Какие металлы ржавеют?
Ржавчина, обычно называемая окислением, возникает, когда железо или металлические сплавы, содержащие железо, такие как сталь, подвергаются воздействию кислорода и воды в течение длительного периода времени.
Ржавчина образуется, когда железо подвергается процессу окисления, но не все окисления образуют ржавчину. Как уже говорилось выше, ржаветь может только железо или сплавы, содержащие железо, но и другие металлы могут подвергаться коррозии аналогичным образом.
Что такое коррозия?
Коррозия возникает, когда элемент, легко теряющий свои электроны (например, некоторые металлы), соединяется с элементом, который поглощает дополнительные электроны (кислород), а затем вступает в контакт с раствором электролита (водой). Работа воды в процессе коррозии заключается в ускорении потока электронов от металла к кислороду.
Этот процесс называется окислительно -восстановительной реакцией и на самом деле представляет собой два химических процесса, которые происходят одновременно: восстановление (редукция) и окисление.
Что такое редукция?
Редукция – это название химической реакции, которая происходит, когда молекула получает электрон. Это роль кислорода в коррозии металлов.
Что такое окисление?
Окисление – это противоположная восстановлению реакция, которая происходит, когда молекула теряет электрон. Это роль воздействия металла в коррозии металла. Ржавчина и патина меди странного зеленого цвета – видимые результаты того, что металлы теряют свои электроны в воздухе.
Ржавеют ли медь, железо и алюминий?
Технически ржаветь может только железо и сплавы, содержащие железо. Другие металлы, включая драгоценные металлы, такие как золото и серебро, могут подвергаться аналогичной коррозии.
Что отличает определенные металлы, так это время, необходимое для того, чтобы они начали ржаветь или подвергаться коррозии.
Вот несколько примеров о том, как наиболее распространенные металлы противостоят ржавчине и коррозии.
В ассортименте нашей компании есть эффективный удалитель ржавчины с металлов «РжавоМед-У»
Ржавеет ли медь?
Медь не ржавеет, однако, корродирует. Медь имеет естественный коричневый цвет и при коррозии приобретает ярко-зеленый оттенок. Хотя некоторые считают, что реакция меди скорее потускнение, чем окисление, металл по-прежнему подвергается аналогичному процессу «ржавления».
В естественной среде медь крайне несклонна к коррозии. Тип коррозии, которая в конечном итоге приводит к поломке медных питьевых труб, называется эрозионной коррозией, и она возникает только из-за воздействия текущей турбулентной воды в течение длительного периода времени. Обычно видимая на старых монетах знаменитая красивая зеленая «патина» может полностью сформироваться за 20 лет.
Это один из немногих природных металлов, который не добывается из руды (хотя он может быть получен другими способами), пригодный для непосредственного использования в естественной среде. Этот, а также тот факт, что медь очень мягкая и с ней легко работать, повлекли за собой то, что медь стала одним из первых металлов, с которыми работали люди в истории человечества.
Фактически, медь имела такое большое значение, что у нас действительно есть период в истории, называемый медным веком.
Медь обладает высокой проводимостью к теплу и электричеству, поэтому ее часто используют в электропроводке.
Медь также имеет очень низкую реакционную способность. Известный инструмент в химии, который представляет собой последовательность металлов, упорядоченную от самой высокой до самой низкой реакционной способности до кислот, воды, извлечения металлов из их руд и других реакций. Из-за её низкой реакционной способности специальный сплав меди (90% меди и 10% никеля) используется для деталей лодок, которые в дальнейшем подвергаются воздействию морской воды, или в качестве труб для транспортировки питьевой воды. Если вы осмотритесь в своем доме или здании, то заметите, что во многих ваших приборах используются медные трубы для подачи и отвода воды.
По данным Министерства жилищного строительства и городского развития России, средний срок службы медной водопроводной трубы составляет 50-70 лет.
Ржавеет ли железо?
Да. Помните, что технически ржаветь может только железо и сплавы, содержащие железо.
По сравнению с коррозией других металлов, железо относительно быстро ржавеет, особенно если оно подвергается воздействию воды и кислорода. Фактически, когда железо подвергается воздействию воды и кислорода, оно может начать ржаветь в течение нескольких часов.
Железо также быстро ржавеет при воздействии высоких температур. Экстремальные температуры могут изменить химический состав металла, что делает его чрезвычайно склонным к рекомбинации с кислородом в окружающей среде.
Алюминий производится в 3 этапа:
Этап 1. Добыча полезных ископаемых
Этап 2. Обработка
Этап 3. Электролитическое восстановление (при котором образуется сам алюминий)
Алюминий получают из минерала боксита. Бокситы чаще всего встречаются в субтропических местах, таких как Африка, Западная Индия, Южная Америка и Австралия, хотя есть небольшие месторождения и в других местах, например, в Европе. Австралия является крупнейшим производителем бокситов. На его долю приходится около 23% мировой добычи.
Затем этот боксит перерабатывается в оксид алюминия, который состоит только из атомов алюминия и кислорода, связанных вместе.
Затем через оксид алюминия пропускается электрический ток, который отделяет различные компоненты друг от друга. Пузырьки кислорода образуются на одном конце, а капли чистого расплавленного алюминия собираются на другом.
Около 4-5 тонн боксита перерабатывается в 2 тонны оксида алюминия, что дает 1 тонну чистого алюминия.
Алюминий корродирует намного медленнее, чем другие металлы, такие как железо. Причина того, что алюминий не так легко подвергается коррозии, как другие металлы, заключается в его особой реакции с водой.
Обычно, когда вода вступает в контакт с металлом, она побуждает металл еще быстрее отдавать свои электроны окружающему его кислороду.
Однако у алюминия особая реакция на воду. Когда вода соприкасается с алюминием, атомы алюминия и кислорода (содержащиеся в металле, а не кислород в окружающем его воздухе) перемещаются дальше друг от друга.
Они окажутся почти на 50% дальше друг от друга, чем были в начале. Эта реакция удаления меняет молекулярную структуру алюминия настолько, что он становится химически инертным, а это означает, что он не так легко подвергается коррозии.
Как предотвратить ржавление металлов
Ржавчина – это естественная химическая реакция. Несмотря на то, что некоторые металлы ржавеют быстрее других, это не должно вас сдерживать от использования этих металлов для определенных целей. Есть много способов предотвратить ржавчину металлов, например, металлические краски и покрытия, защитные барьеры, барьерные пленки, а также многочисленные антикоррозионные растворы и лужение. В каждом методе используются разные соединения и материалы для создания защитного барьера между металлом и элементами, вызывающими ржавчину и коррозию.
В ассортименте нашей компании есть эффективный удалитель ржавчины с металлов «РжавоМед-У»
Коррозия металлов. Виды коррозии металлов
Материалы из металлов под химическим или электрохимическим воздействием окружающей среды подвергаются разрушению, которое называется коррозией.
Коррозия металлов вызывается окислительно-восстановительными реакциями, в результате которых металлы переходят в окисленную форму и теряют свои свойства, что приводит в негодность металлические материалы.
Можно выделить 3 признака, характеризующих коррозию:
- Коррозия – это с химической точки зрения процесс окислительно-восстановительный.
- Коррозия – это самопроизвольный процесс, возникающий по причине неустойчивости термодинамической системы металл – компоненты окружающей среды.
- Коррозия – это процесс, который развивается в основном на поверхности металла. Однако, не исключено, что коррозия может проникнуть и вглубь металла.
Виды коррозии металлов
Наиболее часто встречаются следующие виды коррозии металлов:
- Равномерная – охватывает всю поверхность равномерно
- Неравномерная
- Избирательная
- Местная пятнами – корродируют отдельные участки поверхности
- Язвенная (или питтинг)
- Точечная
- Межкристаллитная – распространяется вдоль границ кристалла металла
- Растрескивающая
- Подповерхностная
Основные виды коррозии металлов
С точки зрения механизма коррозионного процесса можно выделить два основных типа коррозии: химическую и электрохимическую.
Химическая коррозия металлов
Химическая коррозия металлов — это результат протекания таких химических реакций, в которых после разрушения металлической связи, атомы металла и атомы, входящие в состав окислителей, образуют химическую связь.
Электрический ток между отдельными участками поверхности металла в этом случае не возникает. Такой тип коррозии присущ средам, которые не способны проводить электрический ток – это газы, жидкие неэлектролиты.
Виды химической коррозии
Химическая коррозия металлов бывает газовой и жидкостной.
Газовая коррозия металлов – это результат действия агрессивных газовых или паровых сред на металл при высоких температурах, при отсутствии конденсации влаги на поверхности металла. Это, например, кислород, диоксид серы, сероводород, пары воды, галогены. Такая коррозия в одних случаях может привести к полному разрушению металла (если металл активный), а в других случаях на его поверхности может образоваться защитная пленка (например, алюминий, хром, цирконий).
Жидкостная коррозия металлов– может протекать в таких неэлектролитах, как нефть, смазочные масла, керосин и др. Этот тип коррозии при наличии даже небольшого количества влаги, может легко приобрести электрохимический характер.
При химической коррозии скорость разрушения металла пропорциональна скорости химической реакции и той скорости с которой окислитель проникает сквозь пленку оксида металла, покрывающую его поверхность. Оксидные пленки металлов могут проявлять или не проявлять защитные свойства, что определяется сплошностью.
Фактор Пиллинга-Бэдворса
Сплошность такой пленки оценивают величине фактора Пиллинга—Бэдвордса: (α = Vок/VМе) по отношению объема образовавшегося оксида или другого какого-либо соединения к объему израсходованного на образование этого оксида металла
где Vок — объем образовавшегося оксида
VМе — объем металла, израсходованный на образование оксида
Мок – молярная масса образовавшегося оксида
ρМе – плотность металла
n – число атомов металла
AMe — атомная масса металла
ρок — плотность образовавшегося оксида
Оксидные пленки, у которых α < 1, не являются сплошными и сквозь них кислород легко проникает к поверхности металла. Такие пленки не защищают металл от коррозии. Они образуются при окислении кислородом щелочных и щелочно-земельных металлов (исключая бериллий).
Оксидные пленки, у которых 1 < α < 2,5 являются сплошными и способны защитить металл от коррозии.
При значениях α > 2,5 условие сплошности уже не соблюдается, вследствие чего такие пленки не защищают металл от разрушения.
Ниже представлены значения сплошности α для некоторых оксидов металлов
Металл | Оксид | α | Металл | Оксид | α |
K | K2O | 0,45 | Zn | ZnO | 1,55 |
Na | Na2O | 0,55 | Ag | Ag2O | 1,58 |
Li | Li2O | 0,59 | Zr | ZrO2 | 1.60 |
Ca | CaO | 0,63 | Ni | NiO | 1,65 |
Sr | SrO | 0,66 | Be | BeO | 1,67 |
Ba | BaO | 0,73 | Cu | Cu2O | 1,67 |
Mg | MgO | 0,79 | Cu | CuO | 1,74 |
Pb | PbO | 1,15 | Ti | Ti2O3 | 1,76 |
Cd | CdO | 1,21 | Cr | Cr2O3 | 2,07 |
Al | Al2O2 | 1,28 | Fe | Fe2O3 | 2,14 |
Sn | SnO2 | 1,33 | W | WO3 | 3,35 |
Ni | NiO | 1,52 |
Электрохимическая коррозия металлов
Электрохимическая коррозия металлов – это процесс разрушения металлов в среде различных электролитов, который сопровождается возникновением внутри системы электрического тока.
При таком типе коррозии атом удаляется из кристаллической решетки результате двух сопряженных процессов:
- Анодного – металл в виде ионов переходит в раствор.
- Катодного – образовавшиеся при анодном процессе электроны, связываются деполяризатором (вещество — окислитель).
Сам процесс отвода электронов с катодных участков называется деполяризацией, а вещества способствующие отводу – деполяризаторами.
Наибольшее распространение имеет коррозия металлов с водородной и кислородной деполяризацией.
Водородная деполяризация
Водородная деполяризация осуществляется на катоде при электрохимической коррозии в кислой среде:
2H + +2e — = H2 разряд водородных ионов
Кислородная деполяризация
Кислородная деполяризация осуществляется на катоде при электрохимической коррозии в нейтральной среде:
O2 + 4H + +4e — = H2O восстановление растворенного кислорода
Все металлы, по их отношению к электрохимической коррозии, можно разбить на 4 группы, которые определяются величинами их стандартных электродных потенциалов:
- Активные металлы (высокая термодинамическая нестабильность) – это все металлы, находящиеся в интервале щелочные металлы — кадмий (Е 0 = -0,4 В). Их коррозия возможна даже в нейтральных водных средах, в которых отсутствуют кислород или другие окислители.
- Металлы средней активности (термодинамическая нестабильность) – располагаются между кадмием и водородом (Е 0 = 0,0 В). В нейтральных средах, в отсутствии кислорода, не корродируют, но подвергаются коррозии в кислых средах.
- Малоактивные металлы (промежуточная термодинамическая стабильность) – находятся между водородом и родием (Е 0 = +0,8 В). Они устойчивы к коррозии в нейтральных и кислых средах, в которых отсутствует кислород или другие окислители.
- Благородные металлы (высокая термодинамическая стабильность) – золото, платина, иридий, палладий. Могут подвергаться коррозии лишь в кислых средах при наличии в них сильных окислителей.
Виды электрохимической коррозии
Электрохимическая коррозия может протекать в различных средах. В зависимости от характера среды выделяют следующие виды электрохимической коррозии:
- Коррозия в растворах электролитов — в растворах кислот, оснований, солей, в природной воде.
- Атмосферная коррозия – в атмосферных условиях и в среде любого влажного газа. Это самый распространенный вид коррозии.
Например, при взаимодействии железа с компонентами окружающей среды, некоторые его участки служат анодом, где происходит окисление железа, а другие – катодом, где происходит восстановление кислорода:
А: Fe – 2e — = Fe 2+
K: O2 + 4H + + 4e — = 2H2O
Катодом является та поверхность, где больше приток кислорода.
- Почвенная коррозия – в зависимости от состава почв, а также ее аэрации, коррозия может протекать более или менее интенсивно. Кислые почвы наиболее агрессивны, а песчаные – наименее.
- Аэрационная коррозия — возникает при неравномерном доступе воздуха к различным частям материала.
- Морская коррозия – протекает в морской воде, в связи с наличием в ней растворенных солей, газов и органических веществ.
- Биокоррозия – возникает в результате жизнедеятельности бактерий и других организмов, вырабатывающих такие газы как CO2, H2S и др., способствующие коррозии металла.
- Электрокоррозия – происходит под действием блуждающих токов на подземных сооружениях, в результате работ электрических железных дорог, трамвайных линий и других агрегатов.
Методы защиты от коррозии металла
Основной способ защиты от коррозии металла – это создание защитных покрытий – металлических, неметаллических или химических.
Металлические покрытия
Металлическое покрытие наносится на металл, который нужно защитить от коррозии, слоем другого металла, устойчивого к коррозии в тех же условиях. Если металлическое покрытие изготовлено из металла с более отрицательным потенциалом (более активный) , чем защищаемый, то оно называется анодным покрытием. Если металлическое покрытие изготовлено из металла с более положительным потенциалом (менее активный), чем защищаемый, то оно называется катодным покрытием.
Например, при нанесении слоя цинка на железо, при нарушении целостности покрытия, цинк выступает в качестве анода и будет разрушаться, а железо защищено до тех пор, пока не израсходуется весь цинк. Цинковое покрытие является в данном случае анодным.
Катодным покрытием для защиты железа, может, например, быть медь или никель. При нарушении целостности такого покрытия, разрушается защищаемый металл.
Неметаллические покрытия
Такие покрытия могут быть неорганические (цементный раствор, стекловидная масса) и органические (высокомолекулярные соединения, лаки, краски, битум).
Химические покрытия
В этом случае защищаемый металл подвергают химической обработке с целью образования на поверхности пленки его соединения, устойчивой к коррозии. Сюда относятся:
оксидирование – получение устойчивых оксидных пленок (Al2O3, ZnO и др.);
азотирование – поверхность металла (стали) насыщают азотом;
воронение стали – поверхность металла взаимодействует с органическими веществами;
цементация – получение на поверхности металла его соединения с углеродом.
Изменение состава технического металла и коррозионной среды
Изменение состава технического металла также способствует повышению стойкости металла к коррозии. В этом случае в металл вводят такие соединения, которые увеличивают его коррозионную стойкость.
Изменение состава коррозионной среды (введение ингибиторов коррозии или удаление примесей из окружающей среды) тоже является средством защиты металла от коррозии.
Электрохимическая защита
Электрохимическая защита основывается на присоединении защищаемого сооружения катоду внешнего источника постоянного тока, в результате чего оно становится катодом. Анодом служит металлический лом, который разрушаясь, защищает сооружение от коррозии.
Протекторная защита – один из видов электрохимической защиты – заключается в следующем.
К защищаемому сооружению присоединяют пластины более активного металла, который называется протектором. Протектор – металл с более отрицательным потенциалом – является анодом, а защищаемое сооружение – катодом. Соединение протектора и защищаемого сооружения проводником тока, приводит к разрушению протектора.
Примеры задач с решениями на определение защитных свойств оксидных пленок, определение коррозионной стойкости металлов, а также уравнения реакций, протекающих при электрохимической коррозии металлов приведены в разделе Задачи к разделу Коррозия металлов
Коррозия металлов. Сплавы
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет.
Получите невероятные возможности
Конспект урока «Коррозия металлов. Сплавы»
Коррозия металлов. Сплавы
Интересно, что такое коррозия? А сплавы?
Поэт В. Шефнер писал: «Коррозия – рыжая крыса, грызёт металлический лом». А также есть народную мудрость: «Ржа ест железо».
Слово коррозия (от лат. сorrosio – разъедание) – это самопроизвольное разрушение металлов и сплавов под влиянием окружающей среды.
Каждый год из-за коррозии теряется около четверти всего произведённого в мире железа. Порча изделий из металла и потеря металлов обходится очень дорого. Затраты на ремонт или замену изделий во много раз превышают стоимость того металла, из которого они изготовлены.
Коррозия вызывает и серьёзные экологические последствия. Если происходит разрушение трубопроводов газа или нефти, то это приводит к загрязнению окружающей среды, а это негативно сказывается на здоровье людей.
Коррозию металлов и сплавов вызывают такие компоненты окружающей среды, как вода, кислород, оксиды углерода и серы, содержащиеся в воздухе, водные растворы солей (морская вода, грунтовые воды).
Различают коррозию:
· электрохимическую
При химической коррозии металл разрушается под действием окислителей – неэлектролитов, например газов (кислорода, хлора и др.) при повышенной или даже обычныой температурах.
При электрохимической коррозии разрушение металлов происходит в растворах электролитов. Это значит, что в окружающей среде, где находится металл, должны быть вода и окислители: кислород, растворённые кислоты, соли. Так, под действием воздуха и содержащихся в нём паров воды на поверхности медных и бронзовых изделий образуется зелёная плёнка, называемая патиной.
Но чаще всего коррозии подвергаются изделия из железа. Особенно сильно коррозирует металл во влажном воздухе и при соприкосновении с водой.
Процесс коррозии железа часто называют ржавлением. Автомобили, сельскохозяйственные машины, стальные балки, кухонная посуда – все эти изделия, будучи новыми, имеют гладкую, блестящую поверхность. Но при хранении во влажной атмосфере и при недостаточном уходе, они покрываются бурыми пятнами ржавчины, состав которой можно выразить обобщённой формулой Fe2O3 · nH2O.
При коррозии металлов и сплавов протекают окислительно-восстановительные реакции, в результате которых атомы металла, взаимодействуя с компонентами окружающей среды, окисляются, а сам окислитель восстанавливается. При этом металл из свободного состояния переходит в химические соединения – оксиды, сульфиды, гидроксиды.
Химически чистое железо почти не подвержено коррозии, а техническое железо, которое содержит различные примеси, ржавеет. Следовательно, одной из причин коррозии является наличие примесей в металле.
Возле города Дели в Индии находится железная колонна с очень маленькими пятнышками ржавчины, хотя её возраст почти тысячу семьсот лет. Это знаменитая Кутубская колонна высотой около семь м и массой шесть с половиной т. Согласно одной из гипотез, долговечность и коррозионная устойчивость колонны объясняются очень малым количеством различных примесей в железе и относительно невысокой влажностью, характерной для этой местности.
Например, если два различных металла, которые находятся в контакте между собой, опустить в водный раствор электролита (это могут быть грунтовые воды, сконденсированная влага из атмосферы), то металл более активный, расположенный в электрохимическом ряду напряжений левее, будет разрушаться, и тем самым предохранять менее активный металл от коррозии. Например, при контакте железа с медью в водной среде, железо, как более активный металл, постепенно коррозирует, переходя в воду в виде ионов железа. Таким образом, коррозия металла резко усиливается при соприкосновении его с менее активным металлом.
Образовавшиеся свободные электроны от атомов железа, перейдут к меди и на её поверхности соединяться с ионами водорода, которые образуются из компонентов водной среды (например, серной или других кислот). Этот электрохимический процесс можно представить так:
И наоборот, при контакте железа с более активным цинком, цинк разрушается и защищает железо от коррозии.
Таким образом, коррозия металла замедляется при соприкосновении его с металлом более активным, то есть находящимся в электрохимическом ряду напряжений металлов левее его.
Для борьбы с коррозией существует много способов.
· Во-первых, это нанесение защитных покрытий на поверхность металла. Для этого часто используют масляные краски, эмали, лаки. Эти неметаллические покрытия дешёвые, но обычно недолговечные, поэтому их нужно обновлять.
Так, например, раз в год красят Эйфелеву башню в Париже.
В 1617 г. В Англии был выдан патент №4 на изобретение защиты доспехов – кольчуги и лат – от коррозии путём использования специального масла.
Предохраняемый металл можно покрыть и слоем другого металла: золота, серебра, хрома, никеля, олова, цинка. А также используют сплавы: бронзу, латунь и др. Таким образом, металлические изделия хромируют, никелируют, цинкуют и т.д.
Один из самых старых способов – это лужение, или покрытие железного листа слоем олова. Такое железо называют белой жестью, которую в основном используют для изготовления консервной тары.
· Во-вторых, используют нержавеющие стали, содержащие специальные добавки. Например, так называемая «нержавейка», из которой изготавливают столовые приборы, содержит до 12% хрома и до 10% никеля.
Лёгкие нержавеющие сплавы включают алюминий и титан. Эта нержавеющая сталь довольно стойкая к коррозии из-за того, что на её поверхности образуется оксидная плёнка, которая состоит из оксидов хрома и железа. Так, обелиск «Покровителям космоса», расположенный во Всероссийском выставочном центре, облицован пластинками из титанового сплава.
· В-третьих, для защиты от коррозии вводят в среду, где находятся металлические изделия, вещества, которые значительно уменьшают агрессивность среды. Такие вещества называют ингибиторами коррозии. Ингибиторами коррозии могут быть фосфаты натрия, соли хромовой кислоты или органические соединения. Для предотвращения коррозии железа в серной кислоте к ней добавляют в качестве ингибитора азотную кислоту.
· В-четвёртых, создают контакт с более активным металлом – протектором. Например, для защиты стальных корпусов морских судов обычно используют цинк. На суше металлические конструкции, линии электропередачи и трубопроводов соединяют с листом или куском более активного металла. С этой же целью к деталям конструкции мостов приваривают куски цинка.
Окружающие нас металлические предметы редко состоят из чистых металлов. Только алюминиевые кастрюли или медная проволока имеют чистоту около 99%. В большинстве же других случаев люди имеют дело со сплавами.
В расплавленном состоянии металлы обычно смешиваются между собой, образуя однородную жидкость – расплав. Большинство металлов, например олово и свинец, золото и серебро, цинк и медь, могут смешиваться в каком угодно соотношении. При застывании этого однородного расплава получают твёрдую массу, которую называют сплавом.
Физические свойства сплавов отличаются от свойств составляющих их металлов. Например, сплав меди и цинка – латунь – значительно твёрже, чем отдельно взятые металлы, а прочность бронзы выше, чем у составляющих её меди и олова, сталь и чугун прочнее технически чистого железа. К серебру или золоту, которые в чистом виде очень мягки, для придания им твёрдости добавляют медь, хотя она в чистом виде также значительно мягче полученного сплава.
Поэтому в чистом виде металлы используют редко. Значительно чаще применяют их сплавы. Из различных металлов получены десятки тысяч различных сплавов.
Интересно, что для производства золотых изделий используют сплавы золота с медью. В зависимости от массовой доли в них золота различают пробы: 960, то есть это означает, что на 960 массовых частей золота приходится 40 массовых частей меди – это высшая проба, 920 проба – это ювелирный металл, 880 – 750 – монетный сплав, 750 – 375 – сплав для ювелирных изделий, а 360 – сплав для корпусных часов. Проба золота может быть выражена в каратах. В этом случае она показывает, сколько каратов (один карат = 0,2 г) чистого золота содержится в двадцать четыре каратах сплава. Проба при этом выражается числами 22, 18 и 14. Само слово «карат» происходит от названия зёрен субтропического дерева, которые использовали для взвешивания золота и драгоценных камней.
Существует сплав никеля с титаном, обладающий одним, почти фантастическим, свойством – своего рода памятью. Если куску проволоки из этого сплава в нагретом состоянии придать определённую форму, охладить, а потом как угодно смять или согнуть, то при повторном нагревании до некоторой минимальной температуры он снова примет ту форму, какую имел после горячей деформации.
Температура плавления большинства сплавов ниже температуры плавления наиболее легкоплавкого из металлов, образующих сплав. Например, температура плавления сплава олова и свинца, равна 180 0 С, с температурами плавления чистых металлов, образующих сплав, соответственно 232 и 328 0 С.
Комбинируя различные металлы в разнообразных количественных соотношениях, можно получить большое число сплавов с важными техническими свойствами:
Так, чистая медь очень плохо поддаётся литью, из неё трудно получить отливки. И в тоже время оловянная бронза – сплав меди и олова – имеет прекрасные литейные свойства: из неё отливают художественные изделия, требующие тонкой проработки деталей. Чистый алюминий – очень мягкий металл, сравнительно непрочный на разрыв. Но сплав, состоящий из алюминия, магния, марганца, меди и никеля, называемый дюралюминием, в четыре раза прочнее алюминия на разрыв.
Таким образом, сплавы – это материалы с характерными свойствами, состоящие из двух или более компонентов, один из которых – металл.
Компонентами сплавов могут быть и неметаллы, и различные соединения.
По состоянию компонентов сплавы могут быть:
· однородными, когда при сплавлении образуется как бы раствор одного металла в другом, например сплавы меди и олова, золота и серебра
· неоднородными, например чугун, представляющий собой механическую смесь железа с углеродом.
А также сплавы классифицируют по составу: медные, алюминиевые, никелевые, титановые и другие сплавы.
Названия наиболее распространённых сплавов, их состав и области применения приведены в таблице.
Название сплава
Примерный состав
Детали машин, приборы, художественные отливки
добавки железа и
Коррозионная стойкость, устойчивость
Лопатки турбин, химическая, судостроительная, нефтяная, медицинская промышленность, изготовление монет
Машиностроение, химическая промышленность, производство бытовых товаров
добавки железа и
Коррозионная стойкость, красивый внешний вид
Медицинская техника, изготовление бытовой посуды, художественных изделий
30-50% свинца и др.
Низкая температура плавления
Пайка металлических изделий
0,5% марганца и др.
Высокая прочность, лёгкость
Авиастроение, детали велосипедов
Сплавы бывают чёрные и цветные.
К чёрным сплавам относятся сплавы, где преобладает железо, а к цветным, где преобладают другие металлы. К чёрным сплавам относятся: чугун, сталь.
К цветным сплавам относятся бронза, латунь, мельхиор, дюралюминий, припой, монель-металл.
В состав сплавов могут входить не только металлы, но и неметаллы. Так, например, чугун представляет собой сплав железа с углеродом, содержание углерода в котором составляет от двух до четырех процентов по массе. Высокое содержание углерода приводит к тому, что при затвердевании чугуна часть углерода выделяется в виде графита и соединений углерода с железом. Выделяющийся графит образует в чугуне прожилки, что приводит к хрупкости чугуна. Чугун значительно твёрже железа, обычно он очень хрупкий, не куётся, а при ударе разбивается. Этот сплав применяют для изготовления различных массивных деталей методом литья, так называемый литейный чугун.
Чугун используют как сырьё при производстве другого распространённого сплава железа – стали, в которой содержится около двух процентов или меньше углерода по массе. В отличие от чугуна сталь можно ковать, штамповать, прокатывать, то есть придавать изделиям различную форму.
Для придания сталям определённых свойств в их состав вводят другие металлы, бор, кремний. Такие стали называют легированными. Например, сталь легированная вольфрамом, отличается высокой твёрдостью, поэтому она применяется для изготовления режущих инструментов. Легирование молибденом приводит к повышению её износоустойчивости, а сталь, содержащая примеси кобальта, используется для изготовления постоянных магнитов. Никель придаёт сталям высокую химическую стойкость и механическую прочность. Сплавы с высоким содержанием никеля используются для производства химической аппаратуры, сопел самолётов, космических ракет и спутников. Эти изделия устойчивы при температурах выше 1000 0 С, то есть не разрушаются кислородом и горючими газами и обладают при этом прочностью лучших сталей.
Хромоникелевые стали очень пластичные, прочные, жаростойкие, кислотоупорные, устойчивые против коррозии. Их применяют в строительстве.
Например при облицовки колонн станции «Маяковская», а также при изготовлении нержавеющих предметов домашнего обихода: ножей, вилок, ложек, всевозможных медицинских инструментов.
Углеродистая сталь представляет собой сплав железа с углеродом, но в отличие от чугуна, содержание в ней углерода, а также марганца, кремния, фосфора и серы гораздо меньше.
Теперь вы знаете, что коррозия – это разрушение металлов и сплавов под действием окружающей среды. Различают химическую и электрохимическую коррозию. В результате коррозии протекает окислительно-восстановительная реакция, при которой атомы металла взаимодействуют с компонентами окружающей среды и окисляются. Коррозия металла усиливается при соприкосновении его с менее активным металлом и замедляется, если металл соприкасается с металлом более активным. Для защиты металлов от коррозии используют нанесение защитных покрытий, вводят ингибиторы коррозии, создают различные коррозионно-стойкие сплавы.
А если скомбинировать металлы в различных соотношениях друг с другом, а также с некоторыми неметаллами, то можно получить большое число сплавов. Физические свойства сплавов отличаются от свойств составляющих их металлов. Чугун и сталь – наиболее распространённые сплавы железа, то есть чёрные сплавы, а к цветным сплавам относятся бронза, латунь, мельхиор, дюралюминий, припой, монель-металл.
коррозия металлов в различных средах
Основной причиной интенсивного окисления поверхности металлов (что и является основной причиной коррозии) являются:
- Повышенная влажность окружающей среды.
- Наличие блуждающих токов.
- Неблагоприятный состав атмосферы.
Соответственно этому различают химическую, трибохимическую и электрохимическую природу коррозии. Именно они в совокупности своего влияния и разрушают основную массу металла.
Химическая коррозия
Такой вид коррозии обусловлен активным окислением поверхности металла во влажной среде. Безусловным лидером тут является сталь (исключая нержавеющую). Железо, являясь основным компонентом стали, при взаимодействии с кислородом образует три вида окислов: FeO, Fe2O3 и Fe3O4. Основная неприятность заключается в том, что определённому диапазону внешних температур соответствует свой окисел, поэтому практическая защита стали от коррозии наблюдается только при температурах выше 10000С, когда толстая плёнка высокотемпературного оксида FeO сама начинает предохранять металл от последующего образования ржавчины. Это процесс называется воронением, и активно применяется в технике для защиты поверхности стальных изделий. Но это – частный случай, и таким способом активно защищать металл от коррозии в большинстве случаев невозможно.
Химическая коррозия активизируется при повышенных температурах. Склонность металлов к химическому окислению определяется значением их кислородного потенциала – способности к участию в окислительно-восстановительных реакциях. Сталь – ещё не самый худший вариант: интенсивнее её окисляются, в частности, свинец, кобальт, никель.
Электрохимическая коррозия
Эта разновидность коррозии более коварна: разрушение металла в данном случае происходит при совокупном влиянии воды и почвы на стальную поверхность (например, подземных трубопроводов). Влажный грунт, являясь слабощёлочной средой, способствует образованию и перемещению в почве блуждающих электрических токов. Они являются следствием ионизации частиц металла в кислородсодержащей среде, и инициирует перенос катионов металла с поверхности вовне. Борьба с такой коррозией усложняется труднодоступностью диагностирования состояния грунта в месте прокладки стальной коммуникации.
Электрохимическая коррозия возникает при окислении контактных устройств линий электропередач при увеличении зазоров между элементами электрической цепи. Помимо их разрушения, в данном случае резко увеличивается энергопотребление устройств.
Трибохимическая коррозия
Данному виду подвержены металлообрабатывающие инструменты, которые работают в режимах повышенных температур и давлений. Антикоррозионное покрытие резцов, пуансонов, фильер и пр. невозможно, поскольку от детали требуется высокая поверхностная твёрдость. Между тем, при скоростном резании, холодном прессовании и других энергоёмких процессах обработки металлов начинают происходить механохимические реакции, интенсивность которых возрастает с увеличением температуры на контактной поверхности «инструмент-заготовка». Образующаяся при этом окись железа Fe2O3 отличается повышенной твёрдостью, и поэтому начинает интенсивно разрушать поверхность инструмента.
Виды коррозии металла
- Главная
- Полезное
- Виды коррозии металла
Металлы и сплавы могут разрушаться под действием химического (химическая коррозия), электрохимического (электрохимическая коррозия) и механического (эрозия) воздействий внешней среды. Способность металла сопротивляться коррозионному воздействию среды называют коррозионной стойкостью.
Коррозия металла или сплава происходит, как правило, на границе раздела фаз, т. е. на границе соприкосновения твердого вещества с газом или жидкостью.
Коррозионные процессы подразделяются на следующие виды: по механизму взаимодействия металла со средой; по виду коррозионной среды; по виду коррозионных разрушений поверхности; по объему разрушенного металла; по характеру дополнительных воздействий, которым подвергается металл одновременно с действием коррозионной среды.
По механизму взаимодействия металла со средой различают химическую и электрохимическую коррозию.
Коррозию, протекающую под влиянием жизнедеятельности микроорганизмов, относят к биологической коррозии, а протекающую под действием радиоактивного излучения — к радиационной коррозии.
По виду коррозионной среды, участвующей в коррозионном разрушении металла или сплава, различают коррозию в жидкостях-неэлектролитах, коррозию в растворах и расплавах электролитов, газовую, атмосферную, подземную (почвенную) коррозию, коррозию блуждающим током и др.
По характеру изменения поверхности металла или сплава или по степени изменения их физико-механических свойств, в процессе коррозии независимо от свойств, среды коррозионные разрушения бывают нескольких видов.
1. Если коррозия охватывает всю поверхность металла, то такой вид разрушения называется — сплошной коррозией. К сплошной коррозии относится разрушение металлов и сплавов под действием кислот, щелочей, атмосферы. Сплошная коррозия может быть равномерной, т. е. разрушение металла происходит с одинаковой скоростью по всей поверхности, и неравномерной, когда скорость коррозии на отдельных участках поверхности неодинакова. Примером равномерной коррозии может служить коррозия при взаимодействии меди с азотной, железа — с соляной, цинка — с серной кислотами, алюминия — с растворами щелочей. В этих случаях продукты коррозии не остаются на поверхности металла. Аналогично коррозируют железные трубы на открытом воздухе. Это легко увидеть, если удалить слой ржавчины; под ним обнаруживается шероховатая поверхность металла, равномерно распределенная по всей трубе. 2. Сплавы некоторых металлов подвержены — избирательной коррозии, когда один из элементов или одна из структур сплава разрушается, а остальные практически остаются без изменений. При соприкосновении латуни с серной кислотой происходит компонентно-избирательная коррозия — коррозия цинка, а сплав обогащается медью. Такое разрушение легко заметить, так как происходит покраснение поверхности изделия за счет увеличения концентрации меди в сплаве. При структурно-избирательной коррозии происходит преимущественно разрушение какой-либо одной структуры сплава, так, например, при соприкосновении стали с кислотами феррит разрушается, а карбид железа остается без изменений. Этому виду коррозии особенно подвержены чугуны. 3. При местной коррозии на поверхности металла обнаруживаются поражения в виде отдельных пятен, язв, точек. В зависимости от характера поражений местная коррозия бывает в виде пятен, т. е. поражений, не сильно углубленных в толщу металла; язв — поражений, сильно углубленных в толщу металла; точек, иногда еле заметных глазу, но глубоко проникающих в металл. Коррозия в виде язв и точек очень опасна для таких конструкций, где важно поддерживать условия герметичности и непроницаемости (емкости, аппараты, трубопроводы, применяемые в химической промышленности). 4. Подповерхностная коррозия начинается с поверхности металла в тех случаях, когда защитное покрытие (пленки, оксиды и т. п.) разрушено на отдельных участках. В этом случае разрушение идет преимущественно под покрытием, и продукты коррозии сосредотачиваются внутри металла. Подповерхностная коррозия часто вызывает вспучивание и расслоение металла. Определить ее возможно только под микроскопом. 5. Щелевая коррозия — разрушение металла под прокладками, в зазорах, резьбовых креплениях, в клепаных соединениях и т. п. Она чаще развивается на участке конструкции, находящейся в зазоре (щели). 6. Межкристаллитная коррозия — разрушение металла по границам кристаллитов (зерен) с потерей его механической прочности, внешний вид металла при этом не меняется, но он легко разрушается на отдельные кристаллики под механическим воздействием. Объясняется это образованием между зернами металла или сплава рыхлых, малопрочных продуктов коррозии. Этому виду коррозии подвержены хромистые и хромоникелевые стали, никелевые и алюминиевые сплавы. Чтобы избежать межкристаллитной коррозии, в последние годы широко используют нержавеющие стали с пониженным содержанием углерода или в их состав вводят карбидообразователи — титан, тантал, ниобий (в 5-8 — кратном количестве от содержания углерода). При одновременном воздействии на металл или сплав сильно агрессивных сред и механических растягивающих напряжений возможно коррозионное растрескивание, или транскристаллитная коррозия. В этом случае разрушение происходит не только по границам кристаллитов, но разделяется на части сам кристаллит металла. Это очень опасный вид коррозии, особенно для конструкций, несущих механические нагрузки (мосты, оси, тросы, рессоры, автоклавы, паровые котлы, двигатели внутреннего сгорания, водяные и паровые турбины и др.). Коррозионное растрескивание зависит от конструкции аппаратуры, характера агрессивной среды, строения и структуры металла или сплава, температуры и т. д. Например, коррозионное растрескивание углеродистых сталей очень часто происходит в щелочных средах при высоких температурах; нержавеющих сталей — в растворах хлоридов, медного купороса, ортофосфорной кислоты; алюминиевых и магниевых сплавов — под действием морской воды; титана и его сплавов — под действием концентрированной азотной кислоты и растворов йода в метаноле. Следует отметить, что в зависимости от природы металла или сплава и свойств агрессивной среды существует критическое напряжение, выше которого коррозионное растрескивание наблюдается часто. По характеру дополнительных воздействий, которым подвергается металл, одновременно с воздействием агрессивной среды можно выделить коррозию под напряжением, коррозию при трении и кавитационную. 7. Коррозия под напряжением — это коррозия при одновременном воздействии коррозионной среды и постоянных или временных напряжений. Одновременное воздействие циклических растягивающих напряжений и коррозионной среды вызывает коррозионную усталость, т. е. Происходит преждевременное разрушение металла. Этот процесс можно представить следующим образом: сначала на поверхности изделия возникает местная коррозия в виде язв, которые начинают действовать в качестве концентратора напряжений, максимальное значение напряжения будет на дне язв, которое имеет более отрицательный потенциал, чем стенки, в результате чего разрушение металла будет идти вглубь, а язва будет переходить в трещину. Этому виду коррозии подвержены валы гребных винтов. Рессоры автомобилей, канаты, охлаждаемые валки прокатных станов и др. 8. Коррозия при трении — разрушение металла, вызываемое одновременным воздействием коррозионной среды и трения. При колебательном перемещении двух поверхностей относительно друг друга в условиях воздействия коррозионной среды происходит коррозия истиранием, или фреттинг-коррозия. Устранить коррозию при трении или вибрации возможно правильным выбором конструкционного материала, снижением коэффициента трения, применением покрытий и т.д.
9. Газовая коррозия — это химическая коррозия металлов в газовой среде при минимальном содержании влаги (как правило не более 0,1%) или при высоких температурах. В химической и нефтехимической промышленности такой вид коррозии встречается часто. Например, при получении серной кислоты на стадии окисления диоксида серы, при синтезе аммиака, получении азотной кислоты и хлористого водорода, в процессах синтеза органических спиртов, крекинга нефти и т.д. 10. Атмосферная коррозия — это коррозия металлов в атмосфере воздуха или любого влажного газа. 11. Подземная коррозия — это коррозия металлов в почвах и грунтах. 12. Контактная коррозия — это вид коррозии, вызванный контактом металлов, имеющих разные стационарные потенциалы в данном электролите.
Методы борьбы с коррозией
Выбор подходящего способа защиты поверхности от образования ржавчины определяется условиями, в которых работает данная деталь или конструкция. Наиболее эффективны следующие методы:
- Нанесение поверхностных атмосферостойких покрытий;
- Поверхностная металлизация;
- Легирование металла элементами, обладающими большей стойкостью к участию в окислительно-восстановительных реакциях;
- Изменение химического состава окружающей среды.
Механические поверхностные покрытия
Поверхностная защита металла может быть выполнена его окрашиванием либо нанесением поверхностных плёнок, по своему составу нейтральных к воздействию кислорода. В быту, а также при обработке сравнительно больших площадей (главным образом, подземных трубопроводов) применяется окраска. Среди наиболее стойких красок – эмали и краски, содержащие алюминий. В первом случае эффект достигается перекрытием доступа кислороду к стальной поверхности, а во втором – нанесением алюминия на поверхность, который, являясь химически инертным металлом, предохраняет сталь от коррозионного разрушения.
Положительными особенностями данного способа защиты являются лёгкость его реализации и сравнительно небольшие финансовые затраты, поскольку процесс достаточно просто механизируется. Вместе с тем долговечность такого способа защиты невелика, поскольку, не обладая большой степенью сродства с основным металлом, такие покрытия через некоторое время начинают механически разрушаться.
Химические поверхностные покрытия
Коррозионная защита в данном случае происходит вследствие образования на поверхности обрабатываемого металла химической плёнки, состоящей из компонентов, стойких к воздействию кислорода, давлений, температур и влажности. Например, углеродистые стали обрабатывают фосфатированием. Процесс может выполняться как в холодном, так и в горячем состоянии, и заключается в формировании на поверхности металла слоя из фосфатных солей марганца и цинка. Аналогом фосфатированию выступает оксалатирование – процесс обработки металла солями щавелевой кислоты. Применением именно таких технологий повышают стойкость металлов от трибохимической коррозии.
Недостатком данных методов является трудоёмкость и сложность их применения, требующая наличия специального оборудования. Кроме того, конечная поверхность изменяет свой цвет, что не всегда приемлемо по эстетическим соображениям.
Легирование и металлизация
В отличие от предыдущих способов, здесь конечным результатом является образование слоя металла, химически инертного к воздействию кислорода. К числу таких металлов относятся те, которые на линии кислородной активности находятся возможно дальше от водорода. По мере возрастания эффективности этот ряд выглядит так: хром→медь→цинк→серебро→алюминий→платина. Различие в технологиях получения таких антикоррозионных слоёв состоит в способе их нанесения. При металлизации на поверхность направляется ионизированный дуговой поток мелкодисперсного напыляемого металла, а легирование реализуется в процессе выплавки металла, как следствие протекания металлургических реакций между основным металлом и вводимыми легирующими добавками.
Изменение состава окружающей среды
В некоторых случаях существенного снижения коррозии удаётся добиться изменением состава атмосферы, в которой работает защищаемая металлоконструкция. Это может быть вакуумирование (для сравнительно небольших объектов), или работа в среде инертных газов (аргон, неон, ксенон). Данный метод весьма эффективен, однако требует дополнительного оборудования — защитных камер, костюмов для обслуживающего персонала и т.д. Используется он главным образом, в научно-исследовательских лабораториях и опытных производствах, где специально поддерживается необходимый микроклимат.
Способы защиты металлов от химической коррозии
Полностью предотвратить разрушение металлов в результате химического взаимодействия с агрессивными веществами, присутствующими в окружающей среде, невозможно. Однако этот процесс можно значительно замедлить. Для решения данной задачи используются следующие способы:
- уменьшение агрессии окружающей среды;
- повышение коррозиеустойчивости металла;
- исключение контакта между металлом и агрессивными веществами из окружающей среды.
Чтобы повысить коррозиеустойчивость стали, в нее включают легирующие добавки. Для покрытия металлов в целях противокоррозийной защиты используются другие металлы или неметаллические составы. Например, железо защищается от коррозии путем нанесения на его поверхность алюминия, цинка или никеля. Покрытия из
неметаллических составов выполняются при помощи разнообразных красок, лаков и полимеров, которые формируют на поверхности металлов защитную пленку, предотвращающую их контакт с окружающей средой. Преимущество использования красок и лаков заключается в наличии возможности наносить их на месте установки металлических конструкций. Кроме того, этот способ не требует больших затрат времени и денег и может применяться неоднократно по мере необходимости.
Кто нам мешает, тот нам поможет
В завершение укажем и на довольно необычный способ коррозионной защиты: с помощью самих окислов железа, точнее, одного из них — закиси-окиси Fe3O4. Данное вещество образуется при температурах 250…5000С и по своим механическим свойствам представляет собой высоковязкую технологическую смазку. Присутствуя на поверхности заготовки, Fe3O4 перекрывает доступ кислороду воздуха при полугорячей деформации металлов и сплавов, и тем самым блокирует процесс зарождения трибохимической коррозии. Это явление используется при скоростной высадке труднодеформируемых металлов и сплавов. Эффективность данного способа обусловлена тем, что при каждом технологическом цикле контактные поверхности обновляются, а потому стабильность процесса регулируется автоматически.