Чиcло пи. π, 2π, 1/π, π/2, π/3, π/4, π/180, (π/180) 2 , π 2 , π 3 , π 4 и др.
Чиcло пи. π, 2π, 1/π, π/2, π/3, π/4, π/180, (π/180) 2 , π 2 , π 3 , π 2 , корень квадратный из π, ln π, lg π, π e , e π , e -π , e 1/(2π) , i i , e -1/(2π) и др..
3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211 70679… (100 знаков после запятой)
Число пи
Представляете, мы живем в эпоху технологического прорыва, но до сих пор не можем точно рассчитать площадь съеденного круглого торта? Все потому, что в формуле вычисления площади круга используется число π.
От автомобильного колеса до орбиты спутника, от часового механизма до электромагнитных и звуковых волн. В любой научной области есть расчеты, и практически в любом расчете не обойтись без числа пи. Даже там, где, казалось бы, окружности нет места, например в статистике.
Что такое число пи
Чему равно число пи
Число пи не имеет точного значения. Это легко проверить. Возьмите круг любого размера, разделите его окружность на диаметр — у вас получится десятичная дробь с множеством цифр после запятой. Математики называют такие числа иррациональными. Результат, который вы увидите, будет равен 3 целых и сколько-то десятых, сотых, тысячных — и далее насколько хватит дисплея калькулятора. У числа пи бесконечное количество знаков после запятой. Но для удобства в расчетах используют округленные значения.
Число π примерно равно 3,14, или, если точнее, 3,1415926535. Именно значение с десятью знаками после запятой принято использовать. Но все дело в округлении. Там, где не нужны максимально точные расчеты, за число пи часто берут 3. А вот для точных расчетов в науке ученые используют число пи с 38-ю знаками десятичного разложения (после запятой в десятичной дроби). Итак:
π = 3,14
π = 3,1415926535
В школе нас учат использовать число пи для вычисления площади круга. Рассчитывается она по следующей формуле: S = πr², где S — площадь, π — число пи, r² — радиус в квадрате. Можно использовать эту формулу: S = d²/4*π, где d² — диаметр.
Зная число пи и диаметр, можно посчитать длину окружности. Для этого вспомним школьные уравнения. Если π = C/d, то C (длина окружности) высчитывается по формуле C = π*d.
Но применение числа пи в науке гораздо шире. Оно используется практически для любых расчетов в любой области, будь то архитектура, авиация и даже статистика. Например, число π нужно для расчета времени полета самолета и расстояния, которое он должен преодолеть. А в статистике с помощью числа пи рассчитывают значения ниже так называемой кривой нормального распределения. Это нужно для того чтобы, например, выяснить, как распределялись голоса респондентов при опросе.
Считается, что первым обозначать число пи буквой греческого алфавита π (pi) стал британский математик Уильям Джонс в 1706 году, а популяризировал обозначение его швейцарский коллега Леонард Эйлер в 1737 году. Есть версия, что эта буква выбрана не случайно, а как начальная в греческом слове perijereia, что означает «окружность», «периферия».
Как и на многие явления, известные науке сегодня, на существование некой постоянной, с помощью которой можно посчитать площадь круга, обратили внимание еще в Древнем мире. Но ученые того времени приходили к разному мнению относительно значения этой постоянной: одни использовали значение 3,125, другие — 3,16, третьи — 3,139. Но всегда это значение было 3 с небольшим.
На точное вычисление числа пи ушли тысячелетия. Первым, кто определил более-менее приблизительное значение π, был древнегреческий ученый Архимед. По его расчетам пи равно 3,142857142857143. Как мы знаем сейчас, верными оказались только первые два десятичных числа.
Точнее оказались расчеты китайского математика 480-х годов нашей эры — 3,1415927. Именно это значение числа пи считалось самым верным до 1420-х годов, пока ученые не расширили этот ряд до 16 цифр после запятой, затем до 20-ти, 32-х и так далее.
В XX веке с приходом компьютерных систем и вычислительной техники дело пошло быстрее: теперь уже точные десятичные значения высчитывали машины. С помощью специальных алгоритмов математики во всем мире продолжают определять новые, более точные значения числа пи, устанавливая рекорды по количеству цифр десятичного разложения (после запятой в десятичной дроби).
Чтобы не запоминать число пи с большим количеством десятичных значений, его принято округлять. В математике все округления проводятся по строгим правилам. Для округления значения числа пи применяют метод округления к ближайшему целому. Если перед округляемым числом стоит число 5 и большее, то число округляется в большую сторону. Например, 12,513. Другой пример: 12,5812,613.
Если перед округляемым числом стоит число менее 5, то число округляется в меньшую сторону. Например, 12,412. Или: 12,3412,312.
Итак, возьмем π — 3,1415. Округление начинают с последнего значения, в данном случае это 5. Значит, следующая за ним единица округляется до двух: 3,14153,142. Последнее число 2 меньше пяти, значит, последующее 4 остается неизменным: 3,1423,14. Вот мы и пришли к общепринятому значению числа пи.
По тому же принципу давайте продолжим округление до целого числа: 3,143,23. И вот у нас получилось значение числа пи 3.
Вячеслав Смольняков, учитель математики и информатики высшей квалификационной категории, эксперт ОГЭ и ЕГЭ Региональной предметной комиссии по математике и информатике:
На практике мы часто используем округление числа пи до сотых — 3,14. Чуть реже нам нужна большая точность, и мы уже берем значение 3,14159. Чтобы запомнить дробную часть, можно воспользоваться нехитрым приемом: выучить одну фразу «Это я знаю и помню прекрасно». Количество букв в словах соответствует первым цифрам числа пи: «это» — 3, «я» — 1, «знаю» — 4 и так далее.
Для запоминания большего количества цифр есть специальные стихотворения, это называется мнемонический метод запоминания.
Ирина Ходакова, учитель математики:
Чтобы запомнить значение числа π используют один из самых популярных способов — запомнить фразу, в которой количество букв в каждом слове совпадает с цифрами числа π.
Например, «Что(3) я(1) знаю(4) о(1) круге(5)?»
Чтобы запомнить больше знаков числа π, пользуются различными приемами мнемотехники (совокупность приемов, облегчающих запоминание информации). Например, существует стихотворение С. Боброва «Волшебный двурог» для запоминания числа π, которое совсем не сложно выучить:
«Чтобы нам не ошибаться,
Надо правильно прочесть:
Три, четырнадцать, пятнадцать,
Девяносто два и шесть.
Ну и дальше надо знать,
Если мы вас спросим —
Это будет пять, три, пять,
Восемь, девять, восемь»
Вячеслав Смольняков:
В школе ученики впервые знакомятся с числом пи в 6 классе, и я обычно привожу разные примеры того, где это можно использовать в реальной жизни. Например, девочки на уроках технологии часто шьют круглые изделия, и число пи поможет им рассчитать, какое количество тесьмы необходимо для того, чтобы обшить по краю круглую салфетку. Мальчикам часто бывает интересно, как рассчитать, какое расстояние они преодолели на уроке физкультуры, бегая по кругу в спортзале. А еще все любят подарки… Сколько нужно упаковочной бумаги, чтобы обернуть подарок, который находится в коробке цилиндрической формы? Для всего этого нужно знать про число пи. В более старших классах мы используем знание о числе пи уже для решения геометрических задач (однако оно используется не только в геометрии).
В науке число пи используется в множестве геометрических формул, прежде всего для нахождения объемов тел, площадей фигур, которые содержат круг. В тригонометрии это число является одним из основных. Также мы можем его встретить при расчете интегралов в высшей математике, встречается оно и в формулах математической статистики и физики.
Если же рассказывать про то, откуда человечество вообще заинтересовалось данной темой, то стоит переместиться в древность. Получение знаний в ту эпоху, как и сейчас, носило практический характер. Сколько нужно каменных блоков, чтобы построить круглую башню? Вопросы, подобные этому, интересовали и Архимеда, и древних правителей, которым нужно было рассчитать ресурсы для обороны собственных владений.
В XX веке при помощи компьютеров человечество смогло рассчитать уже несколько десятков триллионов знаков после запятой, причем, как и в древности, это имеет практическое значение — при помощи данного расчета можно оценить производительность компьютерных систем.
Ирина Ходакова:
Изначально число π было необходимо для применения в строительстве. Ведь порой из-за погрешности в значении числа π падали башни и рушились целые дворцы. Сейчас π используется в различных сферах нашей жизни.
Мы уже выяснили, что число π позволяет нам рассчитывать и создавать окружности. Если колеса на вашем автомобиле будут немного отличаться друг от друга, то поездки для вас станут как минимум не очень удобными. Но применение числа π этим не ограничивается. Например, без числа π нельзя было бы обеспечить качественную работу телевизоров, радио и телефонов, так как инженеры используют π для расчета и оптимизации звуковых волн. Также π играет важную роль в расчете времени и расстояния путешествия на самолете, так как на большие расстояния самолеты летят по округлой дуге. Не было бы даже многих игр, таких как футбол, баскетбол, теннис, ведь мячи должны быть абсолютно круглыми.
Чему равно 2Пи?
Среди математиков ведутся разговоры о том, что следует заменить число Пи числом Тау. Что это значит? С точки зрения математиков числом Пи неудобно пользоваться. Гораздо комфортнее, по их мнению, пользоваться другой математической константой – числом Тау. Это число выражает отношение длины окружности к ее радиусу. Величина Тау в 2 раза больше числа Пи, т.е. если последнее равно 3,14, то Тау 6,28. Естественно, значение приблизительно.
Вариантов в данном случае не много, а точнее один и это точное число, которое состоит из множества бесконечных цифр числа, которые перечислил сам автор, да и нет смысла все это перечислять, поэтому мой вариант сокращенный и выглядит так: 2Пи = 6,283 этот вариант для тех кому не обязательно производить арифметические (математические) точные расчеты.
Небольшой экспромт, на данный вопрос в шутку я отвечаю так, 2ПИ равно Пи,Пи это первый вариант. Второй вариант, чему равно 2Пи ответ, а Пи ПИ? Туалет прямо по коридору справа.
Площадь круга
Для того чтобы найти площадь круга, существует формула, которую лучше запомнить:
S=πr 2 – это произведение числа пи на квадрат радиуса.
Поскольку радиус тесно связан отношениями с диаметром и длиной окружности, то путем нехитрых замен можно также вычислить площадь круга через диаметр или длину окружности .
Диаметр – это удвоенный радиус, следовательно, подставляя его в формулу вместо последнего, нужно разделить его обратно на два.
Длина окружности представляет собой удвоенное произведение радиуса и числа π: P=2πr, обратным методом получаем, что радиус равен длине окружности, разделенной на его множитель.
Данные онлайн калькуляторы предназначены для расчета площади круга. Вычисление происходит по приведенным выше геометрическим формулам, где π считается константой, округленной до 15-го знака после запятой.
Определение: Круг- это часть плоскости , ограниченная окружностью, круг является выпуклой фигурой.
Результат работы калькулятора также округляется до аналогичного разряда. Для использования калькулятора расчета площади круга необходимо ввести только значение радиуса, диаметра или окружности круга. Для калькулятора единицы измерения радиуса не имеют значения – результат вычисляется в абсолютном виде. То есть, если значение радиуса задано, например, в сантиметрах, то и вычисленное калькулятором значение площади круга тоже следует интерпретировать как представленное в квадратных сантиметрах.