в сканерах

В современных сканерах применяют фотодатчики двух типов: фотоэлектронные умножители — ФЭУ (РМТ — Photomulti Plier Tube) или приборы с зарядовой связью — ПЗС (ССО — Charge-Coupled Device).

Фотоэлектронный умножитель изобретен советским инженером Л. А. Кубецким в 1930 г. ФЭУ, изображенный на рис. 6.4, представляет электровакуумный прибор, внутри которого расположены электроды — катод, анод и диноды. Световой поток от объекта сканирования вызывает эмиссию электронов из катода. В соответствии с законом фотоэффекта фототок эмиссии прямо пропорционален интенсивности падающего на него светового потока. Вылетающие из катода электроны под действием разности потенциалов между катодом и ближайшим к нему электродом — динодом притягиваются к последнему и выбивают с его поверхности вторичные электроны, число которых многократно превышает первичный электронный поток с катода.

Рис. 6.4. Схема включения ФЭУ.

Это обеспечивается благодаря тому, что диноды выполнены из материалов, имеющих высокий коэффициент вторичной эмиссии, а между ними приложены потенциалы, обеспечивающие усиление вторичной эмиссии. В результате через сопротивление нагрузки в анодной цепи ФЭУ протекает усиленный ток. Коэффициент усиления фототока в ФЭУ достигает 10 8 . Такое усиление достигается за счет подачи на ФЭУ напряжения от высоковольтного источника (в зависимости от количества динодов — от 500 до 1500 В), причем потенциалы распределяются между электродами равномерно с помощью делителя напряжения. ФЭУ обладает высокой чувствительностью (1 А/лм), а его спектральный диапазон, определяемый областью длин волн регистрируемого излучения, соответствует задачам сканирования, поскольку перекрывает видимый спектр световых волн.

Прибор с зарядовой связью — это твердотельный электронный фотоприемник, состоящий из множества миниатюрных фоточувствительных элементов, которые формируют электрический заряд, пропорциональный интенсивности падающего на них света, и конструктивно выполняются в виде матриц или линеек.

Рис. 6.5. Устройство и принцип ПЗС-линейки.

Работу ПЗС впервые продемонстрировали В. Бойл и Дж. Смит в 1970 г. Принцип действия ПЗС основан на зависимости проводимости р-n-перехода полупроводникового диода от его освещенности. Устройство и принцип действия ПЗС-линейки показаны на рис. 6.5. ПЗС представляет собой полупроводниковый кристалл (как правило, кремний), на поверхность которого нанесена прозрачная оксидная пленка, выполняющая функцию диэлектрика в микроскопических конденсаторах. Одной из обкладок такого конденсатора является поверхность самого кристалла, а другой — нанесенные на диэлектрик металлизированные электроды толщиной не более 0,6 мкм.

К электродам в определенной последовательности подается низкое напряжение (5 —10 В). Это приводит к тому, что под электродами образуются так называемые потенциальные ямы в виде скоплений электронов. Под воздействием света в результате внутреннего фотоэффекта появляются свободные электроны. Количество электронов, скапливающихся под чувствительной площадкой каждого электрода, пропорционально интенсивности светового потока, падающего на чувствительную площадку данного электрода. Электроны образуют зарядовый пакет. Если ПЗС выполнен в виде линейки, зарядовые пакеты передаются из одной потенциальной ямы в соседнюю, достигая последней ячейки, откуда поступают на предварительный усилитель. ПЗС-линейка может содержать до нескольких тысяч фоточувствительных ячеек. Размер элементарной ячейки ПЗС определяет разрешающую способность сканера. Область спектральной чувствительности ПЗС расположена в видимой части спектра, причем наибольшая чувствительность наблюдается ближе к красной области.

45. Фотодатчики, применяемые в сканерах (фэу и пзс).

В современных сканерах применяются в основном фотоприемники двух типов: фотоэлектронные умножители (ФЭУ) и приборы с зарядовой связью (ПЗС). Иногда применяются фотодиоды (ФД).

Фотоэлектронные умножители в качестве светочувствительных приборов используются в барабанных сканерах (рис. 5). ФЭУ усиливают свет ксеноновой или вольфрамовогалогенной лампы, промодулированный изображением, который с помощью конденсорных линз или волоконной оптики фокусируется на чрезвычайно малой области оригинала. Фототок, возникающий в фотоэлементе под воздействием света, прямо пропорционален интенсивности падающего на него светового потока. Особенность ФЭУ как фотоприемника заключается в том, что благодаря системе динодов коэффициент пропорциональности удается увеличить в миллионы раз (до восьми порядков). Спектральный диапазон ФЭУ для полиграфических целей также безупречен, поскольку он полностью перекрывает видимый спектр световых волн.

Датчик на основе ПЗС состоит из множества крошечных светочувствительных элементов, которые формируют электрический заряд, пропорциональный интенсивности падающего на них света. В основу работы ПЗС положена зависимость проводимости pnперехода полупроводникового диода от степени его освещенности.

В одной линейке ПЗС может быть от нескольких сотен до нескольких тысяч фоточувствительных ячеек. Размер элементарной ячейки ПЗС является критичным параметром, так как от него зависит не только разрешающая способность сканера, но и максимальная величина удерживаемого заряда, а следовательно, и динамический диапазон устройства. Увеличение разрешающей способности сканера приводит к сужению его динамического диапазона. Хотя и считается, что спектральный диапазон ПЗС может перекрывать весь видимый спектр, но, как и у большинства полупроводниковых фотоприемников, синяя область спектра для них труднодоступна, а наибольшая чувствительность наблюдается ближе к красной области.

ПЗС используют в основном в планшетных (рис. 6) и проекционных сканерах, а также в цифровых фотоаппаратах. В последних двух случаях используются как линейные, так и матричные ПЗС.

46. Характеристики сканеров.

47. Типы сканеров. Планшетные. Роликовые. Преимущества и недостатки.

48. Типы сканеров: барабанные. Преимущества и недостатки

49. Типы сканеров: проекционные. Преимущества и недостатки

Третья разновидность настольных сканеров — проекционные сканеры, которые напоминают своеобразный проекционный аппарат (или фотоувеличитель). Вводимый документ кладется на поверхность сканирования изображением вверх, блок сканирования находится при этом также сверху. Перемещается только сканирующее устройство. Основной особенностью данных сканеров является возможность сканирования проекций трехмерных изображений. Упоминаемый выше комбинированный сканер обеспечивает работу в двух режимах: протягивания листов (сканирование оригиналов форматом от визитной карточки до21,6 см) и самодвижущегося сканера. Для реализации последнего режима сканера необходимо снять нижнюю крышку. При этом валики, которые обычно протягивают бумагу, служат для передвижения сканера по сканируемой поверхности. Хотя понятно, что ширина вводимого сканером изображения в обоих режимах не изменяется (чуть больше формата А4), однако в самодвижущемся режиме можно сканировать изображение с листа бумаги, превышающего этот формат, или вводить информацию со страниц книги.

Сканеры

Планшетный сканер

Сканер (Scanner) — устройство ввода в ЭВМ информации в виде текстов, рисунков, слайдов, фотографий на плоских носителях, а также изображения объемных объектов небольших размеров. Сканер представляет собой периферийное устройство, основным элементом которого является фотодатчик, предназначенный для фиксирования количества отраженного света в каждой области оригинала.

Метод, на котором основаны современные сканеры, заключается в последовательном, точка за точкой, фиксировании изображения и преобразовании его в электрический сигнал. Этот метод использовался при передаче фотографических изображений по телеграфу еще в 1850 г. Первый черно-белый сканер был создан в 1863 г., а цветной — в 1937г.

Сканирование представляет собой цифровое кодирование изображения, заключающееся в преобразовании аналогового сигнала яркости в цифровую форму. Такое получение цифрового изображения оригинала для ввода в компьютер называют оцифровкой (Digitizing ) . В процессе оцифровки изображение разбивается на элементарные частицы — пикселы, каждому из которых соответствует определенный код яркости и цветового оттенка.

1. Принцип действия и классификация сканеров

Сканер как оптоэлектронный прибор включает следующие функциональные компоненты :

  • датчик, содержащий источник света,
  • оптическую систему,
  • фотоприемник,
  • механизм перемещения датчика (или оптической системы) относительно оригинала
  • электронное устройство (обеспечивает преобразование информации в цифровую форму).

В процессе сканирования оригинал освещается источником света. Светлые области оригинала отражают больше света, чем темные. Отраженный (или преломленный) свет оптической системой на­правляется на фотоприемник, который преобразует интенсивность принимаемого света в соответствующее значение напряжения. Аналоговый сигнал преобразуется в цифровой для дальнейшей обработки с помощью ПК.

Сканеры весьма разнообразны, и их можно классифицировать по целому ряду признаков. В основе классификации могут быть следующие признаки :

  • способ формирования изображения (линейный, матричный);
  • конструкция кинематического механизма (ручной, настоль­ный, комбинированный);
  • тип вводимого изображения (черно-белый, полутоновый, цветной);
  • степень прозрачности оригинала (отражающий, прозрачный);
  • аппаратный интерфейс (специализированный, стандартный);
  • программный интерфейс (специализированный, TWAIN-со­вместимый).

2. Фотодатчики, применяемые в сканерах

В современных сканерах применяют фотодатчики двух типов: фотоэлектронные умножители — ФЭУ (РМТ — Photomulti Plier Tube) или приборы с зарядовой связью — ПЗС (ССО — ChargeCoupled Device).

Фотоэлектронный умножитель

Фотоэлектронный умножитель изобретен советским инженером Л.А. Кубецким в 1930 г. ФЭУ, изображенный на рис.1., представляет электровакуумный прибор, внутри которо­го расположены электроды — катод, анод и диноды. Световой поток от объекта сканирования вызывает эмиссию электронов из катода. В соответствии с законом фотоэффекта фототок эмиссии прямо пропорционален интенсивности падающего на него светового потока. Вылетающие из катода электроны под действием раз­ности потенциалов между катодом и ближайшим к нему электродом — динодом притягиваются к последнему и выбивают с его поверхности вторичные электроны, число которых многократно превышает первичный электронный поток с катода. Это обеспечивается благодаря тому, что диноды выполнены из материалов, имеющих высокий коэффициент вторичной эмиссии, а между ними приложены потенциалы, обеспечивающие усиление вторич­ной эмиссии. В результате через сопротивление нагрузки в анодной цепи ФЭУ протекает усиленный ток. Коэффициент усиления фототока в ФЭУ достигает 10 8 . Такое усиление достигается за счет подачи на ФЭУ напряжения от высоковольтного источника (в зависимости от количества динодов — от 500 до 1500 В), причем потенциалы распределяются между электродами равномерно с помощью делителя напряжения. ФЭУ обладает высокой чувствительностью (1 А/лм), а его спектральный диапазон, определяемый областью длин волн регистрируемого излучения, соответ­ствует задачам сканирования, поскольку перекрывает видимый спектр световых волн.

Рис 1 Схема включения ФЭУ

Прибор с зарядовой связью

Прибор с зарядовой связью (ПЗС) — это твердотельный электронный фотоприемник, состоящий из множества миниатюр­ных фоточувствительных элементов, которые формируют электрический заряд, пропорциональный интенсивности падающего на них света, и конструктивно выполняются в виде матриц или линеек.

Работу ПЗС впервые продемонстрировали В.Бойл и Дж. Смит в 1970 г. Принцип действия ПЗС основан на зависимости прово­димости р-n -перехода полупроводникового диода от его осве­щенности. Устройство и принцип действия ПЗС-линейки показа­ны на рис.2.

Рис.2. Устройство и принцип действия ПЗС линейки

ПЗС представляет собой полупроводниковый кристалл (как правило, кремний), на поверхность которого нанесена прозрачная оксидная пленка, выполняющая функцию диэлектрика в микроскопических конденсаторах. Одной из обкладок та­кого конденсатора является поверхность самого кристалла, а дру­гой — нанесенные на диэлектрик металлизированные электроды толщиной не более 0,6 мкм.

К электродам в определенной последовательности подается низкое напряжение (5—10 В). Это приводит к тому, что под электродами образуются так называемые потенциальные ямы в виде скоплений электронов. Под воздействием света в результате внутреннего фотоэффекта появляются свободные электроны. Количе­ство электронов, скапливающихся под чувствительной площадкой каждого электрода, пропорционально интенсивности светового потока, падающего на чувствительную площадку данного электрода. Электроны образуют зарядовый пакет. Если ПЗС выполнен в виде линейки, зарядовые пакеты передаются из одной потенциальной ямы в соседнюю, достигая последней ячейки, откуда поступают на предварительный усилитель. ПЗС-линейка может содержать до нескольких тысяч фоточувствительных ячеек. Размер элементарной ячейки ПЗС определяет разрешающую способность сканера. Область спектральной чувствительности ПЗС расположена в видимой части спектра, причем наибольшая чувствительность наблюдается ближе к красной области.

3. Типы сканеров

В зависимости от способа перемещения фоточувствительного элемента сканера и носителя изображения относительно друг друга сканеры подразделяются на две основных группы — настоль­ные (Desktop ) и ручные (Handheld).

К числу настольных сканеров относятся планшетные (Flatbed), роликовые (Sheetfeed), барабанные (Drum) и проекционные (Overhead/ Camera) сканеры .

Планшетные сканеры

Планшетные сканеры, или сканеры плоскостного типа , ис­пользуются для ввода графики и текста с носителей формата А4 или A3.

На рис.3 показано устройство и механизм работы планшет­ного сканера.

Рис. 3. Устройство и принцип работы планшетного сканера

В планшетных сканерах оригинал располагается на его рабочей поверхности неподвижно. Освещение оригинала производится стабилизированным по интенсивности источником, в качестве которого используют лампы с холодным катодом или флуоресцентные лампы. В качестве фотоприемника обычно используются ПЗС-линейки. Лампа, ПЗС и оптическая система, направляющая на ПЗС световой поток, отраженный от оригинала, находятся на одной каретке и с помощью шагового механизма перемещаются вдоль оригинала. В основном все планшетные сканеры рассчитаны на получение копии с одного оригинала, однако к некоторым моделям сканеров прилагаются дополнительные приспособления для последовательной подачи и сканирования нескольких оригиналов.

Планшетный сканер

Планшетный сканер Epson

При использовании в качестве оригиналов книг или сброшюрованных документов имеется возможность обеспечить их прижим к стеклянной поверхности сканера специальной крышкой на петлях.

К преимуществам планшетных сканеров следует отнести про­стоту использования, возможность сканирования как плоских оригиналов в широком диапазоне размеров, так и небольших трехмерных объектов. При необходимости сканирования оригиналов нестандартного большого формата имеется возможность сканирования по частям с последующим объединением с помощью какого-либо графического редактора.

Недостатками этого типа сканеров являются большая занимаемая площадь, сложность выравнивания оригинала с неровно размещенным на носителе изображением, невозможность сканиро­вания прозрачных оригиналов.

Однако при этом планшетные сканеры — наиболее популярные устройства ввода текстовой и графической информации. Они обеспечивают необходимое качество изображений, используемых как в деловой корреспонденции, так и в высокохудожественных изданиях.

Роликовые сканеры

Роликовые сканеры осуществляют сканирование оригинала при его перемещении по специальным направляющим посредством роликового механизма подачи бумаги относительно неподвижных осветителя и ПЗС-линейки. Механизм работы роликового скане­ра показан на рис.4.

Рис.4. Механизм работы роликового сканера

Сканирование в роликовом сканере, как и в планшетном, производится в отраженном свете. Этот принцип заложен в конструкции многих факсимильных аппаратов. Сканеры, работающие в двух режимах — сканирования изображения и его факсимильной передачи, называют факс-сканерами (Fax Scanner).

В отдельных моделях роликовых сканеров имеется устройство для подачи листов, которое позволяет сканировать в автоматическом режиме.

роликовый сканер

Большинство роликовых сканеров офисного применения предназначены для работы с оригиналами формата А4. Однако суще­ствуют широкоформатные роликовые сканеры, обеспечивающие сканирование оригиналов форматов А1 и АО.

Преимущества роликовых сканеров определяются их компактностью, удобством подключения и пользования, автоматической подачей листов оригинала, удовлетворительной скоростью сканирования и низкой стоимостью.

В то же время эти сканеры имеют ряд недостатков , связанных с невозможностью без специальных приспособлений осуществлять сканирование сброшюрованных документов, книг, а также с опасностью повреждения оригинала.

Барабанные сканеры

Барабанные сканеры позволяют получать изображения прозрачных или отражающих оригиналов с высокой степенью де­тализации. Механизм работы барабанного сканера представлен на рис.5.

Рис 5. Механизм работы барабанного сканера

Прозрачный оригинал в барабанных сканерах закрепляется с помощью специальной ленты или масла на поверхности прозрачного цилиндра из органического стекла (барабана), который для обеспечения устойчивости укреплен на массивном основании. При вращении барабана с большой скоростью (от 300 до 1350 об/мин) фотоприемник считывает изображение с высокой точностью. В большинстве барабанных сканеров в качестве фотоприемника используется ФЭУ, который перемещается с помощью винтовой пары вдоль барабана. Для освещения оригинала применяется мощный стабилизированный по интенсивности излучения ксеноновый или галогенный источник света. При сканировании отражающих оригиналов применяется источник света, расположенный вне барабана рядом с приемником излучения.

За счет высокой скорости вращения барабана имеется возможность фокусировать на оригинале достаточно мощный поток света без риска повреждения оригинала. В связи с этим отличительной особенностью барабанных сканеров является возможность сканировать с высоким разрешением оригиналы , имеющие высокую оптическую плотность (печатные издания, художественные работы, слайды, диапозитивы, негативные пленки), как в отраженном, так и в проходящем свете.

барабанный сканер

В отдельных моделях барабанных сканеров в качестве фотоприемника изображения используется набор ПЗС-линеек, неподвижно установленных на всю ширину барабана и построчно сканирующих оригинал в отраженном свете. В этих сканерах, как правиле широкоформатных, барабан совершает только один оборот за все время сканирования. Сканеры, в которых реализована эта технология, выгодно отличаются от сканеров с ФЭУ, поскольку исключается необходимость решать проблему стабилизации конструктивных элементов, обусловленную высокой скоростью вращения барабана. Для гашения возникающих при этом вибраций применяются специальные амортизаторы, увеличивающие массу сканера до 250 кг и более.

Барабанные сканеры позволяют сканировать прозрачные или отражающие оригиналы типа высокохудожественных работ в полиграфии и картографии. При этом автоматическая корректиров­ка освещенности, настройка фокусного расстояния и высокая производительность достигаются за счет обработки изображения встроенным компьютером.

Значительные габариты, необходимость предварительной подготовки обслуживающего персонала и высокая стоимость барабанных сканеров обусловливают ограничение их области применения профессиональной полиграфией и картографией.

Проекционные сканеры

Проекционные сканеры работают по принципу фотографической камеры и конструктивно напоминают фотоувеличитель. Механизм работы проекционного сканера показан на рис.6.

Рис.6. Механизм работы проекционного сканера

Оригинал располагается на подставке под сканирующей головкой изображением вверх. Сканирующая головка, содержащая ПЗС-датчик и перемещающий его в фокальной плоскости линзы двигатель, закрепляется на вертикальном штативе и может перемещаться по стойке или по вертикальным направляющим.

проекционный сканер

Перед началом сканирования камеру устанавливают в положение, соответствующее требуемому разрешению и размеру изображения. Точная настройка (фокусировка), определяющая разрешение сканирования, осуществляется специальной редуцирующей линзой. Обычно в проекци­онных сканерах внутренний источник освещения не используется. Освещение оригинала производится за счет естественного комнатного света. В некоторых моделях проекционных сканеров свет через линзу освещает оригинал, а отраженный свет фиксируется ПЗС-матрицей. Такая конструкция сканера позволяет избежать влияния внешних засветок и получить высокое качество сканированных изображений.

Особенностью проекционных сканеров является возможность сканирования трехмерных объектов . При этом конструкция сканеров обеспечивает переменное разрешение сканирования: небольшие объекты можно сканировать с высоким разрешением; большие нестандартные объекты, изображения которых нельзя ввести с помощью других сканеров, также могут быть сканированы, хотя и с низким разрешением. Простота конструкции и удобство применения, невысокая стоимость и возможность комбинирования при сканировании плоских и небольших трехмерных объектов обусловливают достаточно широкое применение проекционных сканеров как средств ввода информации.

Ручные сканеры

Ручные сканеры применяются для сканирования малоформатных оригиналов или фрагментов большого изображения. Переме­щение окна сканирования относительно оригинала производится за счет мускульной силы человека. Устройство ручного сканера показано на рис.7.

Рис.7. Устройство ручного сканера

В небольшом корпусе шириной обычно чуть более 10 см размещаются лишь датчик, линза и источник света . Ширина области сканирования в зависимости от модели устройства варьируется от 60 до 280 мм. Длина области сканирования ограничена лишь объемом доступной оперативной памяти компьютера. Устанавливаемая в компьютере карта интерфейса преобразует поступающую информацию в цифровую форму и передает ее для последующей обработки специальной программе. Принципы работы ручного и роликового сканеров во многом похожи.

ручной сканер

Отличительной особенностью ручного сканера является то, что он использует источник питания компьютера , к которому подключен. Как правило, ручные сканеры подключаются к парал­лельному порту компьютера без каких-либо адаптеров. Низкая цен ручных сканеров обусловлена простотой их конструкции.

В некоторых моделях ручных сканеров предусматривается возможность сканирования больших изображений за несколько проходов, т.е. путем последовательного просмотра отдельных его областей Объединение областей сканирования производится с помощью специального программного обеспечения, позволяющего упростить эту процедуру.

Применение ручных сканеров как устройств ввода изображений объясняется их компактностью и дешевизной, хотя для профессиональной работы они обычно не используются. Однако применение ручных сканеров для сканирования текста не всегда оправдано, поскольку разработанные специально для ручных сканеров программы допускают довольно много ошибок при распознавании по сравнению со своими аналогами, созданными для других сканеров.

Многофункциональные сканеры

Многофункциональные сканеры это комбинированные устройства, сочетающие в себе возможности сканеров различных типов, а также других технических средств информатизации, служащих для решения таких задач, как оптическое распознавание символов, архивирование, электронная почта и факсимильная связь.

МФУ Keocera

В комбинированных устройствах all-in-one в одном корпусе обычно объединены роликовый сканер, лазерный или струйный принтер, факс-модем. Эти устройства можно использовать в каче­стве факсимильного аппарата, принтера, сканера, копировального аппарата и внешнего модема для доступа к сети по линиям телефонной связи.

В некоторых моделях планшетных сканеров фирмы Agfa реализована технология Twin Plate — новый способ размещения прозрачных и непрозрачных оригиналов в одном устройстве. Прозрачные и отражающие оригиналы располагаются в разных плоскостях, как показано на рис. 8, освещаются разными источниками, но реги­страция производится одним и тем же приемником изображения.

Рис.8 Вариант размещения оригиналов разных типов в многофункциональном сканере

4. Цветные сканеры

Современные сканеры в основном предназначены для сканирования цветных оригиналов, но имеют режимы сканирования черно-белых и полутоновых изображений.

Задача цветного сканера сводится к различению основных цветов: красного (Red ) , зеленого (Green) и синего (Blue) — RGB . Для этого применяются различные технологии.

Например, в цветном сканере с одним источником света сканирование оригинала может осуществляться в три прохода с последовательным применением различных фильтров: красного (R), зеленого (G), синего (В), поочередно размещаемых между источником света и оригиналом. Сканируемое изображение освещается белым светом не непосредственно, а через вращающийся RGB-светофильтр. Для каждого из основных цветов последовательность операций практически не отличается от последовательности операций при сканировании полутонового изображения. Существенными недостатками данного метода являются увеличение времени сканирования в три раза и необходимость точного совмещения цветовых слоев, чтобы не допустить размывания отдельных дета-1 лей изображения.

В сканерах другого типа используются три источника света: красный, зеленый, синий, действующие поочередно для кратковременного освещения оригинала. Сканирование при этом производится однократно, что позволяет избежать несовмещения цветов, но требует подбора источников света со стабильными характеристиками.

В некоторых конструктивных решениях цветных сканеров используется один источник света, но сканирование цветных оригиналов осуществляется за один проход благодаря тому, что фотоприемник выполнен в виде фототранзисторов, размещенных в три линейки, а три цветных фильтра расположены перед ними так, что каждая линейка фототранзисторов освещается только своим цветом.

Однако наибольшее распространение получили цветные сканеры, оборудованные системой, состоящей из трех независимых фотодатчиков для каждого цвета. Оригинал освещается белым светом, а отраженный оригиналом свет попадает на фотоприемники через систему специальных фильтров, которые и разделяют белый свет на три составляющие. Принцип работы таких фильтров основан на использовании явления дихроизма, заключающегося в изменении окраски кристаллов в проходящем белом свете в зависимости от положения их оптической оси. После прохождения системы фильтров разделенные красный, зеленый и синий свет попадают каждый на свой фотоприемник, например ФЭУ. Путем последовательно выполняемых операций считывания тонового распределения по основным цветам получают информацию, необходимую для воспроизведения цветов изображения.

5. Аппаратный и программный интерфейсы сканеров

Сканеры с интерфейсом SCSI требуют установки в компьютер дополнительной платы SCSI-адаптера, которая поставляется в комплекте со сканером. Преимуществом интерфейса SCSI является обеспечение высокой скорости сканирования.

К компьютерам, оснащенным USB-портом, лучше подключать сканер с USB-интерфейсом . Скорость при этом несколько уступает интерфейсу SCSI, однако простота подключения сканера искупает этот недостаток.

Сканеры с интерфейсом параллельного порта подключаются к уже имеющемуся параллельному порту. Пропускная способность параллельного порта значительно меньше по сравнению с интерфейсом SCSI. Однако при этом нет необходимости устанавливать дополнительную плату.

В комплект поставки сканера входит специальная программадрайвер , предназначенная для управления процедурой сканирования и настройки основных параметров сканера.

Ведущие производители аппаратных и программных средств — компании Aldus, Caere, Eastman Kodak, Hewlett-Packard и Logitech — объединили свои усилия для создания собственного формата драйвера TWAIN . Стандарт TWAIN определяет порядок обмена данными между прикладной программой и драйвером сканера, что позволило решить проблему совместимости различных компьютерных платформ, сканеров разных моделей и форматов представления данных. С помощью TWAIN-совместимого сканера можно сканировать изображения из любой программы, например Photoshop, CorelDRAW, PageMaker, PhotoStyler и др.

6. Характеристики сканеров

Ниже описаны основные характеристики, которые следует принимать во внимание при выборе типа и модели сканера

Разрешающая способность определяется плотностью расположения распознаваемых точек и выражается в точках на дюйм (dpi dot per inch) .

Сканеры имеют два параметра разрешающей способности: оптическое разрешение и программное.

Оптическое разрешение — показатель первичного сканирования. Программными методами можно в дальнейшем повысить разрешение.

Например, оптическое разрешение может быть 300×600 dpi, а про­граммное — до 4800×4800 dpi. Оптическое разрешение имеет более важное значение для пользователя.

Оптическое разрешение зависит от размера элемента ПЗС-датчика и характеризует плотность, с которой производится выбор­ка информации в заданной области оригинала.

Разрешение сканера имеет два показателя: по горизонтали и вертикали. Например, 600 х 300; 600 х 600; 800 х 800. Однако чаще всего употребляют первое значение: 600, 800 dpi.

Область сканирования — максимальный размер оригинала для данного сканера.

Метод сканирования определяет одно- или трехпроходный спо­соб считывания информации в цветных сканерах.

Скорость сканирования — количество страниц черно-белого оригинала, сканируемых в минуту с максимальным оптическим разрешением сканера.

Разрядность сканера измеряется в бит и определяет то количество информации, которое необходимо для оцифровки каждой точки изображения, а также количество цветов, которое способен распознать сканер.

24 бит соответствуют 16,7 миллионам цветов, а 30 бит — миллиарду. Несмотря на то что человеческий глаз уже не в состоянии отличить 16-битный цвет от 24-битного, в новейших моделях сканеров заявлена 48-битная разрядность.

Совокупность характеристик модели сканера определяет его принадлежность к одному из трех классов, на которые условие можно подразделить все модели сканеров.

Сканеры простых моделей используются для подготовки деловой документации, создания прайс-листов и рекламных объявле­ний, а также для подготовки электронных публикаций (Web-стра­ниц, графических баз данных). Обычно такие сканеры обеспечи­вают оптическое разрешение в диапазоне 300 — 600 dpi, передач) 256 оттенков серого цвета для полутоновых изображений.

Сканеры промежуточного класса планшетного типа обладают оптическим разрешением 600— 1800 dpi, высоким динамическим диапазоном, имеют возможность работы с прозрачными ориги­налами и применяются в издательской деятельности.

Сканеры высокого класса обеспечивают разрешение свыше 4000 dpi, используются при необходимости оцифровки большого объема информации с высоким качеством и производительностью

Лидером на российском рынке сканеров является Hewlett-Packard, однако недорогие модели Mustek Paragon, KYE также пользуются спросом. Для профессионального применения используют сканеры UMAX или Agfa.

Какие фотодатчики применяются в сканерах

Учебники, справочники и самоучители по компьютерным программам

Как работает сканирующее устройство

В процессе ввода изображения в компьютер в первую очередь необходимо преобразовать его в последовательность электрических сигналов. Для этого используются так называемые фотоэлектронные элементы, которые проводят ток по-разному — в зависимости от яркости света, попадающего на их поверхность. В качестве примера можно привести известный всем фотодиод. Проводимость этого прибора пропорциональна его освещенности. Поэтому, пропуская через фотодиод электрический ток и измеряя напряжение на его выводах, можно определять значение попадающего на него светового потока.

При это помните, что в качестве светочувствительных элементов для сканирующих устройств обычные фотодиоды не используются. Вместо них применяются другие устройства, чаще всего — так называемые приборы с зарядовой связью (ПЗС). Они чувствительнее к незначительным перепадам яркости света и намного компактнее.

С помощью одиночного светочувствительного элемента можно измерить яркость только одной точки изображения, а чтобы считать всю поверхность, необходимо организовать целый массив фотодатчиков. Так, в цифровых видеокамерах используется двумерная (прямоугольная) матрица ПЗС, на которую с помощью оптической системы объектива проецируется кадр.

В сканерах эта проблема решена по-другому. Светочувствительные ячейки располагаются в ряд, а полученная таким образом линейчатая сканирующая головка движется относительно оригинала (или оригинал относительно нее — это зависит от конструкции сканера), считывая все изображение строчка за строчкой. Подобным образом работает обычный фотоаппарат, где пленка засвечивается через узкую щель между шторками, которая перемещается от одного края кадра к другому.

В процессе ввода цветных изображений точность передачи оттенков в значительной степени зависит от освещения. Во избежание искажений цвета в каждом сканере предусмотрен встроенный источник света — высококачественная галогенная лампа. А «связующим звеном» между источником света, изображением на бумаге и матрицей ПЗС (размер которой намного меньше ширины листа) служит оптическая система, состоящая из линз и зеркал. С ее помощью поток света направляется на оригинал, а отраженные лучи фокусируются на светочувствительных элементах.

Кроме ПЗС, в сканерах могут использоваться фотодатчики других типов, в частности, так называемые фотоэлектронные умножители — ФЭУ (Photo Multiplier Tubes — РМТ). В этих приборах лучи, отраженные от оригинала, проходят между несколькими парами электродов, находящихся под высоким напряжением, за счет чего многократно усиливаются. Вследствие этого сканер с ФЭУ может различать детали даже на самых темных участках изображения.

И наконец, еще один тип светочувствительных приборов, применяемых в сканерах, — контактные оптические сенсоры (Contact Image Sensor — CIS). Сканирующая головка, построенная на этой технологии, представляет собой линейку миниатюрных фотодатчиков, которые располагаются в непосредственной близости от оригинала. Это дает возможность обойтись без системы зеркал и линз, а следовательно, снизить цену сканера. Кроме этого помните, что качество изображений, считанных с использованием этих устройств, пока довольно низкое.

В процессе считывания двумерного изображения сканирующая головка движется относительно оригинала, а следовательно, неотъемлемой частью большинства сканеров является механизм, обеспечивающий их взаимное перемещение. Исходя из его наличия и конструкции различают следующие типы сканеров.

Ручные сканеры

Эти устройства являются самыми простыми и дешевыми в своем классе. В их конструкции отсутствуют сложные прецизионные механизмы: пользователь сам двигает сканер по поверхности оригинала. Практически все ручные сканеры — небольшого размера, и поэтому позволяют считывать изображения шириной до 10 см. С другой стороны, отсутствуют ограничения, на высоту оригинала, а поставляемое вместе с устройством программное обеспечение дает возможность вводить картинки, ширина которых больше, чем область захвата сканирующей головки. Для этого придется сделать несколько проходов, а затем «склеить» полученные таким образом части изображения в одно целое.

Ручные сканеры обладают серьезным недостатком. Пользователь не может двигать устройство строго равномерно и прямолинейно, что необходимо для качественного процесса сканирования. Поэтому с тем, чтобы получить приемлемый результат, нужны твердая рука и постоянные тренировки. Но даже в этом случае при вводе изображений с помощью ручного сканера неизбежно возникают искажения.

Раньше, когда настольные сканеры стоили тысячу и больше долларов, их «ручные собратья» были очень популярными. Кроме этого помните, что в последнее время цены на настольные модели упали, и вследствие этого спрос на ручные сканеры уменьшился. Сегодня их покупают, в основном, пользователи, сильно ограниченные в средствах. Кроме этого помните, что у этих устройств имеется одно преимущество: они компактны и могут с успехом применяться для ввода информации в портативные компьютеры. С ними можно работать в библиотеке, архиве или в любом другом месте.

Листовые сканеры

По принципу действия эти устройства напоминают факс-аппараты. Считываемая страница с помощью специального механизма протягивается мимо головки. Протяжный сканер может оснащаться лотком для автоматической подачи листов, что существенно увеличивает скорость ввода многостраничных документов. Качество процесса сканирования у этих устройств, как правило, невысокое, главным образом из-за того, что при протягивании листа бумаги очень трудно добиться его равномерного движения без перекосов.

Протяжные сканеры занимают немного места на рабочем столе и стоят довольно дешево. Кроме того, они очень часто комбинируются с другими периферийными устройствами. В качестве примера можно упомянуть дополнительный модуль для ввода изображений, которым оснащался «древний» принтер Hewlett-Packard LaserJet 1100.

Сконструирована даже клавиатура, в которую встроен малоформатный сканер. И наконец, протяжные сканеры очень часто входят в состав комбинированных периферийных устройств, выполняющих также функции принтера, копира, факс-аппарата и (в некоторых случаях) модема.

Серьезным недостатком протяжных сканеров является то, что с их помощью можно сканировать только отдельные листы.

Чтобы ввести таким образом страницу из журнала, его придется расшить или разорвать. А вот считать изображение с негнущегося носителя (например, картона) протяжным сканером нельзя вообще.

Планшетные сканеры

Устройства ввода этого типа чем-то напоминают «ксероксы»: считываемый документ располагается на поверхности стеклянной пластины, под которой перемещается сканирующая головка. Такие сканеры являются универсальными, поскольку с их помощью можно вводить как отдельные листы, так и книги, журналы и даже изображения небольших трехмерных объектов. Они также могут комплектоваться дополнительным устройством для автоматической подачи бумаги, которое устанавливается вместо крышки. В этом случае вы имеете возможность быстро сканировать большое количество страниц, правда, только отдельных.

Планшетные сканеры рассчитаны на ввод изображений с непрозрачных оригиналов. Для этого сканируемый документ подсвечивается снизу лампой, а сверху накрывается крышкой, дополнительно отражающей и рассеивающей свет. Кроме этого помните, что считать таким образом изображения со слайдов, рентгеновских снимков и других прозрачных оригиналов не удастся, поскольку эти материалы необходимо рассматривать, а значит, и сканировать в проходящем свете. Для работы с такими оригиналами планшетный сканер оснащают специальной приставкой, которая устанавливается вместо крышки и содержит дополнительный источник света.

Почему большинство пользователей выбирают именно планшетные сканеры

Список устройств, которыми можно оснастить домашний компьютер, постоянно пополняется. Спускаясь с заоблачных ценовых высот, в наших семейных «вычислительных центрах» прописываются 3D-акселе-раторы, звуковые карты, высококачественные цветные принтеры. В последнее время перечень таких «необходимых вещей» пополнили сканеры. Казалось бы, еще совсем недавно их можно было увидеть только в издательствах и полиграфических фирмах, поскольку цены на эти устройства были недоступными для большинства владельцев домашних компьютеров. Кроме этого помните, что сегодня самую дешевую модель цветного планшетного сканера можно приобрести примерно за 60$, а заплатив от 120$, вы станете обладателем довольно качественного и производительного устройства.

«Занятие» для сканера в современном доме отыскать нетрудно. С его помощью можно вводить в компьютер фотографии и рисунки с тем, чтобы затем отправлять их по электронной почте, использовать для оформления Web-страниц или составлять из них электронные фотоальбомы. Сканер окажет существенную помощь тем, кому приходится набирать тексты большого объема с печатных оригиналов, так как входящие в комплект поставки почти всех моделей программы оптического распознавания символов позволяют делать это намного быстрее. В случае, если у вас имеется факс-модем, то, используя сканер, вы имеете возможность передавать факсимильные сообщения с бумажных оригиналов. Не забывайте также о формуле «сканер + принтер = копир» — хороший сканер может передавать изображение непосредственно на принтер, что дает возможность довольно быстро снимать копии с документов. А в домашнем офисе дизайнера или переводчика, верстальщика или научного работника без сканера просто не обойтись.

В последнее время практически все производители планшетных сканеров выпустили по одной, а то и по несколько недорогих моделей, рассчитанных на применение в домашних условиях. Кроме этого помните, что характеристики этих устройств отличаются довольно сильно, да и разброс цен на них достаточно велик — от 60$ до 220$. Поэтому выбор сканера для неподготовленного пользователя представляется задачей весьма и весьма непростой, а чтобы ее облегчить, мы и решили провести тестирование.

Основным отличием дешевых сканеров от «совсем дешевых» является способ их подключения к компьютеру. Все устройства начального уровня работают через параллельный порт, а более дорогие модели используют SCSI или USB. Кроме того, простейшие устройства, как правило, обеспечивают сканирование с 30-битовым цветом, тогда как 36-битовый реализуется в аппаратах посложнее, хотя из этого правила имеется несколько исключений.

Что же касается такого важного параметра сканера, как разрешение, то среди протестированных нами моделей присутствуют устройства с оптической разрешающей способностью 300×600 и 600×1200 dpi. Прямой зависимости этого параметра от ценовой категории нет — сканеры с более высоким разрешением бывают как дешевые, так и несколько дороже. С интерполяционным разрешением ситуация еще интереснее — разброс его значений просто огромен (от 1200×1200 до 19200×19200 dpi), причем самые высокие обычно встречаются у дешевых моделей, которые ничем- не отличились в ходе тестирования. Поэтому можно с уверенностью сказать, что столь большие цифры производители сканеров приводят исключительно в рекламных целях, и руководствоваться ими при выборе не стоит.

Классифицировать сканеры по качеству работы и производительности так же четко, как по цене, невозможно. Более того, окончательные результаты тестов свидетельствуют относительно того, что привычное правило «чем выше цена, тем лучше качество» по отношению к этим устройствам не всегда справедливо. Правда, модели высшей ценовой категории показали в большинстве случаев достаточно хорошие и стабильные результаты, однако говорить об их тотальном превосходстве над дешевыми аппаратами нельзя. Наоборот, некоторые из недорогих устройств справились с тестовыми заданиями не хуже, а иногда и лучше своих именитых собратьев.

Не секрет, что домашние сканеры чаще всего применяются для двух задач: ввода и распознавания печатного текста или процесса сканирования фотографий и Других подобных изображений. Поэтому мы выбрали такую методику тестирования, которая позволила бы задать производительность и качество работы сканеров именно для этих процессов. Но нельзя и утверждать, что определенные нами характеристики одинаково важны для всех случаев использования домашнего сканера. Наоборот, его загрузка разнообразными задачами сильно зависит, в частности, от рода занятий его владельца. Кроме этого помните, что общие закономерности в использовании этого устройства выделить можно. Так, сканирование и распознавание текста наверняка можно назвать самой распространенной областью применения сканера, причем очень часто обрабатываются многостраничные документы.

Следовательно, важнейшими его характеристиками можно считать скорость работы в черно-белом режиме и качество распознавания текста.

Заметим, что последний параметр в значительной мере характеризует возможности сканера не только в черно-белом, но и в цветном режиме. Сканирование цветных изображений — задача, пожалуй, не менее распространенная, чем предыдущая, однако при ее решении выдвигаются несколько другие требования к сканеру. Дело в том, что фотографии редко вводятся сразу в больших количествах, а поэтому вряд ли кто-нибудь занимается их сканированием «на скорость». Здесь первостепенную важность представляют качество ввода изображений, четкость деталей и точность цветопередачи. Что касается первых двух характеристик, то для их оценки вполне подойдет определенный нами параметр качества распознавания текста. А вот время процесса сканирования изображения и цветопередачу мы измеряли отдельно.

На методике определения последнего параметра и его значимости для домашнего пользователя хотелось бы остановиться особо.

Цветные изображения, как правило, сканируются для передачи по электронной почте или размещения на web-страницах, распечатки на цветном принтере либо отображения на экране монитора вашего компьютера (на рабочем столе или в электронных фотоальбомах). В первых двух случаях изображение почти всегда оптимизируется с целью уменьшения его объема, причем в ходе этой операции вносятся цветовые искажения, зачастую превышающие погрешность сканера.

В процессе печати качество результирующего изображения определяется свойствами струйного принтера, который искажает цвета намного сильнее, чем сканер. Наконец, на экране монитора вашего компьютера неточность воспроизведения оттенков была бы сразу заметна, но параметры цветодередачи у большинства сканеров оптимизированы таким образом с тем, чтобы эти искажения не воспринимались человеческим глазом. В результате незначительные ошибки в отображении цветов практически неощутимы для непрофессионального пользователя, тогда как серьезных, заметно влиявших на вид картинки, в ходе тестирования не наблюдалось, за исключением очень редких случаев.

Слайд-сканеры

Для качественного считывания изображений со слайдов существуют специальные сканеры. Поскольку они работают с оригиналами небольшого размера, а полученные изображения в дальнейшем приходится многократно увеличивать, у этих устройств очень качественные оптика и электроника, а в роли светочувствительного элемента применяется двумерная матрица ПЗС (как в цифровых видеокамерах). Эти устройства, как правило, намного дороже обычных планшетных или протяжных сканеров. Слайд-сканеры по внешнему виду обычно напоминают планшетные, но меньше по размерам. В некоторых моделях предусмотрен специальный выдвижной лоток со стеклянной подложкой, на которую помещают слайды.

Барабанные сканеры

До появления и распространения настольных сканеров с приемлемым качеством эти устройства практически повсеместно использовались для ввода изображений при допечатной подготовке изданий. Барабанные сканеры и по сегодняшний день дороги и сложны в использовании, но они незаменимы там, где необходимо сканировать графику для высококачественной цветной печати.

В качестве светочувствительного элемента в барабанных сканерах используется фотоэлектронный умножитель. Он располагается внутри полого стеклянного цилиндра, на поверхность которого накладывается оригинал. В ходе процесса сканирования цилиндр вращается вокруг своей оси, что дает возможность вводить изображение точка за точкой.

Сегодня барабанные сканеры обеспечивают самое высокое качество процесса сканирования. Их преимущество заключается в том, что фотоэлектронные умножители очень чувствительны к незначительным изменениям яркости и, следовательно, позволяют различать большее количество оттенков, особенно в области очень темных и, наоборот, очень светлых тонов. Но хотя цены на эти устройства в последнее время значительно снизились, они все равно остаются дорогими по сравнению с планшетными и, тем более, протяжными сканерами. Кроме этого помните, что на сегодняшний день характеристики лучших ПЗС не намного хуже, чем у ФЭУ, а следовательно, новые профессиональные планшетные сканеры обеспечивают практически такое же качество процесса сканирования, как и барабанные.

Цветное сканирование

Все светочувствительные приборы, применяемые в сканерах, измеряют только яркость попадающего на них света, но не его спектральные характеристики, по которым человеческий глаз различает цвета. Поэтому для ввода в компьютер цветных изображений пришлось дополнительно доработать конструкцию сканера.

Согласно законам физики любой оттенок может быть составлен из трех основных цветов — красного, синего и зеленого. Поэтому, если в заданной точке измерить яркость всех трех составляющих, можно однозначно задать и ее цвет.

В первых цветных планшетных сканерах использовался трехпро-ходный метод процесса сканирования. В этом случае изображение считывалось трижды, причем при каждом проходе измерялись значения только одной из трех основных цветовых составляющих, для чего использовались либо сменные светофильтры на обычной лампе белого света, либо три цветные лампы (трехламповое сканирование).

Недостатком трехпроходного метода была низкая скорость работы — в три раза меньше по сравнению с черно-белым сканированием. Кроме того, необходимость наложения друг на друга трех отдельно полученных изображений приводила к ошибкам и искажениям. Альтернативой этому методу является однопроходное сканирование. В оптическую систему сканера добавили призму, разлагающую отраженный от сканируемой картинки белый свет на спектральные составляющие. В сканирующей головке предусмотрены три отдельные линейки ПЗС, расположенные таким образом с тем, чтобы на каждую из них попадал световой пучок только одного из трех основных цветов — синего, красного или зеленого. Главным препятствием на пути к широкому распространению сканеров, работающих по такому принципу, была высокая стоимость ПЗС, но по мере снижения цен на эти чипы однопроходные сканеры практически повсеместно вытеснили трехпроходные.

В современных сканерах используются также усовершенствованные матрицы приборов с зарядовой связью, получившие название цветных ПЗС. Такая микросхема содержит три линейки светочувствительных элементов, каждый из которых оснащен встроенным светофильтром. В процессе использования цветных ПЗС отпадает необходимость в призме и сложной системе раздельного фокусирования световых пучков. В итоге сканирующая головка получается более компактной и дешевой.

Параметры сканеров

Чтобы задать свойства той или иной модели сканера, в первую очередь рассматривают ее технические параметры. Производители сканеров при описании своих изделий зачастую приводят очень большое количество разных характеристик, но возможности устройства определяют, в ос-нбвном, следующие параметры:

  • разрешающая способность.
  • глубина цвета.
  • размер области процесса сканирования.
  • быстродействие и способ подключения.

Разрешающая способность, или разрешение — это количество точек, которые сканер может различить на отрезке единичной длины. Эту величину измеряют в точках на дюйм (dots per inch — dpi). Кроме этого помните, что при оценке разрешающей способности сканера следует учитывать два следующих фактора.

Во-первых, разрешение сканера почти всегда определяют не одной, а двумя величинами — в горизонтальном (по ширине листа документа) и вертикальном (по высоте) направлениях. Разрешение по ширине определяется свойствами чипа ПЗС, а именно, количеством светочувствительных элементов в линейке.

В вертикальном направлении (по ходу движения головки) разрешающая способность зависит от шага ее перемещения и равна количеству позиций, которые может занимать сканирующая головка на отрезке длиной в один дюйм.

Соответственно, полное разрешение сканера обозначается двумя числами, например 600×600 dpi, причем эти значения не обязательно должны быть одинаковыми. До недавних пор в большинстве моделей шаг головки выбирался таким образом с тем, чтобы разрешение по горизонтали и вертикали было одинаковым. Кроме этого помните, что в последнее время многие разработчики используют в своих изделиях прецизионные механизмы, позволяющие увеличить количество возможных позиций сканирующей головки на единичном отрезке. В этих сканерах вертикальное разрешение больше, чем горизонтальное, например 300×600 dpi. Но если отсканировать картинку с такими параметрами, она, естественно, будет растянута по вертикали. Во избежание этого при сканировании либо отказываются от уменьшения шага головки (в таком случае устройства с разрешением 300×600 dpi работают в режиме 300×300 dpi), либо прибегают к специальной дополнительной обработке рисунка.

Описанные выше значения обеспечиваются реальными физическими характеристиками считывающей системы сканера. Поэтому их называют оптическим разрешением. Этот параметр для современных домашних планшетных сканеров в большинстве случаев равен 300×300 или 300×600 dpi. Для дальнейшего повышения разрешающей способности сканера можно продолжать совершенствовать оптику и механику устройства (что приводит к существенному повышению его цены) или же воспользоваться одним из методов программного увеличения разрешения.

Программные алгоритмы повышения разрешающей способности сканера работают по следующему принципу. Между точками, реально считанными оптической системой устройства, программа вставляет дополнительные, цвет которых рассчитывается на основе значений оттенков их ближайших «соседей». Полученное таким образом новое разрешение называют интерполированным. Оно может превышать оптическое во много раз. К примеру, сканер, работающий с максимальным оптическим разрешением 300×300 dpi, может передавать в графическую программу изображения с интерполированным разрешением 600×600 dpi и выше, однако при этом их качество существенно снижается — картинки становятся слегка размытыми.

Технология интерполяции недостающих точек нашла применение и при обработке картинок, отсканированных с неодинаковым разрешением по ширине и высоте. Допустим, сканер считывает картинку с разрешением 300 dpi по горизонтали и 600 dpi по вертикали. В процессе ее обработки программа самостоятельно достраивает точки, которых недостает в рядах. Кроме этого помните, что в этом случае таких «выдуманных» точек гораздо меньше, чем при обычной интерполяции. Поэтому качество полученной таким образом картинки хотя и ниже, чем при сканировании с высоким оптическим разрешением, но выше, чем после интерполяции точек в рядах и столбцах.

Глубина цвета

Для определения числа цветовых оттенков, которые способен различить сканер, часто используют два взаимосвязанных параметра — глубину цвета и собственно количество цветов. Первый из них — это число разрядов, отводимых для кодирования цвета каждой точки, он измеряется в битах. Второй же — количество различных оттенков, которые можно закодировать двоичным числом соответствующей разрядности. Как мы уже говорили, при сканировании считываются значения трех основных цветовых составляющих каждой точки — синей, красной и зеленой. Во многих случаях для кодирования любой из них отводят по 8 бит, а всего для точки — соответственно 24 бита. В таком режиме количество воспроизводимых цветов равно 16,7 млн. Кроме этого помните, что на сегодняшний день уже получили распространение сканеры с глубиной цвета 30 и 36 бит. Стоит заметить, что в большинстве случаев рисунок с такой глубиной цвета обрабатывается только внутри сканера, после чего на компьютер передается изображение в 24-битном цвете.

Размер области процесса сканирования

Этот параметр определяет максимальные размеры документа, который вы имеете возможность считать с помощью данного сканера. Некоторые младшие модели планшетных сканеров позволяют обрабатывать листы формата Legal (8,5 х 14 дюймов, или 216 х 356 мм).

Большинство же недорогих устройств рассчитаны на сканирование листов формата Letter (8,5 х 11 дюймов, или 216 х 280 мм), который примерно соответствует привычному А4 (210 х 296 мм).

Скорость процесса сканирования

Общее быстродействие сканера зависит от большого количества разнообразных факторов: характеристик механизма сканера, производительности компьютера, быстродействия используемых программ, текущего разрешения и глубины цвета. Поэтому измерить скорость процесса сканирования довольно трудно. Производители сканеров часто приводят в технических спецификациях своих изделий скорость движения каретки в линиях или миллиметрах в секунду. Кроме этого помните, что эта характеристика имеет очень мало общего с реальной производительностью сканера. Поэтому быстродействие той или иной модели определяется эмпирически — путем пробного процесса сканирования.

Способ подключения

При выборе сканера всегда важно знать, как именно он подключается к компьютеру. На сегодняшний день насчитывается три варианта подключения сканера. Многие недорогие модели присоединяются к параллельному порту (который обычно используется для подключения принтера). Это очень удобно, поскольку для установки сканера отсутствует необходимость открывать корпус компьютера. Недостатком такого способа подключения является сравнительно низкая скорость передачи данных.

Более производительные модели планшетных сканеров подключаются к ПК через интерфейс SCSI. В случае, если у вас уже имеется жесткий диск или привод CD-ROM с этим интерфейсом, то сканер можно присоединить к имеющемуся в компьютере SCSI-контроллеру. В противном случае вам пригодится отдельный SCSI-адаптер, который обычно входит в комплект поставки устройства. Такой способ подключения обеспечивает высокую скорость передачи данных, но для установки контроллера необходимо открыть корпус, что не всегда удобно в связи с условиями гарантии на системный блок компьютера.

Самые современные сканеры подключаются к компьютеру через порт USB. Эта новая интерфейсная шина обеспечивает высокую скорость передачи данных, а также простоту подключения периферийных устройств. Кроме этого помните, что порт USB имеется только в новых компьютера. В связи с этим большинство сканеров, рассчитанных на работу через USB, дополнительно комплектуются и кабелями для подключения к параллельному порту.

Как известно, для управления устройствами, входящими в состав компьютера, служат небольшие программы — драйверы. Для нормальной работы сканера также необходим драйвер, причем для каждой модели эта программа разрабатывается отдельно. Но «услуги» сканера могут потребоваться любой из многочисленных программ, тем или иным способом обрабатывающих сканированные изображения. Для этого в Windows пришлось стандартизировать программный интерфейс драйверов этих устройств таким образом с тем, чтобы любая графическая или OCR-программа изначально имела возможность работать с любой моделью сканера. Таким стандартом стал TWAIN. Совместимые с ним драйверы обеспечивают взаимодействие сканеров со всеми программами, поддерживающими этот интерфейс. На сегодняшний день все приложения, так или иначе работающие со сканированными изображениями, поддерживают интерфейс TWAIN, а среди сканеров практически все современные модели являются TWAIN-совместимыми.

Таким образом, узнав смысл основных характеристик сканеров, вы имеете возможность уже отправляться в компьютерный магазин и более грамотно оформлять заказ на это устройство.

Домашний сканер

Можно с полной уверенностью утверждать, что сегодня имеется смысл приобретать для дома исключительно планшетные сканеры. Ручные и протяжные устройства, лишь ненамного уступая им в цене, не способны обеспечить приемлемое качество процесса сканирования. Правда, первые можно было бы использовать вместе с портативными компьютерами для процесса сканирования «в полевых условиях», но большинство моделей ручных сканеров работают через специальный интерфейс, а значит, и оснащаются платой-контроллером, установить которую в ноутбук никак нельзя. Протяжные же устройства позволяют считывать только отдельные листы, и, следовательно, возможности их ограничены (например, отсканировать книгу или журнальную статью в программе FineReader 5.0 уже не получится).

В случае, если вы покупаете современный сканер, то он обязательно окажется цветным. Здесь дело даже не в ценах: черно-белые сканеры общего назначения в настоящее время практически не выпускаются. Да и нет в этом необходимости — отказ от цвета не привел бы к существенному удешевлению устройства.

Минимальное оптическое разрешение самых простых сегодняшних моделей равно 300 dpi, а более совершенных — 600 dpi. Практически повсеместно используются высокоточные механизмы перемещения головки, благодаря которым можно удвоить разрешение по вертикали соответственно до 600 и 1200 dpi. Усовершенствованные алгоритмы интерполяции изображений позволяют передавать в компьютер картинки с разрешением от 4800×4800 до 19200×19200 dpi (и это еще не предел!). Следует заметить, что пользоваться этими возможностями вам, скорее всего, не придется, так как даже обычная фотокарточка формата 9×12 см в разрешении 4800×4800 dpi превратится в такую массу данных, что ваш компьютер наверняка будет не в состоянии ее обработать. С другой стороны, высокое разрешение необходимо при сканировании оригиналов небольшого размера с дальнейшим их увеличением.

Сошли со сцены сканеры, работавшие с 24-битовым цветом, уступив место 30- и 36-битовым моделям. Правда, большинство из числа последних использует такой цветовой режим только для внутренней обработки изображений, тогда как в компьютер передаются лишь 24 двоичных разряда на каждую точку. Кроме этого помните, что даже в этом случае цветопередача существенно улучшается.

Как осуществляется сканирование в программе Adobe Photoshop TWAIN

Под TWAIN-интерфейсом понимается международный стандарт, который в свое время был принят для единого взаимодействия устройств ввода изображений с той или иной программой, которая «обслуживает» подобные устройство ввода.

Понятно, что драйверы сканеров поставляются и поддерживаются их производителями. Иного и быть не может. Но, в случае, если у вас возникли проблемы в процессе процесса сканирования, убедитесь в том, что вы располагаете хотя бы последней версией драйвера TWAIN для вашего сканера.

Adobe Photoshop поддерживает стандартный интерфейс TWAIN, что дает возможность использовать для процесса сканирования любые устройства, также поддерживающие этот интерфейс. Для того чтобы подключить сканер, поддерживающий интерфейс TWAIN, ознакомьтесь с Прилагающейся к нему инструкцией по установке и настройке модуля TWAIN.

Программа Adobe Photoshop поддерживает так называемые стандарты процесса сканирования TWAIN16 и TWAIN32. Но все равно помните, что даже «навороченная» операционная система Windows Me требует исключительно 32-битных модулей TWAIN.

Как начать сканирование

В процессе использования определенных моделей сканеров программа Adobe Photoshop, как и OCR-приложение ABBYY FineReader 5.0, дает возможность полностью контролировать процесс преобразования фотографии или слайда в оцифрованное изображение.

К примеру, для процесса сканирования изображений используется команда Импорт из меню Файл.

Программа Adobe Photoshop может работать с любым сканером при условии, что для него будет установлен совместимый дополнительный TWAIN модуль. Для того чтобы установить такой модуль, необходимо скопировать в подкаталог PLUGINS соответствующий файл фирмы-производителя сканера.

Все модули для сканеров, установленные в подкаталоге PLUGINS, отображаются в подменю Файл Ю Импорт.

В случае, если вы не смогли приобрести для своего сканера драйвер, совместимый с программой Adobe Photoshop, то вы имеете возможность отсканировать изображение с помощью программного обеспечения фирмы-производителя сканера, сохранив его в формате TIFF или BMP. Для того, чтобы затем открыть этот файл в программе Photoshop, воспользуйтесь командой Открыть. из меню Файл.

В процессе процесса сканирования изображений вы имеете возможность управлять несколькими параметрами, которые влияют на качество итогового файла. Прежде чем приступить к сканированию, выполните изложенные в этой главе инструкции по определению разрешения процесса сканирования и оптимального динамического диапазона, а также по разработке процедур, минимизирующих нежелательные цветовые искажения.

Определение разрешения процесса сканирования

Выбор разрешения при сканировании изображения определяется возможностями выводного устройства. К примеру, если изображение будет отображаться только на экране монитора вашего компьютера, то для него вполне достаточно задать разрешение, равное разрешающей способности экрана. Как правило, для IBM PC-совместимых мониторов оно составляет 96 ppi (пикселов на дюйм), а для мониторов Macintosh — 72 или 120 ppi.

В случае, если отсканированное изображение будет иметь слишком низкое разрешение, то при его печати интерпретатор языка PostScript может использовать цветовые значения отдельных пикселов для создания сразу нескольких растровых точек. Это неизбежно приведет к потере качества изображения.

В случае, если графическое разрешение изображения окажется слишком велико, то файл будет содержать избыточную информацию, которая не сможет быть использована при печати. От объема файла напрямую зависит время обработки изображения принтером. Объем файла, в свою очередь, прямо пропорционален графическому разрешению изображения, К примеру, объем файла для изображения с разрешением 200 ppi будет в четыре раза превышать объем файла для того же изображения с разрешением 100 ppi. В процессе процесса сканирования изображения для последующего вывода на принтер необходимо помнить относительно того, что разрешение процесса сканирования определяется требуемым качеством печати, а также разрешающей способностью принтера и соотношением размера оригинала и размера сканированного изображения.

Разрешение и линиатура растра

Линиатура растра это разрешение того растра, который используется при выводе итоговой версии изображения. Как правило, высокое качество при печати полутонового изображения может быть обеспечено в том случае, если его графическое разрешение вдвое превосходит значение ли-ниатуры полутонового растра, которое будет использовано для вывода. Например с тем, чтобы получить высококачественный оттиск при линиатуре 133 lpi, необходимо отсканировать изображение с разрешением примерно 266 ppi.

В отдельных случаях (в зависимости от конкретного изображения и от устройства вывода) превосходные результаты могут быть получены и при более низких соотношениях, вплоть до 1.25.

В случае, если при печати изображения его разрешение превысит линиатуру более чем в 2,5 раза, то вы получите соответствующее предупреждение. Это означает, что слишком высокое разрешение не может быть корректно воспринято данным принтером и приведет к неоправданному увеличению объема файла и времени печати. С помощью команды, Размер изображения задайте более низкое разрешение, при необходимости сохранив копию файла с высоким разрешением.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *