Почему на аккумуляторах электроинструмента нет балансиров
Перейти к содержимому

Почему на аккумуляторах электроинструмента нет балансиров

Почему на аккумуляторах электроинструмента нет балансиров

Зависит от типа ошибки которая записалась в контроллер

на первой 16-ногой нет балансировки

Хороший вариант для сборки акб на 9ач (или 2,6*3=7,8ач) http://alli.pub/6f6hao

Силовые транзисторы p100p04ng 100А 40В

На плате установлен стабилизатор напряжения ME6203A, выходное напряжение 3.3 Вольта для питания микросхемы используется он

Администраторы

Anat78

Лейтенант

  • Сообщений:4947
  • Репутация:30±

Элементы стоят более дешевые не Сони, а Самсунги INR18650-15M M

Пользователи

danyapostfactum

Рядовой

  • Сообщений:3
  • Репутация:0±
Администраторы

Anat78

Лейтенант

  • Сообщений:4947
  • Репутация:30±
Пользователи

89147776055a

Рядовой

  • Сообщений:3
  • Репутация:0±

Подскажите, жёлтый разъём на аккумуляторах Макита (как оригинал так и реплики) позволяет проводить балансировку?
Никак и нигде не нашёл распиновку контактов этого разъёма.Даже шнурок для этого разъёма уже заимел. Просто есть в наличии ToolkitRC, думал его задействовать.

Второй вопрос, по которому никак не найду конкретного ответа — есть ли на китай-платах балансировка или нет, в основном интересуют последние виды плат, что здесь фото выложены.
Вот например вот эта плата на вложенном фото — как я понимаю, последнее достижение китайского гения для самосборных акков?
9Ah акки парочку я собрал, взяв платы от комплектов с Али от 10-баночных батарей и корпус на 15 банок, такой вариант имеет изъяны?

Активный балансир для литиевых батарей, что это такое и зачем он нужен

На самом деле речь пойдет о двух балансирах, при этом один из них представлен даже в двух экземплярах.
Мелкие были заказаны для LiFePO4 батарей, одна для мощного ИБП, другая для мелкого. Обе платы были куплены у одного и того же продавца в два захода, но при этом у него есть два разных лота:
1. $3.59 + $1.31 доставка, купил с купоном на 11.11
2. $3.50 + $4.73 доставка. Этот лот кажется слишком дорогим из-за доставки, но у продавца доставка разных товаров не суммируется, а так как заказывал плату защиты, то балансир взял попутно.

Вторая плата куплена на таобао где-то полтора года назад, но все не находил времени протестировать её и вот решил совместить две платы в одном обзоре.

В качестве дополнительной информации расскажу то, о чем спрашивают чаще всего, что такое балансир, какие они бывают и чем отличаются.
Писать про то, зачем он нужен, думаю нет смысла, это понятно из названия, да и я уже как-то рассказывал.

Пассивная схема балансировки

И так, технически самый простой балансир — пассивный, его задача ограничить напряжение на тех элементах, которые заряжены больше других, работает он только при заряде, пропуская часть тока (или весь) через себя давая возможность зарядиться остальным ячейкам.
По понятным причинам такой балансир может работать только при заряде, а точнее, в конце заряда.

Понятно что ограничивать напряжение стабилитронами проблематично так как имеются свои технические проблемы, как минимум малый вариант выбора напряжений и разброс характеристик.
Можно заменить стабилитрон регулируемым, на базе TL431, но он маломощный, соответственно придется усилить его транзистором.

Такая схема обеспечивает очень высокую точность балансировки и может делать это за один цикл заряда, но есть как минимум две проблемы:
1. Из-за того что ток в цепи никогда не упадет, а просто будет идти либо через батарею, либо через балансир, то зарядное может отключаться только по таймеру.
2. А так как весь ток потом идет через балансир, то получаем огромное тепловыделение в конце заряда, что при больших аккумуляторных сборках вынуждает применять солидные системы охлаждения, понятно что речь встроить такой балансир в корпус батареи вообще не идет.

Пример балансира с параллельными стабилизаторами, рассчитанный на ток до 2А и сборки до 20S. В режиме максимальной мощности тепловыделение до 170Вт.

Но ведь хочется балансир встроить в саму батарею, а значит надо снижать тепловыделение, решается это установкой резисторов.
При достижении напряжения окончания заряда схема управления через резистор начинает шунтировать аккумулятор, пропуская часть тока через себя, в данном случае это резистор R1.

Подобные балансиры часто размещают сразу на платах защиты, найти их очень легко, обычно это несколько больших низкоомных резисторов размещенных рядом, при этом количество резисторов соответствует количеству подключаемых к плате аккумуляторов.

Фото 5S платы защиты, видны резисторы по 150Ом соединенные попарно, т.е. каждый балансир может нагружать током порядка 50-55мА.

Кроме того продаются отдельные платы, изготовленные под разное количество каналов, обычно это 4 или 8, если у вас сборка на 5-7 элементов то применяется плата на 8, лишние каналы просто не используются. У меня «в загашнике» как раз лежит несколько подобных плат.

Но даже это сильно не помогает, резисторы в конце заряда могут нагреваться до температур порядка 80 градусов, а при установке в корпус батареи температура может быть еще больше, а рядом литиевые аккумуляторы…

В общем из преимуществ имеем простоту и дешевизну, а из недостатков, малый ток балансировки, соответственно если разбег очень большой, то зарядное все равно «перетянет одеяло на себя». Чтобы этого не было, надо заряжать малыми токами, кроме того следует помнить, что балансир отбирает часть тока на себя и если у вас зарядное имеет отсечку по падению тока, то следует это учитывать.
Например ток заряда 1А, отсечка по падению до 50мА, при балансире на 60мА оно никогда не отключится, в этом случае выставляем отключение по току 50+60мА=110мА, тогда зарядное отключится по падению тока ниже 50мА именно черех аккумуляторы.

Активные балансиры

Чтобы обойти указанные выше проблемы придумали использовать схему с переносом энергии от одной ячейки к другой. Относительно простым является конденсаторный балансир, принцип предельно прост, сначала от аккумулятора с большим напряжением заряжаем конденсатор, а потом переключаем его на аккумулятор с меньшим напряжением.
В итоге заряженный аккумулятор постепенно отдает часть заряда менее заряженному, фактически таким образом элементы «виртуально» соединяются параллельно.

Задача схемы в конечном итоге уравнять потенциалы на клеммах ячеек. И здесь я отвечу на еще один частый вопрос, даже на два:
1. Такой балансир может перезарядить батарею? — Нет, он уравнивает потенциалы, также как при параллельном включении ячеек. Грубо говоря при двух элементах с напряжениями 3.5 и 3.7 вольта после балансировки будет 3.6 и 3.6.
2. Для разных аккумуляторов нужны разные балансиры? Нет, так как он просто уравнивает напряжение, то ему все равно какое оно там, главное чтобы сам контроллер мог работать. Потому обычно эти балансиры универсальны как для LTO, LiFePO4, так и для «обычных» Li-Ion.

В случае предыдущей схемы аккумуляторы можно просто соединить параллельно, но если надо балансировать последовательно включенные ячейки, то схема просто дополняется еще одним переключателем, сама же суть остается прежней.

Несколько лет назад я публиковал обзор, где делал плату заряда батареи 2S и размещал на той же плате и активный балансир на базе чипа 7660.

По сути данная микросхема не является балансиром, это просто формирователь отрицательного напряжения, но в данном случае можно использовать её и в таком, несколько нештатном применении.

Балансир маломощный, работает медленно, но у него есть преимущество, он работает всегда, сутками, месяцами.
Отчасти это является недостатком, так как схема постоянно потребляет энергию, хоть и не очень много, в моем случае это было не критично так как аккумуляторы имели индивидуальную защиту и переразряд им не грозит.

В итоге таблица балансировки за двое суток выглядела следующим образом.

Закономерный вопрос, а как производить балансировку если элементов больше двух. До точно также, просто в этом случае ставится больше балансиров, при этом их количество всегда на один меньше чем количество ячеек.

Первый балансир выравнивает напряжение на ячейках 1 и 2
Второй на 2 и 3
Третий на 3 и 4
Четвертый на 4 и 5.

Как можно понять их схемы, в итоге как бы не были распределены напряжения между ячейками, в итоге балансиры все равно приведут их к чему-то среднему, больше всего сложностей будет если максимальная разница у элементов 1 и 5, но даже в этом случае напряжение уравняется.

Современные конденсаторные балансиры конечно куда как покруче, специальные контроллеры, переводящие схему в спящий режим, полимерные конденсаторы, токи балансировки до 5А. Но и цены внушают, балансир 8S запросто может стоит порядка 25 долларов, а уж о цене монстра показанного ниже я боюсь и думать.

Из преимуществ, работает всегда, обеспечивает большой ток балансировки, но есть недостаток — цена.

Вторая разновидность активного балансира — индуктивный. По сути то же самое что и емкостной, но перенос энергии реализован чуть по другому, в качестве промежуточного накопителя используется индуктивности.

Преимущества почти те же что у емкостного, но ток обычно меньше, порядка 1-1.5А, зато цена заметно ниже.

И конечно вопрос, так что же все таки лучше. На мой взгляд естественно активный.
Дело в том, что в случае применения активного балансира вы фактически получаете общую емкость батареи без учета разницы между элементами, а при пассивном даже после балансировки все равно будете иметь только ту, которую имеет самый слабый элемент. Правда есть оговорка, результат напрямую зависит от мощности балансира и тока разряда.

Упрощенно, возьмем сборку из трех элементов, 1, 2 и 3Ач соединенных последовательно.
В случае с пассивным вы получите 1Ач так как даже после уравнивания при разряде ячейка 1Ач разрядится первой и плата защиты отключит нагрузку.
При активном заряд постоянно будет забираться у более заряженного элемента и отдаваться самому слабому и в теории можно получить усредненную емкость, в данном примере 2Ач, но КПД балансира конечно уменьшит этот результат.

Как это выглядит на практике. Работаете вы инструментом, потом пауза, пока батарея «отдыхает» балансир перекачивает энергию в самый слабый элемент, работаете дальше.
Есть и недостатки, при большом потреблении (например ИБП) помогать будет слабо, кроме того батарея в таком варианте изнашивается больше так как фактически идут циклы заряд/разряд. Но здесь уже вам решать, чем проще пожертвовать.

Альтернативные схемы балансировки
1. Вариант с отключением заряженных ячеек и выводом из схемы, встречал упоминания, но видимо сложности реализации и малый смысл свели на нет эту идею, тем более через коммутационные цепи идут и рабочий ток.
2. Заряд каждой ячейки независимым зарядным, по сути результат как при работе с транзисторным пассивным балансиром, хороший КПД, но те же недостатки в плане меньшей емкости и необходимость наличия многоканального блока питания. Как пример — зарядное устройство ImaxRC B3 PRO.
3. Балансировка при помощи DC-DC с гальванической развязкой, аналог активного балансира, но более сложный технически, соответственно смысла не имеет. Еще такой балансир называется двухуровневым так как он часто работает в паре с пассивным балансиром.

Как вы наверное уже догадались, речь пойдет о индуктивном балансире, две платы для 2-4S сборок и одна до 10S.

Количество ячеек, на которое рассчитан балансир, это максимальное значение, подключить можно и меньше, работать будет одинаково, просто платы на больше каналов стоят дороже.

В комплекте идут провода для подключения, к мелким платам двух цветов, общий черный, к ячейкам красные, у большой платы провода разноцветные, что немного удобнее.

Мелкие платы полностью идентичны, что неудивительно. Большая плата снизу матовая, даже немного непривычно, мелкие глянцевые.

На мелкой плате видны три балансира, довольно габаритные дроссели, заявленный ток балансировки 1.2А, максимальное напряжение каналов ограничено на уровне 4.3 вольта при помощи мелких стабилитронов, соответственно лучше не превышать его.

Большая плата имеет тот же заявленный ток в 1.2А, но контроллеры имеют другой корпус, да и дроссели явно поменьше. Плата универсальная, до 11S, одно место пустует. Также на этой плате имеется девять светодиодов индицирующих процесс балансировки соответствующих пар ячеек.
Кроме всего прочего эта плата покрыта приличным слоем защитного лака.

Обе платы построены на базе специализированного контроллера ETA3000.

В даташите есть типовая схема включения, там же указано что выпускается чип в двух вариантах корпуса, собственно это видно и на показанных платах. Первый тип, с квадратным чипом я и так знал, а на мелкой плате написано даже название контроллера.

И в данном случае это действительно чип изначально задуманный для схем балансировки, который умеет определять разницу напряжений на элементах, переходить в спящий режим для снижения потребления и даже показывать что идет процесс балансировки.

Также есть пример подключения нескольких контроллеров для больших сборок, но суть та же, что я показывал выше, каждый контроллер обслуживает батареи попарно: 1-2, 2-3, 3-4 и т.д.

Ток балансировки можно задавать в диапазоне 0.1-2А, для чего есть таблица номиналов элементов.

Переходим к тестам.
Для проверки была взята сборка из четырех LiFePO4 ячеек с емкостью 5700мАч из этого обзора. Плата защиты с пассивным балансиром и чтобы не мешала, пришлось её отключить, естественно так делать нельзя, но все было под постоянным контролем.

Перед отключением платы сначала полностью зарядил батарею.
После этого отключил плату и отпаял провода от неё
Чтобы имитировать разбалансировку частично разрядил ячейки, а так как знал их емкость, то сделал просто, включил разряд током 5.5А с ограничением по времени, для первого аккумуляторы это было 38 минут, второй не разряжал, третий 19 минут и четвертый 57 минут. Соответственно получил ориентировочный процент заряда по ячейкам:
1. 35%
2. 100%
3. 70%
4. 5%

Два последних фото время разряда и «скачанная» емкость.

Напряжение на ячейках с первой по четвертую, здесь и далее на фото порядок будет одинаков.

Балансир подключался родными проводами, хотя для более быстрой работы лучше их либо укоротить, либо заменить на провода с большим сечением.

Плата в процессе греется, но не сказал бы что сильно, ниже три термофото, примерно через 5-10 минут после запуска, потом через час и еще через час. Максимально было 47 градусов, при этом грелись компоненты отвечающие за ячейки 4-3 и 2-3, явно шла активная «перекачка» со второй ячейки (полностью заряженной) к третьей, а потом к четвертой (почти полностью разряженной).
Следить перестал в 4 ночи, в пол десятого утра плата была холодной.

Тест продолжался долго, хотя как потом выяснилось, это и не было особо нужно, да и по графику вы это также поймете.
Через 34 часа после начала теста напряжение на ячейках выглядело следующим образом.

Далее было два эксперимента, сначала подключил вторую мелкую плату, через час никаких изменений, отключил её и подключил уже большую.

Так как отпаивал провода, то попутно проверил собственный ток потребления платы, по минусовой шине было 1.77мкА с редкими пиками до 6мкА, так работает автоматика платы, по шине В4 ток был чуть больше, 2.14мкА, с такими же всплесками до 6мкА.

Погонял еще полтора часа, также никаких изменений. Вообще большую помощь здесь оказал мультиметр, позволяющий отслеживать изменения с разрешением до 0.1мВ.

Следующий тест, подключил конструкцию к зарядному устройству, но плату защиты оставил отключенной, для безопасности контролировал напряжение на втором элементе так как он был наименее разряжен.
Когда напряжение на аккумуляторе начало резко расти в конце заряда, то засветился первый светодиод на плате балансира, она начала «перекачивать» заряд в первую ячейку.
Через короткое время светилось уже три светодиода, энергия начала отбираться и на заряд остальных двух ячеек, третьей и четвертой. Обусловлено это тем, что у LiFePO4 очень ровная разрядная и зарядная кривые с резким спадом или падение в конце. Соответственно аккумулятор зарядился, напряжение стало резко расти, но на остальных оно отставало и плата начала «кормить» их.
На полный заряда второй ячейки ушло 1309мАч, напомню, в начале тесте он был полностью заряжен, соответственно это та емкость, которую плата «перекачала» остальным элементам. Но следует помнить, что средний процент заряда был еще ниже, часть энергии отбиралась и от третьего элемента с зарядом 70%.

Отключил заряд, некоторое время светились все три светодиода, через несколько минут погасло два, а еще через пару минут и последний выключился.

А теперь все в виде графика.
Красная стрелка, два часа после начала теста, интервалы по 30 мин.
Зеленая стрелка, 9 часов от начала теста, далее интервалы по часу, спустя семь часов интервалы делал по два часа.
Синяя стрелка, дополнительный заряд батареи до полного заряда второй ячейки и после этого еще 16 часов, сначала интервалы по пол часа, потом по часу-два и последний 6 часов.

Как можно видеть, долго следить смысла нет, буквально через несколько часов даже при большой разбалансировке напряжения «устаканиваются» и дальше изменения очень небольшие.

Примерно то же самое было показано в даташите, причем приведены два графика, в автономном режиме и во время заряда.
Указано что балансировка занимает 3 часа, но как вы понимаете, это зависит от тока балансира и емкости батареи.

Далее планировалось расширить эксперимент, для этого у меня лежала батарея от гироборда. Батарея собрана по схеме 10S2P и имеет емкость 4Ач. Но попала она ко мне порядком изношенной и тест, который я проводил примерно с год назад, показал емкость 2.2Ач, она и написана на батарее.
Подключил батарею к зарядному, но заряжалась она недолго и отключилась сама, сработала защита.

Идея эксперимента была такой:
1. Заряжаем батарею полностью
2. Разряжаем полностью, измеряем емкость
3. Опять полностью заряжаем.
4. Цепляем балансир, ждем несколько часов.
5. Ставим на заряд
6. Разряжаем и сравниваем емкость с п2.

Разрядилась батарея также довольно быстро, отдав при токе 4.4А всего 724мАч, ну да ладно, может так интереснее.
Зарядил опять до отключения платы защиты, ушло почти 800мАч.

Данная батарея была выбрана неспроста, во первых она 10S, что как раз подходит под балансир, во вторых у неё внутри есть плата защиты, а сами ячейки подключены через разъем. Правда есть нюанс, расположение контактов у батареи и балансира зеркальное, хотя размеры разъема одинаковые. Кстати товарищ который занимается подобными батареями сказал что так у них у всех, но у батарей для сигвея порядок контактов противоположный, т.е. как раз как у балансира.

Через меня прошло довольно много таких батарей и внутри они были примерно одинаковы.

Но видимо сегодня был не мой день, так как данная батарея имеет совершенно другую плату защиты, где разъем вообще не установлен, а выводы от ячеек припаяны к самой плате.

Ну ладно, подумал я и решил что так может даже и к лучшему, припаяю провода прямо к соединительной ленте от аккумуляторов. Но сначала надо было выяснить порядок подключения и куда паяться, а заодно измерить напряжения на аккумуляторах и здесь меня ждал второй облом, одна из веток оказалось в жестком КЗ. Я решил не отступать и попробовал «продавить» его большим зарядным током, хотя так категорически нельзя делать. Увы, даже при 18А токе ничего не изменилось, пара так и осталась закороченной.

Пришлось на этом эксперимент завершить, батарея у меня была одна.

Перед тем как перейти к выводам попробую немного пояснить, что я вообще получил при экспериментах и особенности применения данного типа балансиров.
Платы как и заявлено, обеспечивают разницу в пределах одной пары около 30мВ, но как всегда «есть один нюанс».
Дело в том, что одно дело разница в 30мВ для «обычных» литиевых аккумуляторов и совсем другое для LiFePO4. Ниже сравнительный график тестов двух типов батарей с одной емкостью и в одинаковых режимах.

Видно что у LiFePO4 он почти горизонтальный, потому для них 30мВ это большая разница в емкости, на вскидку легко около 10-20% в зависимости от участка кривой.
При этом у обычных литий-ионных напряжение падает почти линейно, соответственно эти же 30мВ дадут меньшую разницу в проценте заряда.

Если говорить упрощенно, то балансир гораздо лучше будет работать с обычными батареями, а не с LiFePO4, потому как малая разница напряжений не всегда говорит о малой разнице в емкости для этого типа батарей, думаю то же самое относится и к LTO.

Вот теперь выводы.
Могу сказать, что для «обычных» литий-ионных аккумуляторов балансир подойдет отлично, это видно даже без тестов просто по алгоритму работы. Работает быстро, греется мало, также имеет очень небольшой ток потребления в режиме ожидания. Но с LiFePO4 все заметно хуже и обусловлено это не столько качеством работы, сколько особенностью самих аккумуляторов, правда и тест был очень «жестокий», в реальности такой разброс (5-100%) встречается крайне редко.
Скорее всего я еще продолжу тесты и уж точно буду еще проверять с LiFePO4, которые пока ко мне в пути.

Балансир также хорошо будет работать в паре с пассивным, который размещен на плате защиты. Кстати, ни разу пока не встречал плат защиты со встроенным активным балансиром.

Одна из главных проблем АКБ, подключенных в последовательную цепочку. Балансировка массивов АКБ

Как поступить с аккумулятором из последовательной цепочки АКБ, емкость которого ниже, чем у соседних элементов? В статье подробно разобрана эта проблема, рассказано, что происходит с аккумуляторами в цепочках, почему емкость некоторых компонентов цепи ниже, исправны ли такие аккумуляторы, надо ли их заменять и как балансировочное оборудование позволяет исправить ситуацию.

ГК «Системотехника», г. Москва

Любой электрик или энергетик, работавший с системами бесперебойного питания объектов, будь то источники бесперебойного питания (ИБП) или системы оперативного постоянного тока (СОПТ), сталкивался с цепочками аккумуляторов, подключенных последовательно.

Аккумулятор – это замечательное изобретение человечества. Есть масса литературы и технических документов, где описано, как проверить его состояние, как его зарядить и обслуживать. При этом совсем мало информации о том, что происходит с аккумуляторами в цепочках и как правильно обслуживать цепочки аккумуляторов.

Приведем конкретный пример. Предположим, у вас стоит ИБП с цепочкой АКБ, включающей 62 аккумулятора. При замерах выясняется, что в цепочке присутствуют аккумуляторы, например 5 штук, с низким напряжением – 11,8 В.

Первая мысль, которая приходит в голову обслуживающему персоналу: они неисправны, и их надо заменить. Но, набрав телефонный номер фирмы по продаже аккумуляторов, вы получаете ответ, что цепочку АКБ надо менять полностью – это рекомендация производителей, а замена пяти элементов в цепочке приведет к тому, что выйдут из строя остальные или старые испортят замененные новые. После данных разъяснений вы принимаете решение менять всё или только пять штук (в зависимости от уровня доверия к данной фирме и от материального состояния вашего предприятия).

Предположим, что вы приобрели пять аккумуляторов, поставили в цепочку АКБ и наблюдаете одну из вышеперечисленных картин: либо оставшиеся аккумуляторы выходят из строя, либо, что более вероятно, из строя выходят новые элементы.

Что же происходит и правы ли фирмы, торгующие аккумуляторами, утверждая, что менять на­до всю цепочку? Забегая вперед, скажем сразу: и да, и нет. Начнем разбираться. Автор статьи исходит из собственного большого опыта работы с АКБ.

Итак, первый вопрос, который возникает у эксплуатирующей организации, когда выходят из строя 5 АКБ из 62 штук: «Почему это произошло? И почему 5?». И наверняка виноватыми останутся китайцы. Давайте попробуем ответить на данный вопрос и защитить китайцев.

На основании чего делается заключение, что АКБ неисправны?

Самый простой аргумент: напряжение на АКБ не соответствует напряжению на других АКБ. Ведь это же доказывает, что АКБ неисправны, правда?

Более сложный: индикатор емкости (типа «Кулона») показывает, что напряжение на АКБ низкое и емкость не соответствует заявленной. Это тоже аргумент, уже куда более весомый.

Проводится контрольный разряд всей линейки АКБ, и наверняка по всем правилам: сначала заряд всей цепочки, потом контрольный разряд и опять заряд. Напряжение наших пяти элементов остается низким. А это очень весомый аргумент.

Должны вас «разочаровать»: ни один из перечисленных способов не говорит о том, что ваши АКБ вышли из строя. Разберем по порядку.

Во‑первых, когда линейку АКБ собирали, в нее поставили аккумуляторы, выпущенные на заводе одной партией. Это в идеале. То есть сплав свинца, из которого сделаны пластины АКБ, однороден во всех аккумуляторах. Предположим, что это так (ведь с трудом можно представить предприятие, которое отправляет в переплавку остатки пластин, не пошедшие в производство АКБ предыдущей партии).

Еще наблюдение: пластины далеко не всех аккумуляторов привариваются к борнам на автоматической линии. Очень часто это делается вручную, особенно для АКБ большой емкости.

Для чего мы это пишем? Для того чтобы стало понятно: получить идеально одинаковые во всём АКБ, даже из одной партии, нереально. Мы получаем набор очень схожих, но не идентичных по своим характеристикам изделий (рис. 1). Их разнородность легко понять, если измерить внутреннее сопротивление (проводимость) аккумуляторов в линейке.

Ris_1.png

Рис. 1. Даже АКБ одной партии не идентичны по характеристикам

Во‑вторых, когда аккумуляторная батарея собирается на объекте заказчика, очень редко производится полный цикл ее запуска в эксплуатацию. Имеется в виду процедура контроля емкости и напряжения на каждом элементе батареи.

И не следует думать, что это неважно. В процессе поставки время от производства АКБ до запуска в эксплуатацию иногда достигает года и более (рис. 2). Так как в любом аккумуляторе происходят процессы саморазряда, то не факт, что все АКБ доедут до заказчика с одинаковой емкостью (если принять во внимание неоднородность изготовления каждой АКБ).

Ris_2.png

Рис. 2. От выпуска АКБ до начала ее эксплуатации может пройти год

Итак, учитывая первый и второй факторы, при запуске батареи в эксплуатацию мы получаем линейку неоднородных изделий (АКБ) с разным зарядом (емкостью).

Теперь начнем разбираться с процессами, которые происходят в последовательной линейке аккумуляторов во время эксплуатации.

Давайте для упрощения наших наблюдений конкретизируем ситуацию:
— мы имеем линейку АКБ из 62 элементов;
— напряжение каждого аккумулятора – 12 В (номинал);
— аккумуляторы подключены в последовательную цепочку;
— в цепочке у нас присутствует один элемент, заряженный на 50 % от номинальной емкости (рис. 3).

Ris_3.png

Рис. 3. Один АКБ в цепочке заряжен меньше

Теперь взглянем на то, что будет происходить с цепочкой во время работы оборудования. Так как мы знаем, что в случае низкого напряжения на цепочке батарей нам необходимо зарядить батареи до 14,4 В на элемент (мы рассматриваем общий случай, для VRLA многие производители рекомендуют напряжение 14,7 В на элемент), оборудование включит режим заряда АКБ (на некотором оборудовании этот режим включается вручную).

Взглянем на схему заряда АКБ постоянным напряжением (рис. 4).

Ris_4.jpg

Рис 4. Заряд АКБ постоянным напряжением

Догнав напряжение до 911,4 В (14,4 В на элемент), наш ИБП будет держать его в течение 10 часов, а потом уйдет в режим поддержания заряда (буферный 13,7 В на элемент).

Мы знаем, что в цепи последовательно соединенных компонентов протекает ток, равный минимальному, проходящему через один из элементов цепочки (рис. 5). Так как в нашем случае все АКБ заряжены и напряжение на них распределится как 14,4 В – 13,0 В = 1,4 В, на оставшийся 61 элемент распределится по: 1,4/61 = 0,023 В. Ток через все элементы пойдет 0,05 СА от номинала. Соответственно и через нашу АКБ, которая была не заряжена, пойдет ток 0,05 СА. Так как мы знаем, что условием заряда аккумулятора является ток, проходящий через него, то значит, и за 10 часов работы нашего ИБП на заряд аккумуляторной батареи данный аккумулятор не зарядится.

Ris_5.jpg

Рис. 5. Скорость потока во всей цепи равна его скорости через минимальное сечение

Итак, после перехода ИБП в буферный режим на шине постоянного тока для поддержания заряда АКБ напряжение упадет до: 13,7 В × 62 В = 849,4 В. Токи, проходящие через цепочку АКБ, упадут. На незаряженном элементе, который так и не зарядился в процессе зарядки батареи, ток заряда так и не появится, а наоборот, появится баланс между током заряда и током саморазряда аккумулятора. И в таком состоянии элемент может простоять и год, и два, и больше (рис. 6).

Ris_6.jpg

Рис. 6. «Узкий» элемент в цепочке АКБ не зарядится никогда

Теперь предположим, что через год мы решили проверить состояние наших АКБ. Используя любой метод, который изложен в начале данной статьи, мы получаем, что один аккумулятор в нашей цепочке неисправен, и выкидываем его. Хотя в случае если у нас не было срабатываний по перебоям питания, данный элемент абсолютно исправен, только не заряжен. Да, в процессе эксплуатации, если была глубокая просадка батареи, АКБ, скорее всего, придет в негодность, так как изначально был недозаряд.

Как же избежать таких ситуаций и как проверять состояние всех элементов батареи? Есть два способа:
— перед проверкой состояния всей цепочки необходимо зарядить каждый элемент батареи с помощью отдельного зарядного устройства постоянным током, по схеме, предоставленной производителем;
— произвести балансировку емкостей аккумуляторной батареи целиком. Для этого существует специальное оборудование, которое позволяет выровнять емкости всей цепочки батарей.

Балансировочное оборудование можно поставить на батарею на весь срок службы. Это очень актуально, когда вы используете большие емкости. Вы сразу решаете несколько задач:
— емкость всего батарейного массива будет максимальна, то есть в цепочке не будут присутствовать недозаряженные элементы (рис. 7);
— вы увеличиваете срок эксплуатации всей вашей батареи, так как недозаряд элементов в цепочке в случае срабатывания системы на автономии не приведет к просадке отдельных элементов ниже допустимого разряда (у батареи на 12 В это значение составляет 10,8 В);
— вы всегда сможете точно оценить состояние каждого элемента способом контрольного разряда.

Ris_7.jpg

Рис. 7. Балансировочное оборудование позволяет поддерживать максимальный заряд всех элементов цепочки

Если возможности поставить данное оборудование на цепочку АКБ нет, то рекомендуем проводить балансировку всего батарейного массива периодически – не реже одного раза в год. Но если вы меняете часть элементов в цепочке АКБ, то в этом случае балансировку цепи надо провести обязательно.

Как работает плата защиты литиевой батареи?

Литиевые аккумуляторные батареи обладают большой энергоёмкостью и малыми размерами. Применяются во многих устройствах с автономным питанием, например, электроинструменте.

Особенностью данного типа аккумуляторов является их пожароопасность. Они способны воспламеняться и взрываться при нарушении условий их эксплуатации.

Чтобы обезопасить литиевые аккумуляторы и батареи, в них встраивают специальные электронные платы. Защитная плата для одного аккумулятора обычно называется PCM (Protection Circuit Module), – модуль защиты, защитная плата.

Защитная плата для литиевой батареи, которая состоит из нескольких аккумуляторов называется PCB (Protection Circuit Board) или BPU (Battery Protection Unit), – блок защиты батареи.

Плата защиты внутри литиевой батареи.

Иногда такие платы называют BMS (Battery Management System) – система управления аккумулятором. Но, самые простые платы, которые выполняют лишь защитные функции трудно назвать BMS, так как системы управления батареей, как правило, имеют схему балансировки (балансир).

Функции, которые выполняет схема защиты батареи:

  • Защита аккумулятора от чрезмерного заряда (перезаряда);
  • Защита от чрезмерного разряда (переразряда);
  • Защита от короткого замыкания (КЗ) в нагрузке;
  • Защита от перегрузки по току при заряде и разряде;
  • Защита от перегрева, контроль температуры.

Это основные функции защитной платы или модуля. Естественно, существуют и более сложные платы, имеющие дополнительный функционал, но мы рассмотрим самую простую, которая присутствует в любой литиевой АКБ для электроинструмента и других приборов.

Разбираться с работой какой-либо схемы проще и интересней на конкретном примере. В качестве образца для исследований возьмём плату защиты от аккумуляторной батареи для дрели-шуруповёрта «Варяг» Professional ДА-16/2П.

Плата защиты TL181203-V4S-WKS_V1.0 «Варяг» ДА-16/2П

Плата маркирована, как TL181203-V4S-WKS_V1.0. Она не имеет балансира, а выполняет лишь защитные функции.

Защитная плата на микросхеме CM1041-DS.

Электронная плата следит за состоянием четырёх литиевых аккумуляторов типоразмера 18650. Функции контроллера, который является “мозгом” всей схемы, выполняет микросхема CM1041-DS. Это, так называемая Battery protection IC.

Схема защитной платы от аккумуляторной батареи «Варяг» Professional ДА-16/2П. По клику откроется в полном разрешении.

Принципиальная схема защитной платы от аккумулятора «Варяг» Professional ДА-16/2П

Защитная плата аккумуляторной батареи выполнена по типовой схеме с разделением цепи заряда и разряда, представленной в даташите на микросхему CM1041.

Схема дополнена. На ней указаны номиналы SMD-резисторов, маркировка транзисторов и диодов, а также изображены те элементы, которые отсутствуют на схеме из даташита, но присутствуют на плате. О них я расскажу чуть позднее.

Заряд аккумулятора осуществляется через отдельный разъём (контакты Charge: CH+ и CH-), к которому подключается зарядное устройство. Подключение батареи к нагрузке осуществляется через клеммы Power: P+ и P-.

Микросхема CM1041-DS (U1) получает напряжение питания непосредственно от самой аккумуляторной батареи, которую защищает. Плюсовое напряжение подаётся на вывод 1 (VCC), а минусовое на вывод 7 (VSS).

Таким образом, плата защиты работает всегда, пока подключена к батарее, даже, когда она лежит полгода в кейсе вместе с инструментом или где-нибудь в дальнем углу вашего гаража.

У аккумуляторной батареи есть два основных режима работы:

  • Режим заряда (“Charge”), когда аккумуляторная батарея заряжается;
  • Режим разряда (“Discharge”), когда происходит разряд аккумулятора при использовании электроинструмента.

Потребление и отдача тока в этих двух режимах регулируется двумя MOSFET-транзисторами, которые выполняют роль ключа и находятся в открытом или закрытом состоянии. Работой MOSFET-транзисторов управляет контроллер защиты CM1041-DS.

Через MOSFET-транзистор Q2 (NCE3404Y) протекает ток заряда аккумуляторной батареи. Его я буду называть транзистором заряда. Он управляется микросхемой CM1041-DS по выводу 15 (CO).

Через MOSFET-транзистор Q3 (NCE3080K, FM3080K) протекает ток разряда. Назовём его транзистором разряда. Управляется микросхемой CM1041-DS по выводу 14 (DO).

Вот так выглядит транзистор заряда и разряда на печатной плате. Тот, что поменьше, это транзистор заряда.

MOSFET-транзисторы заряда и разряда на плате модуля защиты Li-ion.

Схема дополнена диодом Шоттки D3 (SS34), который является защитным. При неправильной подаче напряжения от зарядного устройства (блока питания), этот диод не пропустит ток, так как будет включен в обратном направлении.

Защитные диоды на плате PCB.

При штатном подключении диод D3 не оказывает какого-либо сопротивления, он включен в прямом направлении. Диод рассчитан на прямой ток (IF(AV)) в 3 ампера и имеет низкое падение напряжения на переходе в прямом включении (VF) в 500 mV.

Также на плате имеется диод D2 (RS1M), который обратновключен между плюсовой «+» (P+) и минусовой «-» клеммой (P-) АКБ.

Назначение данного диода мне не совсем понятно. Но, в случае, если будет подано напряжение неправильной полярности от зарядного устройства и диод Шоттки D3 (SS34) пробьёт, то ток потечёт через него и внутренний диод MOSFET-транзистора Q2.

Далее ток пойдёт через диод D2 (RS1M), так как в таком случае он будет включен в прямом направлении. При этом сработает защита от перегрузки по току или сгорит защитный предохранитель в зарядном устройстве. АКБ при этом будет защищена.

Диод D2 также защитит батарею, если реализован её заряд через клеммы подключения нагрузки (P+, P-), то есть по типовой схеме включения микросхемы с общими цепями заряда и разряда (приводится в даташите на CM1041-DS).

В таком случае, при неправильном подключении зарядного устройства, когда на клемму P+ подано отрицательное, а на P- положительное напряжение от зарядного устройства, диод D2 будет открыт и спровоцирует сгорание предохранителя или срабатывание защиты в зарядном устройстве.

Контроль температуры аккумуляторной батареи осуществляется следующим образом.

К выводу 11 (RTS) подключается NTC-резистор, – это терморезистор с отрицательным температурным коэффициентом (ТКС). С его помощью контроллер блока защиты измеряет температуру аккумуляторов при заряде и разряде.

На печатной плате он выполнен в виде чип-терморезистора, что на мой взгляд не очень практичное решение.

Обычно температурный датчик устанавливается на один из аккумуляторов сборки, чтобы как можно точнее отслеживать температуру. Здесь же он запаян на печатную плату, причём даже не со стороны батарейного блока.

Терморезистор на плате защиты от АКБ.

Изучая даташит на CM1041 я наткнулся на интересную функцию.

Оказывается, если по какой-либо причине произойдёт отключение NTC-резистора от микросхемы, то она полностью отключает батарею, – закрывает транзистор заряда и разряда. Это приведёт к полной блокировке АКБ. То есть пока не будет восстановлено соединение терморезистора с микросхемой защиты, она не даст ни зарядить АКБ, ни разрядить её.

Наверняка, аналогичная функция есть и в других микросхемах защиты. Поэтому всегда проверяйте исправность терморезистора и надёжность его соединения с микросхемой-контроллером. Во многих батареях для электроинструмента терморезистор имеет форму капли с двумя длинными проводниками, которые запаиваются на плату защиты.

Алгоритм работы микросхемы CM1041-DS следующий.

Как уже говорилось, аккумуляторная батарея имеет два режима работы: заряда, когда батарея подключена к зарядному устройству и разряда, когда от батареи потребляется ток во время работы электроинструмента или иной нагрузки.

Стоит отметить, что выпускается несколько модификаций микросхемы CM1041. Связано это с тем, что существует несколько типов литий-ионных аккумуляторов. Например, литий-железо-фосфатные (LFP), литий-никель-кобальт-алюминий-оксидные (NCA), литий-никель-марганец-кобальт-оксидные (NMC). Их параметры отличаются, порой очень сильно.

Соответственно, под каждый тип идёт своя версия микросхемы.

Далее все числовые значения уровней срабатывания защит, я буду приводить для микросхемы CM1041-DS/DT (буква D — указывает на версию, S и T – тип корпуса). Она подходит для литий-ионных аккумуляторов с рабочим диапазоном напряжений 2,7. 4,2V, например, типа INR (литий-марганцевых).

Защита от глубокого разряда.

Глубокий разряд литиевого аккумулятора приводит к его деградации и последующему выходу из строя.

С помощью выводов VC1, VC2, VC3 и VC4 микросхема отслеживает напряжение на каждом из четырёх литиевых аккумуляторов составной батареи. Если напряжение хотя бы на любом из них упадёт до уровня 2,7V, то микросхема отключит транзистор разряда, чтобы защитить аккумуляторы от повреждения при чрезмерном разряде.

Пока напряжение на каждом аккумуляторе не вырастет хотя бы до уровня в 3V, которое считается минимальным рабочим напряжением аккумулятора, транзистор разряда будет закрыт. При этом АКБ будет отключена от нагрузки, в данном случае от дрели-шуруповёрта, и его мы использовать не сможем.

Защита от перезаряда.

Чрезмерный заряд литиевого аккумулятора приводит к его нагреву и тепловому выбросу, что повышает риск возгорания или взрыва.

При заряде аккумуляторной батареи микросхема отслеживает, не превышено ли напряжение на каждой из литиевых ячеек. Если оно достигнет напряжения в 4,25V, то контроллер отключает транзистор заряда и заряд аккумуляторной батареи прекращается.

Заряд батареи будет блокироваться до тех пор, пока напряжение на всех аккумуляторах не понизиться до уровня 4,15V.

Защита сбрасывается, если к литиевой батарее подключена нагрузка, – сработала цепь обнаружения нагрузки (VM, вывод 16) и напряжения на всех ячейках аккумуляторной батареи понизилось до уровня ниже 4,15V.

Защита от перегрузки по току и короткого замыкания.

Чрезмерный ток потребления от литиевого аккумулятора приводит к его нагреву. Это может привести к его повреждению, возгоранию или взрыву.

Поэтому, микросхема постоянно контролирует потребляемый от батареи ток. Реализовано три пороговых уровня, при которых микросхема отключает транзистор разряда.

Мониторинг ведётся по выводу VINI (13). С ростом потребляемого тока, напряжение на VINI растёт.

Для каждого уровня определена минимальная длительность события, – задержка срабатывания. Самая короткая задержка задана для уровня короткого замыкания (КЗ), всего лишь 100. 600 микросекунд (μs).

  • Если напряжение на выводе VINI будет выше, чем 0,085. 0,115V, а длительность составит не менее 0,5. 1,5 секунды, то сработает защита по первому уровню.
  • Для второго уровня задан порог в 0,16. 0,24V, а длительность – не менее 50. 200 миллисекунд (ms).
  • Когда же напряжение на VINI будет выше 0,4. 0,6V и длится не менее 100. 600 микросекунд, то контроллер расценивает это, как короткое замыкание в нагрузке и отключает транзистор разряда.

Как видим, на каждом пороговом уровне напряжение растёт, что соответствует высокому пусковому току включения или большому току потребления, а длительность задержки уменьшается. При КЗ задержка срабатывания защиты самая короткая, так как ток замыкания будет максимально возможный.

Для сброса защиты от перегрузки по току необходимо отключить аккумуляторную батарею от нагрузки или устранить КЗ. По выводу 16 (VM) микросхема определяет, отключена нагрузка или нет.

Защита от перегрузки по току заряда.

Чрезмерный ток заряда, как и высокий ток потребления приводит к нагреву и повреждению литиевого аккумулятора. Это может привести к его самовозгоранию или взрыву.

Поэтому, микросхема защиты контролирует ток заряда литиевой батареи. При его превышении она отключает транзистор заряда. Контроль ведётся по выводу VINI.

Благодаря цепи обнаружения зарядного устройства и нагрузки (вывод 16, VM) микросхема определяет снята ли нагрузка и подключено ли к батарее зарядное устройство. Защита сбрасывается, если зарядное устройство отключено.

Температурная защита.

Как уже говорилось, контроль температуры батареи осуществляется с помощью терморезистивного датчика (NTC-резистора).

Если температура снижается до уровня -10°C, то заряд аккумулятора прекращается. При низкой температуре литиевые аккумуляторы теряют свою ёмкость и быстро разряжаются. Зарядка также происходит медленнее, так как снижается способность аккумулятора накапливать заряд. Это может привести к порче аккумуляторной батареи.

При высокой температуре блокируется и заряд и разряд аккумулятора. Но, сначала блокируется заряд батареи. Если температура повысится ещё на 20°C, то сработает защита от разряда при высокой температуре. Литиевая батарея будет полностью заблокирована. Ни зарядить, ни разрядить её будет нельзя.

В даташите на микросхему CM1041-DS приводится таблица соответствия RT (R11) и требуемой температуры срабатывания при высокой температуре заряда и разряда.

Там, в качестве NTC-термистора (RNTC) используется терморезистор на 100 кОм (при 25°C) с коэффициентом температурной чувствительности B = 3950. Из этого следует предположить, что на рассматриваемой нами плате используется терморезистор с такими же или близкими параметрами, но в корпусе SMD.

Исходя из номинала резистора R11, которым задаётся уровень срабатывания защиты от заряда при высокой температуре, следует предположить, что он равен 52. 53°C, а защита от разряда при высокой температуре составляет 72. 73°C.

Чтобы защита отключилась, необходимо, чтобы батарея остыла на 10°C и в том, и другом случае.

Защита от отключения.

В случае, если на одном из выводов VC1, VC2, VC3 и VC4 пропадёт напряжение, то микросхема расценивает это, как отключение ячейки батареи или то, что она пришла в негодность. При этом транзистор заряда и разряда отключаются, полностью блокируя заряд и разряд батареи.

Состояние блокировки будет действовать до тех пор, пока штатное соединение ячеек аккумуляторной батареи не будет восстановлено.

Как видим, микросхема обладает достаточным набором функций контроля, позволяющими предотвратить нештатный режим работы аккумуляторной батареи.

Микросхемы, аналогичные описанной, легко встретить во всевозможных устройствах с автономным питанием. Если бегло изучить даташиты на них, то можно заметить, что все они устроены схожим образом, имеют одинаковые узлы и обладают близкими параметрами.

Пример тому, микросхема S-8254A. Разница может быть в типе проводимости применяемых MOSFET-транзисторов заряда/разряда (N-канальные или P-канальные), количестве ячеек литиевой батареи, которые способна обслуживать микросхема защиты (2S, 3S и т.д.).

Стоит отметить, что рассмотренная плата защиты для литий-ионной АКБ шуруповёрта «Варяг» Professional ДА-16/2П довольно примитивна. Функции защиты она выполняет, но в ней, как и во внешнем зарядном устройстве нет балансира.

Со временем, из-за разности в параметрах литий-ионных аккумуляторов, которые входят в состав батареи, они начнут разряжаться и заряжаться неравномерно, что приведёт к срабатыванию защиты, в то время, когда некоторые из литиевых ячеек будут заряжены не полностью. Выровнять напряжения будет нечем, так как в схеме отсутствует балансир.

АКБ перестанет забирать и отдавать полную ёмкость, а часть аккумуляторов начнёт деградировать. Поэтому, спустя некоторое время потребуется ремонт литиевой АКБ и замена аккумуляторов в ней.

Причиной неисправности может стать и сама плата PCB. Про ремонт только что изученной нами платы от АКБ шуруповёрта «Варяг» Professional ДА-16/2П я уже рассказывал.

Эксплуатировать электроинструмент с литий-ионными батареями на морозе также не рекомендуется. Так, например, после глубокого разряда литиевой батареи на холоде, она может перестать корректно заряжаться.

Даже штатное зарядное устройство может не справиться и придётся восстанавливать батарею. Реальный пример из практики ремонта я приводил в статье про восстановление аккумулятора DCB145 от шуруповёрта DeWalt.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *