Какой гамма источник имеет монохроматический спектр излучения
Перейти к содержимому

Какой гамма источник имеет монохроматический спектр излучения

Источники монохромного излучения

Явление, при котором меняется направление распространения луча света, когда он переходит из одной среды в другую, как например, из вакуума или воздуха в такую другую среду, как стекло или вода или наоборот.

Показатель преломления
Численное значение, указывающее на степень преломления среды и выраженное формулой n=sin i/sin r. "n" это константа, не связанная с углом падения светового луча указывающая на показатель преломления преломляющей среды по сравнению со средой, из которой исходит луч.
Для обычного оптического стекла "n" , как правило, обозначает показатель преломления стекла по отношению к воздуху.

Дисперсия

Явление, при котором оптические характеристики среды меняются в зависимости от длинны волны светового луча, проходящего через среду. Когда свет поступает в линзу или призму, характеристики дисперсии линзы или призмы вызывают изменения показателя преломления в зависимости от длинны волны, в результате чего свет рассеивается. Иногда это явление называют также цветовой дисперсией.

Необычная частичная дисперсия
Человеческий глаз в состоянии чувствовать монохроматические световые волны в диапазоне от 400 нм (фиолетофые) до 750 нм (красные). В этом диапазоне разница в показателе преломления между двумя различными длинами волн называется частичной дисперсией. Большинство обычных оптических материалов обладают аналогичными характеристиками частичной дисперсии. Однако характеристики частичной дисперсии различны у некоторых стеклянных материалов, таких, как стекло, у которого бывает более значительная частичная дисперсия при коротких волнах, как стекло FK, у которого небольшой индекс преломления и низкие характеристики дисперсии, флюорит и стекло, у которого более значительная частичная дисперсия при длинных волнах. Эти типы стекла характеризуются как обладающие необычной частичной дисперсией. Стекло, обладающее такими характеристиками, используется в апохроматах, чтобы компенсировать хроматическую аберрацию.

Дисперсия света в призме

Отражение

Отражение отличается от преломления тем, что представляет собой явление, ведущее к тому, что часть света, падающего на стекло или на другую среду, отделяется и идет в совершенно новом направлении. Направление движения одинаково, независимо от длинны волны. Когда свет попадает в линзу, не имеющую противоотражательного покрытия, и выходит из нее, то приблизительно 5% света отражается на границу между стеклом и воздухом. Количество отраженного света зависит от показателя преломления стеклянного материала.

Дифракция

Явление, при котором световые волны отклоняются от прямолинейного распространения вблизи границ непрозрачных тел. Светящиеся точка излучает свет во все стороны, образуя неограниченный пучок лучей. Если на пути этого пучка расположить диафрагму, то за ней свет будет распространяться в виде ограниченного пучка. Однако при каком-то минимальном отверстии лучи теряют свою прямолинейность и огибают край диафрагмы — наступает момент дифракции света. Дифракционное изображение святящийся точки представляет собой святящееся пятно. окруженное концентрическими кольцами. Дифракция вызывает уменьшение контрастности и разрешающей способности изображения, в результате чего получается неконтрастное изображение. Хотя дифракция имеет тенденцию появляться тогда, когда диаметр диафрагмы меньше определенного размера, на самом деле она зависит не только от диаметра диафрагмы, но и от различных факторов, таких, как длинна волны света, фокусное расстояние и светосила объектива.

Интерференция

оптическое явление, возникающие при взаимодействии (наложении в пространстве) двух или более световых волн, состоящие во взаимном их усилении или ослаблении. Интерференция возникает, если разность фаз складываемых световых колебаний постоянна во времени. колебания световой волны, удовлетворяющие этим условиям, называют когерентными.

Интерференция в фотографии: просветленная оптика, цветные светофильтры, дихроичные зеркала.

2) монохроматическое и сложное видимое излучение

Монохромное излучение, Мо́нохромати́ческое излуче́ние (от др.-греч. μόνος — один, χρῶμα — цвет) — электромагнитное излучение, обладающее очень малым разбросом частот, в идеале — одной частотой (длиной волны).

Монохроматическое излучение формируется в системах, в которых существует только один разрешённый электронный переход из возбуждённого в основное состояние.

Источники монохромного излучения

На практике используют несколько способов получения монохромного излучения.

  • призматические системы для выделения потока излучения с заданной степенью монохроматичности
  • системы на основе дифракционной решетки
  • лазеры, излучение которых не только высоко монохроматично, но и когерентно
  • газоразрядные лампы и другие источники света, в которых происходит преимущественно один электронный переход (например, натриевая лампа, в излучении которой преобладает наиболее яркая линия D или Ртутная лампа). Газоразрядные лампы часто используют в сочетании со светофильтрами, выделяющими из линейчатого спектра лампы нужную линию.

Монохроматор на базе дифракционной решётки

Видимое излучение (свет) — излучение, которое, по­падая на сетчатую оболочку глаза, может вызвать зри­тельное ощущение (ощущение — превращение энергии внешнего раздражителя в факт сознания). Видимое из­лучение имеет длины волн монохроматических состав­ляющих в пределах 380—780 нм.

Инфракрасное излучение имеет длины волн моно­хроматических составляющих, большие длин волн види­мого излучения (но не более 1 мм). МКО предлагает следующее деление ИК области излучений: ИК-А от 780 до 1400 нм; ИК-В от 1400 до 3000 нм; ИК-С от 3000 до 10е нм (от 3 мкм до 1 мм).

Спектр излучения — совокупность монохроматиче­ских излучений, входящих в состав сложного излуче­ния. Спектр излучения может описываться графической, аналитической илн табличной зависимостью. Источники излучения могут иметь сплошной, полосатый, линейча­тый спектр или спектр, имеющий сплошную и линейча­тую составляющие.

МОНОХРОМАТИЧЕСКОЕ ИЗЛУЧЕНИЕ

Физический энциклопедический словарь. — М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1983 .

(от греч. monos — один и chroma, род. падеж chrOmatos — цвет) — эл.-магн. излучение одной определённой и строго постоянной частоты. Происхождение термина «М. и.» связано с тем, что различие в частоте световых волн воспринимается человеком как различие в цвете. Однако по своей природе электромагнитные волны видимого диапазона, лежащие в интервале 0,4 — 0,7 мкм, не отличаются от эл.-магн. волн др. диапазонов (ИК-, УФ-, рентгеновского и т. д.), по отношению к к-рым также используют термин «монохроматический» (одноцветный), хотя никакого ощущения цвета эти волны не дают.

Теория эл.-магн. излучения, основанная на Максвелла уравнениях, описывает любое M. и. как гармония, колебание, происходящее с неизменной амплитудой и частотой в течение бесконечно долгого времени. Плоская монохроматич. волна эл.-магн. излучения служит примером полностью когерентного поля (см. Когерентность), параметры к-рого неизменны в любой точке пространства и известен закон их изменения во времени. Однако процессы излучения всегда ограничены во времени, а потому понятие M. и. является идеализацией. Реальное естеств. излучение обычно представляет собой сумму нек-рого числа монохроматич. волн со случайными амплитудами, частотами, фазами, поляризацией и направлением распространения. Чем уже интервал, к-рому принадлежат частоты наблюдаемого излучения, тем оно монохроматичнее. Так, излучение, соответствующее отд. линиям спектров испускания свободных атомов (напр., атомов разреженного газа), очень близко к M. и. (см. Атомные спектры); каждая из таких линий соответствует переходу атома из состояния т с большей энергией в состояние n с меньшей энергией. Если бы энергии этих состояний имели строго фиксиров. значения 3042-21.jpgи 3042-22.jpg, атом излучал бы M. и. частоты v тп =( 3042-23.jpg)/h. Однако в состояниях с большей энергией атом может находиться лишь малое время Dt (обычно 10 -8 с — т. н.

время жизни на энергетич. уровне), и, согласно неопределённостей соотношению для энергии и времени жизни квантового состояния (D3042-24.jpg·Dt >= h), энергия, напр., состояния т может иметь любое значение между 3042-25.jpg+ + D 3042-26.jpgи 3042-27.jpg. Поэтому излучение каждой линии спектра соответствует интервалу частот Dv mn = D3042-28.jpg/h= =1/Dt (подробнее см. в ст. Ширина спектральной линии).

T. к. идеальным M. и. не может быть по самой своей природе, то обычно монохроматическим считается излучение с узким спектральным интервалом, к-рый можно приближённо характеризовать одной частотой (или длиной волны).

Приборы, с помощью к-рых из реального излучения выделяют узкие спектральные интервалы, наз. монохроматорами. Чрезвычайно высокая монохроматичность характерна для излучения нек-рых типов лазеров (ширина спектрального интервала излучения достигает величины 10 -7 нм, что значительно уже, чем ширина линий атомных спектров).

Лит.: Боpн M., Вольф Э., Основы оптики, пер. с англ., 2 изд., M., 1973; Калитеевский H. И., Волновая оптика, 2 изд., M., 1978. Л. H. Канарский.

MOHOXPOMATOP — спектральный оптич. прибор для выделения узких участков спектра оптич. излучения. M. состоит (рис. 1) из входной щели 1, освещаемой источником излучения, коллиматора 2, диспергирующего элемента 3, фокусирующего объектива 4 и выходной щели 5. Диспергирующий элемент пространственно разделяет лучи разных длин волн l, направляя их под разными углами f, и в фокальной плоскости объектива 4 образуется спектр — совокупность изображений входной щели в лучах всех длин волн, испускаемых источником. Нужный участок спектра совмещают с выходной щелью поворотом диспергирующего элемента; изменяя ширину щели 5, изменяют спектральную ширину dl выделенного участка.

Рис. 1. Общая схема монохроматора: 1— входная щель, освещаемая источником излучения; 2 — входной коллиматор; 3 — испергирующий элемент; 4 — фокусирующий объектив выходного коллиматора; 5 — выходная щель.

3042-29.jpg

Диспергирующими элементами M. служат дисперсионные призмы и дифракц. решётки. Их угл. дисперсия D =Df/Dl вместе с фокусным расстоянием f объектива 4 определяют линейную дисперсию Dl/Df = Df(Df — угл. разность направлений лучей, длины волн к-рых отличаются на Dl; Dl — расстояние в плоскости выходной щели, разделяющее эти лучи). Призмы дешевле решёток в изготовлении и обладают большой дисперсией в УФ-области. Однако их дисперсия существенно уменьшается с ростом l и для разных областей спектра нужны призмы из разных материалов. Решётки свободны от этих недостатков, имеют постоянную высокую дисперсию во всём оптич. диапазоне и при заданном пределе разрешения позволяют построить M. с существенно большим выходящим световым потоком, чем призменный M.

Осн. характеристиками M., определяющими выбор параметров его оптич. системы, являются: лучистый поток Ф’l, проходящий через выходную щель; предел разрешения dl*, т. е. наим. разность длин волн, ещё различимая в выходном излучении M., либо его разрешающая способность r, определяемая, как и для любого др. спектрального прибора, отношением l/dl*, а также относительное отверстие объектива коллиматора А0. Разрешающая способность r, ширина выделяемого спектрального интервала dl и спектральное распределение энергии излучения, прошедшего через выходную щель, определяются аппаратной функциейM., к-рую можно представить как распределение потока лучистой энергии по ширине изображения входной щели (в плоскости выходной щели), если та освещается монохроматическим излучением.

3043-1.jpg

Световой поток, выходящий из M., F’ l = т l F l = т l В l SWdl, где т l — коэф. пропускания M.; F l — световой поток, попадающий в M.; В l — спектральная яркость входной щели; S — площадь выходной щели; W — телесный угол лучей фокусирующего объектива, сходящихся на выходной щели. Произведение SW.= S 0 W 0 . (индексы 0 относятся к входной щели) при прохождении светового потока через прибор остаётся постоянным (если световые пучки не срезаются к.-л. диафрагмами) и наз. геом. фактором прибора. T. к. W = pd 2 /4f 2 = pA 2 /4, где f, d и А — фокусное расстояние, диаметр и действующее относительное отверстие фокусирующего объектива, a S= hb (h — высота, b — ширина выходной щели), то При определении оптим. условий работы M. существен характер спектра источника света — линейчатый или сплошной, — к-рым освещается входная щель. В первом случае выходящий поток пропорционален ширине выходной щели, во втором случае — квадрату ширины щели b 2 , а также квадрату пропускаемого спектрального диапазона (dl) 2 ; при заданном dl выходящий поток пропорционален линейной дисперсии M.

Объективы M. (коллиматорный и фокусирующий) могут быть линзовыми или зеркальными. Зеркальные объективы пригодны в более широком спектральном диапазоне, чем линзовые, и, в отличие от последних, не требуют перефокусировки при переходе от одного выделяемого участка спектра к другому, что особенно удобно для ИК- и УФ-областей спектра.

3043-2.jpg

Рис. 2. Автоколлимационная схема: 1— зеркало, вра щением которого осуществляется сканирование спектра.

3043-3.jpg

Рис. 3. z-образная симметричная схема: 1 дифракционная решётка; 2 — сферическое зеркало.

Из большого кол-ва существующих оптич. схем M. можно выделить, помимо традиционных (рис. 1), автоколлимационные (рис. 2), z -образные (рис. 3), схемы с расположением щелей одна над другой либо просто с одной щелью, у к-рой верх. часть служит входной, а нижняя — выходной щелью, и пр. В тех случаях, когда особенно важно избежать попадания в выходную щель M. рассеянного света с длинами волн, далёкими от выделяемого участка спектра (напр., в спектрофото-метрии), применяют т. н. двойные M., представляющие собой два M., расположенных так, что свет, выходящий из первого M., попадает во второй и выходная щель первого служит входной щелью второго (рис. 4). В зависимости от взаимного расположения диспергирующих элементов в каждом из этих M. различают двойные M. со сложением и с вычитанием дисперсий. Приборы со сложением дисперсий позволяют не только во много раз снизить уровень рассеянного света на выходе, но и увеличить разрешающую способность M., а при заданном разрешении — повысить выходящий световой поток (т. е. расширить щели). Двойные M. с вычитанием дисперсий позволяют снизить уровень рассеянного света без увеличения разрешающей способности. В них на выходную щель приходит свет такого же спектрального состава, с каким он вышел из ср. щели. Такие M. менее светосильны, чем M. со сложением дисперсий, однако они позволяют проводить сканирование спектра перемещением ср. щели в плоскости дисперсии прибора, что очень удобно конструктивно для спектрофотометров, особенно скоростных. В ряде случаев, когда необходимо одновременное выделение неск. недалёких узких спектральных интервалов, применяют простые M. с несколькими выходными щелями, т. н. полихроматоры.

3043-4.jpg

Рис. 4. Двойной монохроматор: 1 — средняя щель; 2 и 3 — дифракционные решётки, вращающиеся на общем основании; 49 — зеркала.

Лит.: Лабораторные оптические приборы, под ред. Л. А. Новицкого, 2 изд., M., 1979; Тарасов К. И., Спектральные приборы, 2 изд., Л., 1977; Пейсахсон И. В., Оптика спектральных приборов, 2 изд., Л., 1975. А. П. Гагарин.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .

Какой гамма источник имеет монохроматический спектр излучения

При создании этого раздела в основном были использованы материалы монографий [1,8] и обзора [7].

Изотопные источники гамма-квантов

Обычно в качестве радиоактивных источников гамма-квантов используются бета-активные изотопы. На рис. 1 в качестве примера показаны схемы распада 60 Co и 22 Na. Ядро 60 Co в основном распадается на возбужденное состояние 4 + дочернего ядра 60 Ni посредством разрешенного гамов-теллеровского перехода. Это возбужденное состояние переходит в основное посредством каскада E2-переходов с энергиями гамма-квантов 1173 и 1333 кэВ. Ядро 22 Na испытывает Также, как и в случае 60 Co, распад происходит в основном на возбужденное состояние дочернего ядра. 22 Na является источником γ с энергией 1275 и 511 кэВ. Последние образуются в результате аннигиляции позитронов.
Кроме бета-активных изотопов в качестве источников гамма-квантов используются также изомеры, например 119m Sn. Период полураспада измерного состояния 119m Sn T1/2 = 293.1 дня, энергия 23.9 кэВ. Кроме гамма-линии от распада изомерного состояния 119m Sn является источником рентгеновских квантов с энергиями 25.2 и 28.6 кэВ, которые сопровождают процесс внутренней конверсии, конкурирующим с гамма-переходом.
Собственные ширины γ на много порядков меньше энергий γ поэтому радиоактивные источники можно считать монохроматическими. Интенсивность радиоактивных источников может быть доведена до 10 14 фотонов в секунду.
В табл. 1 показаны бета-активные изотопы, которые используются в образцовых спектрометрических источниках (ОСГИ), применяемых в качестве рабочих эталонов для поверки и градуировки средств измерений фотонного излучения.

Таблица 1. Изотопы образцовых спектрометрических источников гамма-квантов
Гамма-кванты из ядерных реакций

Монохроматические γ-кванты более высокой энергии можно получить, используя ядерные реакции, которые приводят к сильному возбуждению конечного ядра. Если ядро сильно возбуждено, то вероятность его распада Г определяется соотношением

где Гx — вероятность испускания ядром нуклонов и более сложных частиц, а Гγ — вероятность излучения γ-кванта.
Если энергия возбуждения ядра меньше энергии связи нуклона, то Гx = 0 и Г = Гγ. Вероятность излучения γ-кванта Гγ также велика при возбуждениях ядер, вызванных захватом медленных нейтронов. В этом случае Г= Гn + Гγ, где Гn — вероятность обратного испускания нейтрона, причем для многих ядер Гγ > Гn. Испускание γ-квантов при захвате медленных нейтронов называется радиационным захватом или реакцией (n,γ).
При радиационном захвате медленных нейтронов обычно образуются γ-кванты с энергиями от 4 до 11 МэВ (энергии связи нейтронов в различных ядрах). Энергетический спектр γ-квантов такого источника содержит одну или несколько линий.
Создание достаточно интенсивных источников γ-квантов путем радиационного захвата нейтронов предполагает использование мощных ядерных реакторов. Современные ядерные реакторы позволяют получать интенсивности γ-квантов радиационного захвата до 10 8 квант/с.
Неизбежным недостатком γ-источников такого типа является большой нейтронный фон.
Если энергия возбуждения ядра значительно превышает энергию связи нуклона, то, как правило, возбуждение будет сниматься испусканием протонов, нейтронов или более сложных частиц. Однако и здесь возможны особые случаи, когда и Гγ
Рассмотрим в качестве примера состояние 1 + в ядре 8 Ве, имеющее энергию возбуждения 17.64 МэВ. Оно лежит ниже порога испускания нейтрона (18.9 МэВ), а обычный распад ядра 8 Ве, идущий по схеме запрещен, поскольку система двух может находиться лишь в состояниях 0 + , 2 + , 4 + и т. д. Поэтому указанное выше состояние в 8 Ве распадается с излучением γ-кванта. Спектр γ-квантов содержит две линии: при переходе в основное состояние 0 + испускаются γ-кванты с энергией 17.64 МэВ (узкая линия), при переходе на первое возбужденное состояние 2 + — γ-кванты с энергией 14.74 МэВ (широкая линия), При этом интенсивность первой линии примерно в два раза превосходит интенсивность второй.
Для возбуждения состояния ядра 8 Ве с энергией 17.64 МэВ используется захват ядром 7 Li протонов с Ер = 440кэВ:

За счет уменьшения толщины литиевой мишени энергетическая ширина γ0-линии (17.64 МэВ) может быть доведена примерно до 12 кэВ.
Варьируя энергию протонов Ер, можно плавно менять энергию γ-квантов поскольку эти величины связаны соотношением

Однако возможности изменения энергии сильно ограничены, так как увеличение энергии протонов приводит к быстрому уменьшению интенсивности γ-излучения. Так, уже при Ер = 800-900 кэВ интенсивность γ-квантов уменьшается примерно в 20 раз. Кроме того, начинает доминировать γ-линия с меньшей энергией.
Другой часто используемой реакцией является реакция 19 F(p,αγ) 16 О, в которой генерируются три γ-линии с энергиями 6.14, 6.92 и 7.12 МэВ, возникающие при распаде возбужденных состояний ядра 16 О. Их относительные интенсивности можно менять, варьируя энергии протонов. Так, при Ер = 2.05 МэВ 80% γ-квантов испускается с энергией 7.12 МэВ. Энергетическая ширина γ-линии 130 кэВ.
Реакция радиационного захвата протонов легкими ядрами наиболее удобна для создания γ-источников подобного типа. Одна из причин этого в том, что энергии связи протонов в легких ядрах велики, что позволяет получать монохроматические γ-кванты довольно больших энергий. Так, в реакции 3 Н(р,γ) 4 Не (энергия связи протона в 4 Не — 19.81 МэВ) можно получить γ-кванты с энергией более 20 МэВ. Энергетическая ширина γ-пучка в этой реакции может быть доведена до 40 кэВ. Плавное увеличение энергии протонов приводит и к плавному увеличению энергии γ-квантов. Верхняя граница энергии протонного пучка определяется выходом нейтронов в конкурирующей реакции 3 Н(р,n), начинающейся при Ер = 1.02 МэВ.
Получение удобного для экспериментов пучка монохроматических γ-квантов с энергиями существенно большими 20 МэВ в реакции (p,γ), так же как и в других ядерных реакциях, невозможно. Это связано с тем, что даже легкие ядра, захватывая протоны с Ер>1МэВ, оказываются в области энергий возбуждения, где уровни составного ядра начинают перекрываться. Кроме того, при возрастании энергии возбуждения увеличивается доля, каскадных γ-переходов. Все это приводит к сильному усложнению спектра γ-квантов и неизбежной конкуренции распадов с вылетом нуклонов и других частиц. Недостаток источников этого типа заключается также в сравнительно невысокой интенсивности γ
Диапазон плавного изменения энергии γ-квантов у источников рассматриваемого типа сильно ограничен.

Тормозное излучение от электронных ускорителей

Двигаясь с ускорением, быстрые электроны испускают электромагнитное излучение, называемое тормозным. Для получения тормозного γ достаточно поток электронов направить на любую мишень. В этом случае тормозное излучение возникает за счет ускоренного движения электронов в кулоновском поле ядер и атомарных электронов мишени.
Энергетический спектр γ-квантов тормозного излучения непрерывен и имеет верхнюю границу Т. Если полная энергия электронов до взаимодействия с мишенью равна Е0, то

Т = Е0 — mc 2 , (1)

где mc 2 — энергия покоя электрона (0.511 МэВ). Исключая область вблизи верхней границы, энергетический спектр тормозного излучения подчиняется простой зависимости l/Eγ, где Eγ — энергия испущенного γ-кванта.
Угловое распределение тормозного излучения обладает азимутальной симметрией. Оно определяется лишь величиной угла θ между направлениями движения фотонов и первичных электронов и характеризуется резким максимумом в направлении движения электронного пучка до взаимодействия с мишенью (т. е. при θ Наибольшая доля радиации заключена в пределах малого для релятивистских электронов угла θ Отсюда следует, что по мере увеличения энергии электронов тормозное излучение сосредоточивается во все более малом телесном угле.

Рис. 2. Спектры тормозного излучения для платиновой мишени при различных Е0

Поскольку сечение тормозного излучения быстро растет с увеличением атомного номера мишени, то последняя обычно изготовляется из вещества с большим Z (платина, вольфрам и др.). На рис. 2 в качестве примера приведены спектры тормозного излучения при различных Е0, рассчитанные для платиновой мишени.

Любой ускоритель электронов может быть использован как источник тормозного излучения. Такие источники обеспечивают наиболее интенсивные потоки высокоэнергичных γ. При токе электронного пучка в 100 МкА и тормозной мишени толщиной в 0.01 радиационную длину интенсивность фотонов независимо от энергии падающих электронов приблизительно равна Eγ на МэВ.

Методы монохроматизации гамма-излучения высокой энергии

Аннигиляция на лету быстрых позитронов

Суть метода состоит в использовании процесса аннигиляции на лету позитронов, движущихся с релятивистскими скоростями.
Быстрый позитрон с энергией Epos, двигаясь в веществе, может испытать аннигиляцию, не успев потерять сколько-нибудь значи­тельную часть своей первоначальной энергии. При аннигиляции позитрона могут образовываться два и более фотонов. Наиболее вероятный процесс — двухфотонная аннигиляция. Именно этот процесс и приводит к образованию монохроматических фотонов. Образование большего числа фотонов, например трех, приводит к непрерывному энергетическому распределению. Однако в связи с тем, что сечение трехфотонной аннигиляции мало, ею можно пренебречь (трехфотонная аннигиляция происходит в 370 раз реже, чем двухфотонная).
При двухфотонной аннигиляции, которую и будем рассматривать в дальнейшем, образуется два γ-кванта с энергиями

(2)
Eγ2 = Epos — Eγ1+ mc 2 , (3)

где θ — угол между направлением испускания первого фотона и направлением движения позитрона.
Наиболее вероятно испускание двух фотонов в противоположных направлениях под углами, близкими к 0 и 180° относительно направления движения позитрона. При этом фотон, испускаемый под углом 0°, т. е. в переднем направлении, уносит практически всю энергию. Действительно, полагая θ = 0 и mc 2 << Epos, из (2 и 3) получаем

Рис. 3. Зависимость энергии аннигиляционного фотона, летящего в переднем направлении, от угла для позитронов с полной энергией 20 МэВ

Зависимость энергии аннигиляционных γ-квантов от угла θ (см. формулу (2) и рис. 3) приводит к тому, что спектр фотонов в конечном телесном угле не является строго монохроматичным. При увеличении энергии позитрона энергетический разброс уменьшается. Если пренебречь многократным рассеянием позитронов в веществе мишени, где происходит аннигиляция, то угол, в котором энергетический разброс не превышает величины

согласно оценкам равен (2Epos) 1/2 . Поэтому, выделяя аннигиляционные фотоны, летящие в пределах достаточно малого телесного угла, можно достичь весьма высокой степени монохроматизации γ-излучения. Быстрые позитроны, необходимые для создания аннигиляционногоизлучения, получают,направляя релятивистские электроны с полной энергией Eel на мишень (конвертор) с высоким Z (тяжелые ядра). Тормозное излучение, генерируемое в мишени, образует в этой же мишени электронно-позитронные пары. Позитроны выходят из конвертора в широком телесном угле и имеют полные энергии в интервале от 0 до Eel — 2mс 2 . Располагающийся после конвертора магнитный анализатор выделяет позитроны, энергии которых заключены в узком интервале. Эти позитроны либо сразу, либо после дополнительного ускорения направляются на аннигиляционную мишень с малым Z (легкие ядра). Образующиеся в этой мишени аннигиляционные γ-кванты и используются далее для проведения эксперимента.
Поскольку процесс образования аннигиляционных фотонов является двухступенчатым, то выход монохроматического излучения очень мал. Обычно вероятность рождения электроном позитрона в конверторе не превышает а выход аннигиляционных фотонов на один позитрон приблизительно равен . Таким образом, выход аннигиляционных фотонов на один электрон составляет величину не более . Очевидно поэтому, что создание интенсивных потоков аннигиляционного γ-излучения возможно лишь при наличии сильноточных электронных ускорителей.

Рассмотрим в качестве примера монохроматор (рис. 4), работавший в Ливерморе (Калифорнийский университет, США) [2,3].

Рис. 4. Установка для создания квазимонохроматических фотонов в Ливерморе (США).

Электроны с энергией 150 кэВ инжектировались в первую секцию линейного ускорителя. В конце секции перед попаданием на конвертор они имели энергию около 10 МэВ. Конвертор, изготовленный из тантала (Z = 73) или вольфрама (Z = 74), имел толщину около 2.5 мм. Позитроны, образующиеся в конверторе, фокусировались магнитной линзой и ускорялись двумя следующими секциями линейного ускорителя примерно до 30 МэВ. Перестройка секций ускорителя с режима ускорения электронов на режим ускорения позитронов и наоборот осуществлялась поворотом фазы высокочастотного электрического напряжения. Полный выход позитронов на один электрон был равен . С учетом того что магнитный анализатор отбирал для дальнейшего ускорения позитроны с разбросом по энергии не более 1%, выход позитронов на один электрон составлял величину около
Необходимо отметить, что энергия позитронов, вводившихся во вторую секцию линейного ускорителя, была примерно в три раза меньше энергии электронов, попадавших на конвертор. Это было связано с тем, что энергетическое распределение позитронов, выходящих из конвертора, имеет максимум при энергии, соответствующей примерно одной трети энергии электронов. В качестве аннигиляционной мишени использовался образец из LiH толщиной 0.15 мм. Выход аннигиляционных фотонов на один позитрон для такой мишени был равен
Как уже упоминалось, конверторы изготовляют из материалов с высоким Z, в связи с тем что выход позитронов зависит от вероятности двух последовательных процессов: образования тормозного γ-излучения и рождения электронно-позитронных пар, причем сечение каждого из этих процессов растет, как Z 2 .
Выбор в качестве материала для аннигиляционной мишени веществ с малым Z объясняется необходимостью максимального подавления относительного вклада тормозного позитронов, которое неизбежно сопровождает аннигиляционное Поскольку выход аннигиляционных порционален Z, то для легких ядер соотношение между числом аннигиляционных и тормозных будет максимальным.

Рис. 5. Спектры , образующихся при бомбардировке бериллиевой мишени позитронами различной энергии

Таким образом, спектр , возникающих при попадании на аннигиляционную мишень быстрых позитронов, не является строго монохроматическим, так как содержит тормозное излучение. Энергетические спектры , рассчитанные для случая бериллиевой мишени, приведены на рис. 5. При этом полагалось dEγ, равным 1 МэВ, а форма аннигиляционного пика считалась гауссовой и соответствовала энергетическому разрешению 5%. Видно, что с увеличением Epos соотношение между числом аннигиляционных и тормозных ухудшается. Действительно, число аннигиляционных растет, как Epos, а число тормозных в низкокоэнергетичной части спектра растет примерно как E 2 pos.
Неизбежное присутствие тормозного -излучения является недостатком описываемого метода монохроматизации, так как приводит к необходимости получения конечного результата в виде разности двух измерений. Вначале измеряют выход Ypos(Epos) реакции с пучком фотонов, генерируемых аннигиляционной мишенью при попадании на нее позитронов энергии Epos, а затем — выход реакции Yel(Eel) с пучком фотонов, возникающих в аннигиляционной мишени при попадании на нее такого же числа позитронов или электронов той же энергии. В последнем случае спектр фотонов чисто тормозной и разность Ypos(Epos) — Yel(Eel) есть выход исследуемой реакции, отвечающий пику аннигиляционного излучения.
Однако извлечение корректной информации о сечениях реакций на основании экспериментальных данных о выходах представляет из себя нетривиальную задачу и требует хорошего знания параметров аппаратной функции [4].
Сравнительно невысокая интенсивность аннигиляционных пучков ограничивает их эффективное использование одним типом экспериментов — измерением эффективных сечений фотонейтронных реакций. Недостаточно высокая интенсивность аннигиляционного излучения в таких экспериментах может быть компенсирована большим (до нескольких сот граммов) весом исследуемой мишени.

Меченые фотоны
Рис. 6. Схема монохроматора, использующего принцип меченых фотонов

В этом методе исследуемой мишени облучается пучком тормозного излучения, и для каждого случая фотоядерной реакции определяется энергия фотона, который эту реакцию вызвал. Осуществляется это следующим образом (см. рис. 6). Пучок электронов выводится из ускорителя и направляется на тормозную мишень, расположенную вне ускорительной камеры. Электрон с энергией E0, взаимодействуя с тормозной мишенью, испускает фотон с энергией Eγ и выходит из нее с меньшей энергией Е. Фотон попадает далее на исследуемую мишень и вызывает фотоядерную реакцию. Поскольку E0, Е и Eγ однозначно связаны соотношением

то, измерив энергию Е рассеянного электрона и зарегистрировав его на совпадение с продуктами фотоядерной реакции, можно найти энергию Eγ фотона, который эту реакцию вызвал (E0 известна, так как определяется режимом работы ускорителя). Энергию рассеянного электрона Е обычно определяют с помощью магнитного спектрометра.
Энергию Eγ можно варьировать, меняя энергии E0 и Е.
Энергетическое разрешение метода меченых фотонов определяется главным образом разрешением магнитного спектрометра и в принципе может быть выше энергетического разрешения метода аннигиляции на лету быстрых позитронов. Метод меченых фотонов был впервые реализован на синхротроне Корнельского университета (США). Монохроматор, использующий метод меченых фотонов, был создан также в 1961 г. в Иллинойском университете (США) [5]. Его энергетическое разрешение равно 0.67% для фотонов с энергией 11-19 МэВ. Максимальная интенсивность пучка фотонов составила величину 5 . 10 5 фотонов в секунду. Вторичные электроны детектировались шестью пластиковыми сцинтилляторами, расположенными в фокальной плоскости магнитного спектрометра. Одновременно фиксировалась энергия электронов Е и время их регистрации. Энергия нейтронов из реакций
К недостаткам метода меченых фотонов следует отнести необходимость непосредственной регистрации продуктов ядерной реакции, что не позволяет использовать ряд методов регистрации, например, метод наведенной активности. Один из наиболее перспективных путей повышения интенсивности пучка меченых фотонов — использование линейных ускорителей со стопроцентным рабочим циклом. Однако, даже на таких ускорителях удается использовать лишь часть интенсивности электронных пучков (см. табл. 2). Основное ограничение на интенсивность накладывает быстродействие системы регистрации. (Характерное разрешающее время в системах меченных фотонов составляет

Таблица 2. Параметры систем мечения фотонов на электронных ускорителях с большим коэффициентом заполнения

Здесь Ee — энергия электронов, Je — ток электронов, k — коэффициент заполнения пучка, Eγ — энергия гамма-квантов, — эффективность системы мечения, J — используемый ток электронов при работе в режиме мечения фотонов, I — поток меченных фотонов в диапазоне ΔEγ/Eγ

Комптон-эффект на покоящемся электроне

Для создания источника монохроматических фотонов регулируемой энергии можно использовать комптон-эффект на покоящемся и движущемся электроне (так называемый прямой и обратный комптон-эффект). В первом случае пучок монохроматических , образующихся в какой-либо ядерной реакции, испытывает рассеяние на электронах неподвижной мишени. Во втором — фотонный пучок мощного лазера пучок рассеивается на встречном пучке высокоэнергичных монохроматических электронов .
Использование прямого комптон-эффекта позволяет устранить один из наиболее существенных недостатков пучков γ образующихся в ядерных реакциях — невозможность плавной регулировки энергии фотонов. Действительно, энергия Eγ0 падающего фотона связана с энергией γ фотона после комптоновского рассеяния следующим соотношением:

где mc 2 — энергия покоя электрона, а φ — угол между направлениями движения фотона до и после рассеяния. Таким образом, энергия рассеянного фотона однозначно определяется величиной угла φ, меняя который можно получить фотоны любой энергии в интервале от mc 2 /2 до γ0.

Рис. 7. Принцип использования прямого комптоновского рассеяния

Если рассеиватель занимает участок сферической поверхности, на которой расположены источник монохроматических фотонов фиксированной энергии и исследуемая мишень, то энергия всех фотонов, попадающих на исследуемую мишень, будет одной и той же (рис. 7). Эту энергию можно менять, перемещая либо мишень, либо -источник вдоль поверхности сферы.

В первых экспериментах с монохроматором такого типа использовались -кванты радиационного захвата тепловых нейтронов пластинкой кадмия (рассеиватель — графит). Интенсивность рассеянных -квантов была такой, что на расстоянии 10 м от источника на площадку в 1 см 2 падал 1 фотон в секунду в интервале энергий 1 эВ. Энергия -квантов могла плавно меняться в интервале от 0.1 до 8.0 МэВ.
В другой установке этого типа использовались -кванты радиационного захвата нейтронов в Ti и Ni. Рассеиватель изготовлялся из алюминия. Энергия рассеянных менялась от 0.5 до 8.5 МэВ. Энергетическое разрешение было равно 1-3%, а интенсивность фотонов 1 квант/эВ . с . см 2 .
Недостаток этого метода в том, что энергия рассеянных фотонов ограничена сверху и без того не слишком высокой энергией радиационного захвата. Наиболее целесообразно использование радиационного захвата медленных нейтронов, интенсивность которых может быть очень высокой).

Обратное комптоновское рассеяние лазерных фотонов на электронах
Рис. 8. Геометрия комптоновского рассеяния фотона на движущемся электроне

Монохроматические -кванты более высокой энергии можно получить, используя обратный комптон-эффект [6, 7, 8].
Комптон-эффект на движущемся электроне обладает важной особенностью — в процессе рассеяния возникают фотоны значительно более жесткие, чем рассеиваемые. Так при рассеянии световых фотонов на релятивистских электронах рассеянные фотоны имеют энергию, сравнимую с энергией первичных электронов. Действительно, обобщая выражение (6) для случая, когда электроны движутся со скоростью v, можно получить

где Е0 — полная энергия электрона до взаимодействия, а смысл углов θ и φ поясняется рис. 8.
Таким образом, при фиксированных значениях Е0 и Eγ энергия рассеянного фотона полностью определяется геометрией эксперимента (углами и ).
Поскольку мы рассматриваем случай рассеяния фотонов не слишком высокой энергии на ультрарелятивистских электронах, то Е0 >> Еγ0 и третьим слагаемым в знаменателе выражения (7) можно пренебречь. В этом приближении

Отсюда видно, что энергия рассеянного фотона максимальна в случае, когда электрон и фотон до взаимодействия двигаются навстречу друг другу а рассеянный фотон двигается в том же направлении, что и пучок электронов (θ — φ = 0°). Тогда, учитывая также, что из выражения (8) получим

Из соотношения видно, что даже в случае использования источника фотонов малой энергии энергия рассеянных фотонов может быть сколь угодно большой за счет повышения энергии электронов. Это открывает возможность получения интенсивного пучка монохроматических высокой энергии за счет использования мощных лазеров. Действительно, при рассеянии фотонов рубинового лазера Еγ0 на электроне с энергией 6 ГэВ Eγ
Энергию рассеянных фотонов можно варьировать либо изменением энергий Е0 и Еγ0, либо изменением угла наблюдения — φ. С увеличением Е0 и Еγmax растет очень быстро. При

Таблица 3. Зависимость энергии фотонов обратного комптоновского рассеяния от энергии электронов (рубиновый лазер).
Е0 1 ГэВ 6 ГэВ 40 ГэВ 500 ГэВ
Еγmax 28 МэВ 848 МэВ 20 ГэВ 497 ГэВ

Энергетическое разрешение пучка рассеянных фотонов зависит от степени их коллимации, т. е. разброса в угле Рассмотрим случай, когда фотон после рассеяния назад летит под малым углом относительно направления движения первичного пучка электронов и Из соотношения (8) с учетом того, что получаем

где Еγmax определяется соотношением (9).
Если осуществляется коллимация рассеянных назад фотонов в пределах угла ± относительно направления движения первичного пучка электронов, то из (10) следует, что минимальная энергия рассеянного фотона определяется соотношением

(максимальная энергия рассеянного фотона дается формулой (9)). Отсюда следует, что для оценки энергетического разрешения пучка рассеянных назад фотонов можно использовать выражение

Полагая = 10 -5 рад, Еγ0 = 1.78 эВ и Е0 = 8 ГэВ, получаем Еγmax = 1.44 ГэВ и энергетическое разрешение около 2%. С ростом Е0 энергетическое разрешение при том же угле коллимации ухудшается. Так, при Е0 = 16 ГэВ Еγmax оно равно 6.5%.
Интенсивность пучка монохроматических фотонов, получаемых с помощью обратного комптон-эффекта, определяется как интенсивностью лазерного излучения, так и интенсивностью электронного пучка. Число фотонов, излучаемое мощными лазерами, достигает 10 20 в импульсе при длительности импульса Рассеяние такого числа фотонов на электронном сгустке такой же длительности с числом электронов позволит получить интенсивность монохроматических фотонов до 10 7 фотон/с при энергетическом разрешении около 5%.
Для получения комптоновских пучков целесообразно использовать электронные накопители с током в несколько сотен миллиампер.
Метод обратного рассеяния был предложен в 1963 г. Первая установка, на которой начались ядернофизические исследования была создана во Фраскати (Ladone). С 1994 г. в Новосибирске ведутся исследования на установках РОКК (Рассеянные Обратные Комптоновские Кванты). В настоящее время на комптоновсих пучках ведутся работы также в Брукхейвене на установке LEGS (Laser Electron Gamma Source), в Гренобле — GRAAL (GRenoble Accelerateur Anneau Laser), в Японии — LEPS (Laser Electron Photon Source). В табл. 4 приведены основные параметры установок с пучками обратных комптоновских фотонов.

Таблица 4. Параметры установок с пучками обратных комптоновских фотонов
Установка Ladone Taladone РОКК LEGS GRAAL LEPS
1 2
Накопитель Adone
(Фаскати)
ВЭПП-4,3,4М
(Новосибирск)
NSLS
(Брукхейвен)
ESRF
(Гренобль)
SPring-8
(Осака)
Энергия электронов, ГэВ 1.5 1.5 1.8-5.5 0.35-2.0 1.4-5.3 2.5 6.04 8.0
Ток электронов, А 0.1 0.1 0.2 0.1 0.2 0.2 0.1 0.2
Энергия лазерных фотонов, эВ 2.45 2.45 2.34-2.41 2.41-2.53 1.17-3.51 3.53 3.53 3.5
Энергия комптоновских квантов, МэВ 5-80 35-80 100-960 140-220 100-1200 180-320 550-1470 150-2400
Разрешение по энергии (FWHM), МэВ 0.07-8 4-2 1.5-2 4 6 16 30
Интенсивность гамма-квантов, с -1 10 5 5 . 10 5 2 . 10 5 2 . 10 6 2 . 10 6 4 . 10 5 2 . 10 6 10 7

Видно, что в этих установках перекрывается широкий диапазон энергий. Интенсивность пучка не превышает 10 7 с -1 . Ограничение по интенсивности связано с выбиванием лазерным пучком электронов с орбиты накопителя. Повышения интенсивности можно достичь, используя длинноволновые лазеры, когда потери энергии электронов на излучение гамма-квантов сравнительно невелики и электроны не теряются в накопителе, а возвращаются на равновесную орбиту.
Для получения высокой монохроматичности пучка небольших энергий Еγ используется коллимация пучка. Однако с увеличением энергии требуемый диаметр коллиматора становится слишком малы, поэтому дополнительно применяется система меченных фотонов.
Для примера на рис. 9 показана схема установки РОКК-2.

Рис. 9. Cхема установки РОКК-2 на накопителе ВЭПП-3.
  • при довольно высокой интенсивности удается получить хорошую монохроматичность;
  • фон тормозных низкоэнергетических фотонов, который в данном случае возникает только на остаточном газе вакуумной системы накопителя очень мал;
  • можно плавно менять верхнюю границу комптоновского спектра, изменяя начальную энергию электронов;
  • интенсивность пучка гамма-квантов слабо зависит от энергии электронов;
  • можно получать гамма-кванты с линейной или циркулярной поляризацией, степень которой близка к 100%, поляризацией пучка легко управлять, изменяя поляризацию лазерных фотонов.
Квазимонохроматическое излучение фотонов из ориентированных монокристаллов

Спектр когерентного излучения из ориентированного кристалла, облучаемого электронами, кроме тормозной компоненты, один из которых (при меньшей энергии) имеет максимальную интенсивность. Метод был реализован во Фраскатти и Харькове. Обычно используются тонкие монокристаллы алмаза. Настройка по энергии осуществляется вращением кристалла относительно направления падающего пучка. Во Фраскати при энергии электронов 1 ГэВ диапазон энергий гамма-квантов составлял 100-550 МэВ. Как во Фраскати, так и в Харькове были получены интенсивности

Гамма-излучение (γ): что это такое, источники, длина волны, частота, свойства, применение

Гамма-излучение – это коротковолновое электромагнитное излучение с длиной волны менее 1 нм, что соответствует энергии фотона около 1 кэВ.

Простое объяснение

Одним из самых интересных явлений, наблюдаемых во Вселенной, являются гамма-вспышки. Это короткие импульсы гамма-излучения, которые появляются в среднем раз в день где-то в небе. Источники гамма-вспышек расположены в миллиардах световых лет от Земли и являются самыми мощными взрывами во Вселенной. Обычно всего за несколько секунд они выделяют больше энергии, чем наше Солнце за всю свою жизнь. Считается, что гамма-вспышки возникают в результате взрывов очень массивных звезд – сверхновых, которые коллапсируют в черную дыру.

Видение взрыва сверхновой

Рис. 1. Так представляет собой взрыв сверхновой. Источник: [ ESA/Hubble / CC BY ]

Приведенный ниже материал поможет вам лучше понять, что такое гамма-излучение, каковы его свойства, как оно возникает и как взаимодействует с веществом.

Рассматривая визуализации спектра электромагнитного излучения, можно заметить, что каждый тип излучения ассоциируется с каким-либо широко используемым устройством, которое использует данный тип излучения. Такие визуализации “работают на воображение”, в некотором смысле “знакомя” нас с определенным типом электромагнитного излучения.

Исключением является гамма-излучение ( γ ), которое чаще всего визуализируется с помощью клевера, являющегося символом радиоактивности. Гамма-излучение действительно широко используется, например, в медицинской диагностике, однако используемые устройства гораздо менее распространены и менее известны, чем, скажем, рентгеновский аппарат.

Определение:

Гамма-излучение – это коротковолновое электромагнитное излучение с длиной волны менее 1 нм, что соответствует энергии фотона около 1 кэВ.

Свойства

Гамма-излучение – это электромагнитная волна очень высокой энергии, т.е. очень короткой длины волны (рис. 2.). Условно принято, что верхний предел длины гамма-волны составляет 0,1 нм, что соответствует минимальной энергии гамма-кванта около 0,1 МэВ. Следует отметить, что не существует строгой границы между гамма-излучением и рентгеновскими лучами, которые имеют большую длину волны и меньшую энергию, чем гамма-излучение. Диапазоны обоих типов электромагнитных волн частично перекрываются.

Электромагнитный спектр

Рис. 2. Электромагнитный спектр

Гамма-излучение, как и другие виды электромагнитного излучения, распространяется в вакууме со скоростью света, т.е. 3 * 10 8 м / c

В случае гамма-излучения квантовая природа излучения становится наиболее очевидной. Во всех наблюдаемых явлениях гамма-фотоны ведут себя как частицы, обладающие импульсом. Хотя гамма-излучение является электромагнитной волной, наблюдение волновых явлений, таких как дифракция, очень сложно.

Энергия гамма-фотонов, E, выражается формулой: E = h * f = h * c / λ

где h = 6,6*10 -34 Дж*с – постоянная Планка, f – частота волны, λ – длина волны, c = 3*10 8 м/с – скорость света.

Источники

Источники гамма-излучения также находятся вокруг нас. К счастью, они обычно не излучают такую энергию, которая могла бы причинить нам вред. В природе его основными источниками являются распады естественных радиоактивных изотопов и космическое излучение.

Источником гамма-излучения обычно являются атомные ядра. Гамма-квант испускается атомным ядром в результате радиоактивного распада. Испуская гамма-квант, ядро избавляется от избыточной энергии и переходит из возбужденного состояния в основное.

Взаимодействие с веществом

Гамма-излучение называют ионизирующим излучением. Это означает, что, взаимодействуя с веществом, оно способно ионизировать атомы и молекулы. Мы выделяем три основных процесса взаимодействия гамма-излучения с веществом:

  1. Собственный фотоэлектрический эффект, при котором падающий на вещество фотон передает всю свою энергию электрону на атомных оболочках, отрывая его от атомов или перемещая на более высокий энергетический уровень.
  2. Комптоновское рассеяние (эффект Комптона), при котором фотон гамма-излучения передает часть своей энергии электрону (рис. 3). Движение электрона и фотона после рассеяния подчиняется принципу сохранения энергии и импульса. В одном акте взаимодействия обычно происходит небольшое изменение энергии кванта гамма-излучения. Изменение энергии фотона зависит от угла рассеяния ( θ ), т.е. угла между вектором скорости фотона после рассеяния и до рассеяния. Максимальная передача энергии происходит в результате обратного рассеяния, то есть когда фотон после рассеяния движется в направлении, противоположном первоначальному ( θ = 180° ).

Эффект Комптона — неупругое рассеяние фотона заряженной частицей, обычно электроном, названное в честь первооткрывателя Артура Холли Комптона. Если рассеяние приводит к уменьшению энергии, поскольку часть энергии фотона передаётся отражающемуся электрону, что соответствует увеличению длины волны фотона (который может быть рентгеновским или гамма-фотоном), то этот процесс называется эффектом Комптона

Википедия

Диаграмма комптоновского рассеяния

Рис. 3. Диаграмма комптоновского рассеяния

3. Создание электрон-позитронных пар, заключающееся в изменении высокоэнергетического фотона в пару частица-античастица. Для того чтобы процесс произошел, энергия кванта гамма-излучения должна быть больше, чем сумма масс покоя частиц, умноженная на c 2 . Масса электрона, определенная в единицах МэВ / c 2 составляет 0,51. Таким образом, предельная энергия фотона составляет около 1.02 МэВ.

Вероятность возникновения того или иного процесса зависит от энергии фотонов гамма-излучения и от материала, в котором происходит взаимодействие. На рисунке 4 представлена диаграмма условий, в которых доминируют определенные, упомянутые процессы. По оси x – энергия фотона, по оси y – атомный номер (зарядовое число) материала. В случае материалов со средним и высоким атомным номером, фотоэффект доминирует при низких энергиях фотонов (ниже около 1 МэВ), эффект Комптона доминирует при средних энергиях фотонов (около 1-5 МэВ). Высокоэнергетические кванты гамма-излучения (выше 5 МэВ) подвергаются в основном созданию электрон-позитронных пар.

Диаграмма условий

Рис. 4. Диаграмма условий, при которых доминируют три основных процесса взаимодействия электромагнитного излучения с веществом

Гамма-излучение характеризуется очень высокой проникающей способностью. Эффективное поглощение пучка фотонов требует использования толстых экранов, обычно изготовленных из свинца или другого материала с высокой плотностью и атомным номером.

Во всех этих явлениях появляются высокоэнергетические электроны, которые еще больше ионизируют материю. Возникновение одного из этих явлений является случайным. Гамма-фотон может пройти большой путь в веществе и не быть поглощенным. Если пучок гамма-лучей проходит через вещество, некоторые из фотонов будут случайным образом удалены из пучка в результате одного из вышеперечисленных процессов, в то время как другие будут двигаться беспрепятственно даже через толстый слой вещества.

Поглощение гамма-фотонов в веществе можно сравнить с ездой сумасшедших водителей, которые движутся с постоянной высокой скоростью и не останавливаются на светофорах. Некоторые из них быстро выбывают из движения из-за аварий, но некоторые счастливчики могут проехать сотни километров.

Защита и вред от гамма-излучения

Гамма-излучение является длинноволновым излучением – диапазон гамма-излучения в веществе теоретически бесконечен, но на практике достаточная защита обеспечивается свинцовыми пластинами или многометровым слоем бетона.

Гамма-излучение дальнего действия может стать для нас проблемой, поскольку это излучение вредно для живых организмов. Он очень проникающий, легко проходит по всему телу, а ионизация вызывает повреждение клеток различных органов. Если доза поглощенного излучения превышает определенное значение, называемое пороговой дозой, может возникнуть лучевая болезнь.

Ионизация вызывает повреждение клеток живых организмов. Поэтому гамма-излучение достаточно высокой интенсивности является смертельным для организмов. Кроме того, гамма-излучение очень проникающее и легко проходит через толстый слой воздуха и большинство окружающих нас предметов. При контакте с источниками гамма-излучения необходимо соблюдать осторожность и надевать защиту, обычно в виде свинцовых пластин. Гамма-излучение лучше всего поглощается материалами, содержащими элементы с высоким массовым числом, например, свинец.

Однако гамма-излучение не является экзотическим явлением, с которым мы не сталкиваемся в повседневной жизни. Гамма-излучение, исходящее от радиоактивных изотопов, которых в каждом предмете, а также в нашем теле содержится очень мало, постоянно присутствует в окружающей среде. Гамма-излучение также достигает поверхности Земли из космоса и является компонентом так называемого космического излучения. Окружающее нас излучение, известное как фоновое излучение, не вредно для нас. Только высокие дозы, которым могут подвергаться, например, работники атомных электростанций, представляют собой проблему и требуют специальной защиты.

Гамма-излучение образуется внутри звезд в реакциях слияния легких ядер в более тяжелые. При этом выделяется огромная энергия, которая испускается, в частности, в виде гамма-излучения. Самые большие выбросы гамма-излучения происходят при крупных космических катастрофах, таких как столкновения между нейтронными звездами или черными дырами или коллапс массивной звезды в черную дыру при взрыве сверхновой. Так называемые гамма-вспышки, которые достигают Земли, происходят в результате таких событий.

Применение

Ядерная медицина, отрасль медицины, использующая радиоактивные изотопы для терапии и диагностики, в последние годы стремительно развивается. Посмотрите на фотографию оборудования (рисунок 5) для радиотерапии в клинике в Гейдельберге (Германия). Оборудование стоимостью 119 миллионов евро занимает огромный зал, и все это для пациента, которого мы видим в правом нижнем углу, лежащего внутри огромного аппарата. Ядерная медицина – это обширная и интересная область. Здесь мы обсудим некоторые применения гамма-излучения в медицине и других областях жизни.

Университетская клиника Гейдельберга

Рис. 5. Университетская клиника Гейдельберга

Мы также можем использовать опасные свойства гамма-излучения в своих целях. Это излучение можно использовать для стерилизации медицинского оборудования, а также пищевых продуктов.

Стерилизация.

Стерилизация заключается в уничтожении бактерий, плесени, грибков, паразитов и патогенных микроорганизмов с помощью ионизирующего излучения. Во время процедуры используется гамма-излучение, исходящее от радиоактивного изотопа кобальта, или высокоэнергетические электроны, получаемые в ускорителях. Типы источников излучения и правила эксплуатации радиационного оборудования регламентируются международными стандартами. Они гарантируют, что при облучении в пищевых продуктах не образуются вредные для здоровья вещества. Продукты питания дольше сохраняют свою свежесть, так как при облучении погибают микроорганизмы, вызывающие разложение продуктов.

Радиоизотопные счетчики.

Одно из наиболее распространенных применений гамма-излучения – радиоизотопные счетчики. Эти измерители используются для точного измерения толщины материала, когда это измерение невозможно выполнить стандартным методом. К ним относятся абсорбционные измерители, принцип действия которых основан на явлении поглощения гамма-излучения.

Чем толще материал, тем больше поглощается падающий луч. С одной стороны измеряемого объекта находится источник излучения, например, кобальт Top Index 60 Co, помещенный в экран, а с другой стороны – детектор гамма-лучей, который измеряет, сколько излучения прошло через материал. Знание зависимости поглощения гамма-излучения от толщины материала позволяет определить измеряемую толщину.

Диапазон измерения толщины очень широк и варьируется от долей миллиметра до нескольких сантиметров. Радиоизотопные измерители не контактируют с измеряемым материалом во время измерения, что позволяет проводить измерения подвижных, высокотемпературных, вязких материалов, а также материалов и медицинских изделий, для которых важно не загрязнять образец во время измерения. Гамма-излучение кобальта 60 Co также используется в дефектоскопии, которая занимается обнаружением скрытых дефектов в изделиях.

Ядерная медицина.

Очень важной областью применения гамма-излучения является медицина. Это излучение используется как для лечения рака, так и для диагностики. Этим занимается отрасль медицины, называемая ядерной медициной. Устройства, используемые в ядерной медицине, включают:

  1. Кобальтовая бомба – это устройство, используемое для лечения рака, а также для упомянутой выше стерилизации продуктов питания. Изотоп кобальта 60 Co, испускающий гамма-лучи с энергией 1,17 и 1,33 МэВ, помещен в толстый свинцовый экран, имеющий каналы, выводящие пучок излучения. Кобальтовая бомба также может быть оснащена механизмом, позволяющим дистанционно манипулировать образцами, не подвергая оператора воздействию радиации.
  2. Гамма-нож – чрезвычайно точный медицинский прибор, используемый в радиохирургии, т.е. хирургии мозга без вскрытия черепа. Для точного выполнения процедуры пациент обездвиживается. С помощью визуализации, например, компьютерной томографии, определяется местоположение опухоли. Затем на место расположения опухоли направляется около 200 пучков гамма-излучения, источником которых являются капсулы, содержащие радиоактивный кобальт 60 Co. Суть метода заключается в том, что отдельные пучки излучения достаточно слабы, чтобы не повредить мозг при проникновении. С другой стороны, в точно определенном месте доза от отдельных лучей суммируется – ее мощность в 200 раз превышает мощность дозы от одного луча. В результате в области опухоли излучение достигает мощности, необходимой для уничтожения опухолевых клеток. Риск побочных эффектов очень низок по сравнению с традиционной нейрохирургией. Кроме того, лечение практически не требует выздоровления. Пациенты, прошедшие облучение на гамма-ноже, возвращаются к нормальной жизни на следующий день после процедуры.
  3. Однофотонная эмиссионная компьютерная томография (ОФЭКТ) – это метод, использующий гамма-излучение для создания пространственного изображения любой области тела пациента.

Обследование начинается с введения радиофармпрепаратов в организм пациента. Это химические соединения, состоящие из двух элементов – радиоактивного изотопа и носителя, способного депонироваться в тканях и органах. Носители особенно интенсивно поглощаются раковыми клетками внутри опухоли. Атомные ядра радиоактивного изотопа подвергаются трансформации, в ходе которой они испускают гамма-кванты. Количество испускаемого излучения зависит от содержания радиофармацевтического препарата в соответствующей области. Таким образом, из области опухоли будет испускаться больше гамма-квантов, чем из других областей.

Излучение измеряется непосредственно с помощью внешнего детектора – гамма-камеры. Пространственное изображение получается при вращении камеры вокруг исследуемой области пациента. Изображения собираются из последовательных положений зонда, отличающихся на несколько градусов. Таким образом, измерения производятся при полном обороте вокруг пациента. Для ускорения процесса сбора данных чаще всего используются двухголовые камеры, расположенные друг напротив друга. Они проводят измерения одновременно, что ускоряет обследование в два раза (рис. 6.). Все полученные результаты измерений затем подвергаются компьютерной обработке, что позволяет создать трехмерное изображение исследуемой области.

ОФЭКТ-аппарат с двухголовочной гамма-квантовой камерой визуализации

Рис. 6. ОФЭКТ-аппарат с двухголовочной гамма-квантовой камерой визуализации. Источник: [ KieranMaher at English Wikibooks / Public domain]

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *