Закон Ома
Резистор — смелый элемент, потому что умудряется противостоять хитрому и умному электрическому току. О том, почему ток вдруг хитрый, и как все величины электрической цепи взаимосвязаны — в этой статье.
· Обновлено 8 июня 2022
Сопротивление
Представьте, что есть труба, в которую затолкали камни. Вода, которая протекает по этой трубе, станет течь медленнее, потому что у нее появилось сопротивление. Точно также будет происходить с электрическим током.
Сопротивление — физическая величина, которая показывает способность проводника пропускать электрический ток. Чем выше сопротивление, тем ниже эта способность.
Теперь сделаем «каменный участок» длиннее, то есть добавим еще камней. Воде будет еще сложнее течь.
Сделаем трубу шире, оставив количество камней тем же — воде полегчает, поток увеличится.
Теперь заменим шероховатые камни, которые мы набрали на стройке, на гладкие камушки из моря. Через них проходить тоже легче, а значит сопротивление уменьшается.
Электрический ток реагирует на эти параметры аналогичным образом: при удлинении проводника сопротивление увеличивается, при увеличении поперечного сечения (ширины) проводника сопротивление уменьшается, а если заменить материал — изменится в зависимости от материала.
Эту закономерность можно описать следующей формулой:
Сопротивление
R = ρ · l/S
R — сопротивление [Ом]
l — длина проводника [м]
S — площадь поперечного сечения [мм 2 ]
ρ — удельное сопротивление [Ом · мм 2 /м]
Единица измерения сопротивления — ом. Названа в честь физика Георга Ома.
Будьте внимательны!
Площадь поперечного сечения проводника и удельное сопротивление содержат в своих единицах измерения мм 2 . В таблице удельное сопротивление всегда дается в такой размерности, да и тонкий проводник проще измерять в мм 2 . При умножении мм 2 сокращаются и мы получаем величину в СИ.
Но это не отменяет того, что каждую задачу нужно проверять на то, что там мм 2 в обеих величинах! Если это не так, то нужно свести не соответствующую величину к мм 2 .
Удельное сопротивление проводника — это физическая величина, которая показывает способность материала пропускать электрический ток. Это табличная величина, она зависит только от материала.
Таблица удельных сопротивлений различных материалов
Константан (сплав NiCu + Mn)
Манганин (сплав меди марганца и никеля — приборный)
Нейзильбер (сплав меди, цинка и никеля)
Никелин (сплав меди и никеля)
Нихром (сплав никеля, хрома, железа и марганца)
Резистор
Все реальные проводники имеют сопротивление, но его стараются сделать незначительным. В задачах вообще используют словосочетание «идеальный проводник», а значит лишают его сопротивления.
Из-за того, что проводник у нас «кругом-бегом-такой-идеальный», чаще всего за сопротивление в цепи отвечает резистор. Это устройство, которое нагружает цепь сопротивлением.
Вот так резистор изображается на схемах:
В школьном курсе физики используют европейское обозначение, поэтому запоминаем только его. Американское обозначение можно встретить, например, в программе Micro-Cap, в которой инженеры моделируют схемы.
Вот так резистор выглядит в естественной среде обитания:
Полосочки на нем показывают его сопротивление.
На сайте компании Ekits, которая занимается продажей электронных модулей, можно выбрать цвет резистора и узнать значение его сопротивления:
О том, зачем дополнительно нагружать сопротивлением цепь, мы поговорим в этой же статье чуть позже.
Реостат
Есть такие выключатели, которые крутишь, а они делают свет ярче-тусклее. В такой выключатель спрятан резистор с переменным сопротивлением — реостат.
Стрелка сверху — это ползунок. По сути, он отсекает ту часть резистора, которая находится от него справа. То есть, если мы двигаем ползунок вправо — мы увеличиваем длину резистора, а значит и сопротивление. И наоборот — двигаем влево и уменьшаем.
По формуле сопротивления это очень хорошо видно, так как длина проводника находится в числителе:
Сопротивление
R = ρ · l/S
R — сопротивление [Ом]
l — длина проводника [м]
S — площадь поперечного сечения [мм 2 ]
ρ — удельное сопротивление [Ом · мм 2 /м]
Закон Ома для участка цепи
С камушками в трубе все понятно, но не только же от них зависит сила, с которой поток воды идет по трубе — от насоса, которым мы эту воду качаем, тоже зависит. Чем сильнее качаем, тем больше течение. В электрической цепи функцию насоса выполняет источник тока.
Например, источником может быть гальванический элемент (привычная батарейка). Батарейка работает на основе химических реакций внутри нее. В результате этих реакций выделяется энергия, которая потом передается электрической цепи.
У любого источника обязательно есть полюса — «плюс» и «минус». Полюса — это его крайние положения, по сути клеммы, к которым присоединяется электрическая цепь. Собственно, ток как раз течет от «+» к «−».
У нас уже есть две величины, от которых зависит электрический ток в цепи — напряжение и сопротивление. Кажется, пора объединять их в закон.
Сила тока в участке цепи прямо пропорциональна напряжению на его концах и обратно пропорциональна его сопротивлению.
Математически его можно описать вот так:
Закон Ома для участка цепи
I = U/R
U — напряжение [В]
R — сопротивление [Ом]
Напряжение измеряется в Вольтах и показывает разницу между двумя точками цепи: от этой разницы зависит, насколько сильно будет течь ток — чем больше разница, тем выше напряжение и ток будет течь сильнее.
Сила тока измеряется в амперах, а подробнее о ней вы можете прочитать в нашей статье.
Давайте решим несколько задач на закон Ома для участка цепи.
Задача раз
Найти силу тока в лампочке накаливания торшера, если его включили в сеть напряжением 220 В, а сопротивление нити накаливания равно 880 Ом.
Решение:
Возьмем закон Ома для участка цепи:
I = 220/880 = 0,25 А
Ответ: сила тока, проходящего через лампочку, равна 0,25 А
Давайте усложним задачу. И найдем силу тока, зная все параметры для вычисления сопротивления и напряжение.
Задача два
Найти силу тока в лампочке накаливания, если торшер включили в сеть напряжением 220 В, а длина нити накаливания равна 0,5 м, площадь поперечного сечения 0,01 мм 2 , а удельное сопротивление нити равно 1,05 Ом · мм 2 /м.
Решение:
Сначала найдем сопротивление проводника.
Площадь дана в мм 2 , а удельное сопротивления тоже содержит мм 2 в размерности.
Это значит, что все величины уже даны в СИ и перевод не требуется:
R = 1,05 · 0,5/0,01 = 52,5 Ом
Теперь возьмем закон Ома для участка цепи:
I = 220/52,5 ≃ 4,2 А
Ответ: сила тока, проходящего через лампочку, приблизительно равна 4,2 А
А теперь совсем усложним! Определим материал, из которого изготовлена нить накаливания.
Задача три
Из какого материала изготовлена нить накаливания лампочки, если настольная лампа включена в сеть напряжением 220 В, длина нити равна 0,5 м, площадь ее поперечного сечения равна 0,01 мм 2 , а сила тока в цепи — 8,8 А
Решение:
Возьмем закон Ома для участка цепи и выразим из него сопротивление:
Подставим значения и найдем сопротивление нити:
R = 220/8,8 = 25 Ом
Теперь возьмем формулу сопротивления и выразим из нее удельное сопротивление материала:
Подставим значения и получим:
ρ = 25 · 0,01/0,5 = 0,5 Ом · мм 2 /м
Обратимся к таблице удельных сопротивлений материалов, чтобы выяснить, из какого материала сделана эта нить накаливания.
Ответ: нить накаливания сделана из константана.
Закон Ома для полной цепи
Мы разобрались с законом Ома для участка цепи. А теперь давайте узнаем, что происходит, если цепь полная: у нее есть источник, проводники, резисторы и другие элементы.
В таком случае вводится закон Ома для полной цепи: сила тока в полной цепи равна отношению ЭДС цепи к ее полному сопротивлению.
Так, стоп. Слишком много незнакомых слов — разбираемся по порядку.
Что такое ЭДС и откуда она берется
ЭДС расшифровывается, как электродвижущая сила. Обозначается греческой буквой ε и измеряется, как и напряжение, в Вольтах.
ЭДС — это сила, которая движет заряженные частицы в цепи. Она берется из источника тока. Например, из батарейки.
Химическая реакция внутри гальванического элемента (это синоним батарейки) происходит с выделением энергии в электрическую цепь. Именно эта энергия заставляет частицы двигаться по проводнику.
Зачастую напряжение и ЭДС приравнивают и говорят, что это одно и то же. Формально, это не так, но при решении задач чаще всего и правда нет разницы, так как эти величины обе измеряются в Вольтах и определяют очень похожие по сути своей процессы.
В виде формулы Закон Ома для полной цепи будет выглядеть следующим образом:
Закон Ома для полной цепи
R — сопротивление нагрузки [Ом]
r — внутреннее сопротивление источника [Ом]
Любой источник не идеален. В задачах это возможно («источник считать идеальным», вот эти вот фразочки), но в реальной жизни — точно нет. В связи с этим у источника есть внутреннее сопротивление, которое мешает протеканию тока.
Решим задачу на полную цепь.
Задачка
Найти силу тока в полной цепи, состоящей из одного резистора сопротивлением 3 Ом и источником с ЭДС равной 4 В и внутренним сопротивлением 1 Ом
Решение:
Возьмем закон Ома для полной цепи:
Ответ: сила тока в цепи равна 1 А.
Когда «сопротивление бесполезно»
Электрический ток — умный и хитрый парень. Если у него есть возможность обойти резистор и пойти по идеальному проводнику без сопротивления, он это сделает. При этом с резисторами просто разных номиналов это не сработает: он не пойдет просто через меньшее сопротивление, а распределится согласно закону Ома — больше тока пойдет туда, где сопротивление меньше, и наоборот.
А вот на рисунке ниже сопротивление цепи равно нулю, потому что ток через резистор не пойдет.
Ток идет по пути наименьшего сопротивления.
Теперь давайте посмотрим на закон Ома для участка цепи еще раз.
Закон Ома для участка цепи
I = U/R
U — напряжение [В]
R — сопротивление [Ом]
Подставим сопротивление, равное 0. Получается, что знаменатель равен нулю, а на математике говорят, что на ноль делить нельзя. Но мы вам раскроем страшную тайну, только не говорите математикам: на ноль делить можно. Если совсем упрощать такое сложное вычисление (а именно потому что оно сложное, мы всегда говорим, что его нельзя производить), то получится бесконечность.
Такой случай называют коротким замыканием — когда величина силы тока настолько велика, что можно устремить ее к бесконечности. В таких ситуациях мы видим искру, бурю, безумие — и все ломается.
Это происходит, потому что две точки цепи имеют между собой напряжение (то есть между ними есть разница). Это как если вдоль реки неожиданно появляется водопад. Из-за этой разницы возникает искра, которую можно избежать, поставив в цепь резистор.
Именно во избежание коротких замыканий нужно дополнительное сопротивление в цепи.
Параллельное и последовательное соединение
Все это время речь шла о цепях с одним резистором. Рассмотрим, что происходит, если их больше.
Резисторы следуют друг за другом
Между резисторами есть два узла
Узел — это соединение трех и более проводников
Сила тока одинакова на всех резисторах
Сила тока, входящего в узел, равна сумме сил токов, выходящих из него
Общее напряжение цепи складывается из напряжений на каждом резисторе
Напряжение одинаково на всех резисторах
Общее сопротивление цепи складывается из сопротивлений каждого резистора
Общее сопротивление для бесконечного количества параллельно соединенных резисторов
Общее сопротивление для двух параллельно соединенных резисторов
Общее сопротивление бесконечного количества параллельно соединенных одинаковых резисторов
Зачем нужны эти соединения, если можно сразу взять резистор нужного номинала?
Начнем с того, что все электронные компоненты изготавливаются по ГОСТу. То есть есть определенные значения резисторов, от которых нельзя отойти при производстве. Это значит, что не всегда есть резистор нужного номинала и его нужно соорудить из других резисторов.
Параллельное соединение также используют, как «запасной аэродром»: когда на конечный результат общее сопротивление сильно не повлияет, но в случае отказа одного из резисторов, будет работать другой.
Признаемся честно: схемы, которые обычно дают в задачах (миллион параллельно соединенных резисторов, к ним еще последовательный, а к этому последовательному еще миллион параллельных) — в жизни не встречаются. Но навык расчета таких схем впоследствии упрощает подсчет схем реальных, потому что так вы невооруженным глазом отличаете последовательное соединение от параллельного.
Решим несколько задач на последовательное и параллельное соединение.
Задачка раз
Найти общее сопротивление цепи.
Решение:
Общее сопротивление при последовательном соединении рассчитывается по формуле:
Ответ: общее сопротивление цепи равно 10 Ом
Задачка два
Найти общее сопротивление цепи.
Решение:
Общее сопротивление при параллельном соединении рассчитывается по формуле:
Ответ: общее сопротивление цепи равно Ом
Задачка три
Найти общее сопротивление цепи, состоящей из резистора и двух ламп.
Решение:
Сначала обозначим, что лампы с точки зрения элемента электрической цепи не отличаются от резисторов. То есть у них тоже есть сопротивление, и они также влияют на цепь.
В данном случае соединение является смешанным. Лампы соединены параллельно, а последовательно к ним подключен резистор.
Сначала посчитаем общее сопротивление для ламп. Общее сопротивление при параллельном соединении рассчитывается по формуле:
Общее сопротивление при последовательном соединении рассчитывается по формуле:
R = R1 + Rламп = 1 + 1,2 = 2,2 Ом
Ответ: общее сопротивление цепи равно 2,2 Ом.
Наконец-то, последняя и самая сложная задача! В ней собрали все самое серьезное из этой статьи .
Задачка четыре со звездочкой
К аккумулятору с ЭДС 12 В, подключена лампочка и два параллельно соединенных резистора сопротивлением каждый по 10 Ом. Известно, что ток в цепи 0,5 А, а сопротивление лампочки R/2. Найти внутреннее сопротивление аккумулятора.
Решение:
Найдем сначала сопротивление лампы.
Rлампы = R/2 = 10/2 = 5 Ом
Теперь найдем общее сопротивление двух параллельно соединенных резисторов.
И общее сопротивление цепи равно:
R = Rлампы + Rрезисторов = 5 + 5 = 10 Ом
Выразим внутреннее сопротивление источника из закона Ома для полной цепи.
r = 12/0,5 − 10 = 14 Ом
Ответ: внутреннее сопротивление источника равно 14 Ом.
Попробуйте курсы подготовки к ЕГЭ по физике с опытным преподавателем в онлайн-школе Skysmart!
Что такое сопротивление
Еще со времен общеобразовательной школы, а именно такого предмета, как физика, в нашей памяти присутствует информация про удельное сопротивление проводника. Некоторые уже и не вспомнят точного определения, однако на всю жизнь запомнили, что собой представляет данный термин. Рассмотрим более подробно, как звучит определение данного термина – это физическая составляющая, которая характеризует свойства проводящего составляющего, оказывать препятствие при прохождении электроэнергии. Равняется данное значение присутствующему напряжению на концах провода и силе тока, который протекает по данному элементу. В этом конкретном случае мы рассмотрели, от чего зависит сопротивление используемого проводника. Кроме того, на уроках физики предоставлялись специальные формулы, которые позволяли вычислять необходимые значения данной величины, зная лишь отдельные переменные. Если в повседневной жизни большинству это может и не потребоваться, то в ряде исключительных случаев, при проведении самостоятельно ремонтных работ, предоставленная ранее информация может потребоваться. Тем, кто сталкивается с электроэнергией на постоянной основе, требуется знать все сведения о данном значении.
Важно. Ранее мы рассмотрели, что такое сопротивление, однако, чтобы более точно понимать этот термин, следует также рассмотреть дополнительную информацию, а кроме того, порядок вычисления и используемые материалы.
От чего зависит
Электрическое сопротивление используемых проводников – это не постоянная величина, она зависит от ряда отдельных моментов. Рассмотрим более подробно зависимость данного значения:
- Материал, который используется в качестве проводящего элемента для электротока.
- Длина, а кроме этого, площадь поперечного сечения используемой проводки, которые присутствуют в цепи.
- Порядок соединения резисторов и проводки (параллельное или последовательное совмещение).
- Кроме того, выделяется зависимость проводника от температуры, которая присутствует внутри проводящего элемента.
- Нагрузка, которая подается от источника питания на концы проводящего элемента, где вычисляется размер.
- Сила электрического тока, которая присутствует внутри единой замкнутой цепи, используемой для вычисления значений.
- Имеющаяся атмосфера (к примеру, в минусовую погоду и в жаркий день сопротивляемость некоторых материалов отличается).
- Возраст используемого источника прохода энергии (как известно, любой материал со временем разрушается, из-за чего его сопротивляемость снижается).
Важно. В качестве проводящих материалов на практике практически всегда используются металлы, так как эти элементы обладают наименьшим размером, что позволяет свободно перемещать по ним электроэнергию.
Сопротивление проводника/цепи.
Термин “сопротивление” уже говорит сам за себя
Итак, сопротивление – физическая величина, характеризующая свойства проводника препятствовать (сопротивляться) прохождению электрического тока.
Рассмотрим медный проводник длиной l с площадью поперечного сечения, равной S:
Сопротивление проводника зависит от нескольких факторов:
- удельного сопротивления проводника rho
- длины проводника l
- площади поперечного сечения проводника S
Удельное сопротивление – это табличная величина. Формула, с помощью которой можно вычислить сопротивление проводника выглядит следующим образом:
R = rhomedspace frac
Для нашего случая rho будет равно 0,0175 (Ом * кв. мм / м) – удельное сопротивление меди. Пусть длина проводника составляет 0.5 м, а площадь поперечного сечения равна 0.2 кв. мм. Тогда:
R =0,0175 cdot frac = 0.04375medspace Ом
Как вы уже поняли из примера, единицей измерения сопротивления является Ом
С сопротивлением проводника все ясно, настало время изучить взаимосвязь напряжения, силы тока и сопротивления цепи.
Закон Ома.
И тут на помощь нам приходит основополагающий закон всей электроники – закон Ома:
Сила тока в цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению рассматриваемого участка цепи.
Рассмотрим простейшую электрическую цепь:Как следует из закона Ома напряжение и сила тока в цепи связаны следующим образом:
Пусть напряжение составляет 10 В, а сопротивление цепи равно 200 Ом. Тогда сила тока в цепи вычисляется следующим образом:
I = frac = 0.05 = 50medspaceмА
Как образуется сопротивление проводников
Современные воззрения говорят: свободные электроны перемещаются по проводнику со скоростью порядка 100 км/с. Под действием возникающего внутри поля дрейф упорядочивается. Скорость перемещения носителей вдоль линий напряженности мала, составляет единицы сантиметров в минуту. В ходе движения электроны сталкиваются с атомами кристаллической решетки, некая доля энергии переходит в тепло. И меру этого преобразования принято называть сопротивлением проводника. Чем выше, тем больше электрической энергии переходит в тепло. На этом основан принцип действия обогревателей.
Параллельно контексту идет численное выражение проводимости материала, которое можно увидеть на рисунке. Для получения сопротивления полагается единицу разделить на указанное число. Ход дальнейших преобразований рассмотрен выше. Видно, что сопротивление зависит от параметров – температурное движение электронов и длина их свободного пробега, что прямо приводит к строению кристаллической решётки вещества. Объяснение – сопротивление проводников отличается. У меди меньше алюминия.
Электрическое сопротивление тока.
Электрическое сопротивление – физическая величина, которая характеризует способность проводника влиять на электрический ток, протекающий в проводнике.
- Обозначение величины: R
- Единица измерения: Ом
Результатом проведения экспериментов с проводниками было определено, что взаимосвязь между силой тока и напряжением в электрической цепи зависит так же от размеров используемого проводника, а не только от вещества. Детальнее влияние размеров проводника будет рассмотрено на отдельном уроке.
За счет чего же появляется сопротивление тока? Во время движения свободных электронов происходит постоянное взаимодействие между ионами, входящими в строение кристаллической решетки, и электронами. В результате данного взаимодействия и происходит замедление движения электронов (фактически, из-за столкновения электронов с атомами – узлами кристаллической решетки), благодаря чему и создается сопротивление тока.
С электрическим сопротивлением также связана другая физическая величина – проводимость тока, обратная величина относительно сопротивления.
В чем измеряется
Согласно международной системе единиц, измеряется величина в омах, умноженных на метр. В некоторых случаях применяется единица ом, умноженная на миллиметр в квадрате, поделенная на метр. Это обозначение для проводника, имеющего метровую длину и миллиметровую площадь сечения в квадрате.
Формула как найти
Согласно положению из любого учебного пособия по электродинамики, удельное сопротивление материала проводника формула равна пропорции общего сопротивления проводника на площадь поперечного сечения, поделенного на проводниковую длину. Важно понимать, что на конечный показатель будет влиять температура и степень материальной чистоты. К примеру, если в медь добавить немного марганца, то общий показатель будет увеличен в несколько раз.
Интересно, что существует формула для неоднородного изотропного материала. Для этого нужно знать напряженность электрополя с плотностью электротока. Для нахождения нужно поделить первую величину на другую. В данном случае получится не константа, а скалярная величина.
Закон ома в дифференциальной форме
Есть другая, более сложная для понимания формула для неоднородного анизотропного материала. Зависит от тензорного координата.
Вам это будет интересно Как измерять напряжение
Важно отметить, что связь сопротивления с проводимостью также выражается формулами. Существуют правила для нахождения изотропных и анизотропных материалов через тензорные компоненты. Они показаны ниже в схеме.
Связь с проводимостью, выраженная в физических соотношениях.
Формулы сопротивления тока.
Рассмотрим зависимость между изученными на последних уроках величинами. Как было сказано, с увеличением напряжения увеличивается в цепи и сила тока, эти величины пропорциональны: I
Увеличение сопротивления проводника приводит к уменьшению силы тока в цепи, таким образом, данные величины обратно пропорциональны между собой: I
В результате исследований была выявлена следующая закономерность: R=U/I
Расписываем получение единицы сопротивления тока: 1Ом=1В/1А
Таким образом 1 Ом являет собой такое сопротивление тока, при котором сила тока в проводнике равняется 1 А, а напряжение на концах проводника 1 В.
Фактически, сопротивление тока в 1 Ом слишком маленькое и на практике используются проводники, которые характеризуются более высоким сопротивлением (1 КОм, 1 МОм и т.д.).
Сопротивление тока, сила тока и напряжение являются взаимосвязанными величинами, которые оказывают влияние друг на друга. Детальнее это будет рассмотрено уже на следующем уроке.
От чего зависит
Сопротивляемость зависит от температуры. Она увеличивается, когда повышается столбик термометра. Это поясняется физиками так, что при росте температуры атомные колебания в кристаллической проводниковой решетке повышаются. Это препятствует тому, чтобы свободные электроны двигались.
Обратите внимание! Что касается полупроводников и диэлектриков, то там величина понижается из-за того, что увеличивается структура концентрации зарядных носителей.
Зависимость от температуры как основное свойство проводниковой сопротивляемости
Удельное сопротивление разных материалов
Важно отметить, что сопротивление у металлических монокристаллов с металлами и сплавами разные. Значения различаются из-за химической металлической чистоты, способов создания составов и их непостоянства. Также стоит иметь в виду, что значения меняются при изменении температуры. Иногда сопротивляемость падает до нуля. В таком случае явление называется сверхпроводимостью.
Интересно, что под термической обработкой, например, отжигом меди, значение вырастает в 3 раза, несмотря на то, что доля примесей в проном, антикоррозийном и легком составе, как правило, равна не больше 0,1%.
Обратите внимание! Что касается отжига алюминия, свинца или железа, значение в таких же условиях вырастает в 2 раза, несмотря на наличие примесей в количестве 0,5% и необходимости большей энергии на плавление.
Таблица значений составов при температуре 20 градусов Цельсия
В целом, удельное электросопротивление представляет собой физическую величину, которая характеризует способность вещества препятствовать тому, чтобы проходил электроток. По СИ измеряется в омах, перемноженных на метры. Зависит от увеличения температуры вещества. Отыскать значение можно по формуле соотношения общего сопротивления и площади поперечного сечения, поделенного на длину проводника. Что касается удельного сопротивления сплавов, согласно изучениям разных ученых состав их непостоянный, может быть изменен под термообработкой.
Что такое электрическое сопротивление?
Электрическое сопротивление характеризует свойство проводника оказывать противодействие направленному движению заряженных частиц.
Влияние электрического сопротивления на электрический ток можно представить следующим образом:
- Движение свободных носителей электрического заряда внутри проводника приводит к тому, что свободные носители заряда сталкиваются с атомами и нарушают их поток.
- Этот эффект называется сопротивлением, которое обладает свойством ограничивать электрический ток в электрической цепи.
- Столкновение носителей электрического заряда с атомами также имеет тепловой эффект. Соответствующий элемент электрической цепи становится теплым или даже горячим. Если он перегреется, он может выйти из строя.
Электрическое сопротивление говорит о том, какое напряжение U необходимо, чтобы заставить электрический ток определенной силы тока I протекать через проводник. В физике для обозначения электрического сопротивления в формуле используется прописная буква R (от английского слова “Resistor” или “Resistance”).
Аналогия с потоком воды
Когда речь идет об электрическом сопротивлении в физике, необходимо различать два случая:
- Электрические сопротивления как элементы электрической цепи (см. пример на рисунке 2). То есть, если вы называете элемент в электротехнике резистором, то вы имеете в виду конкретный элемент, предназначенный для целей ограничения протекания электрического тока в электрической цепи.
- Электрическое сопротивление как физическая величина. Вы также можете спросить, насколько сильно тот или иной элемент препятствует протеканию электрического тока или вообще как можно рассчитать электрическое сопротивление. Здесь вы говорите об электрическом сопротивлении как о физической величине.
Примечание. Резистор – это прибор с постоянным сопротивлением. Если необходимо регулировать силу тока в электрической цепи, то используют для этой цели реостаты – приборы с переменным сопротивлением. В составе реостата имеется подвижный контакт, при помощи которого изменяется длина участка, включённого в цепь. Реостат используется, например, в регуляторах громкости радиоприёмников.
Вы можете проиллюстрировать работу резистора как элемента (т.е. случай 1) с помощью модели протекания воды в трубе.
Если представить поток электрического тока как поток воды через трубу, то резистор, имеющий электрическое сопротивление R, выполняет функцию сужения трубы. Сужение в трубе препятствует потоку воды, подобно тому, как резистор препятствует потоку электрического тока. Если вы сильнее сузите трубу, то сопротивление потоку воды увеличится. Тем самым труба будет больше препятствовать потоку воды.
Рис. 1. Суть электрического сопротивления на примере модели протекания воды в трубе
Формулы для определения электрического сопротивления
Согласно закона Ома для участка электрической цепи следует, что если вы измеряете напряжение U на проводнике и через него течет ток силой I, то проводник имеет электрическое сопротивление R, равное U, деленное на I, т.е. R = U / I. Единицей измерения электрического сопротивления в СИ является Ом, которая названа в честь немецкого физика Георга Симона Ома. То есть, 1 Ом – это сопротивление проводника, в котором при напряжении 1 В проходит ток силой 1 А. Поэтому, иногда, электрическое сопротивление ещё могут называть “омическим сопротивлением”.
Рис. 2. Определение электрического сопротивления
Для очень малых или очень больших сопротивлений используются такие дополнения, как милли-, кило- или мегаом. Применяются следующие отношения:
- 1 Миллиом = 1 мОм = 1*10 -3 Ом;
- 1 Килоом = 1 кОм = 1*10 3 Ом;
- 1 Мегаом = 1 МОм = 1*10 6 Ом.
Интересный факт! Электрическое сопротивление человеческого тела может изменяться от 20000 Ом до 1800 Ом.
Также вы можете рассчитать электрическое сопротивление проводников с помощью их геометрических характеристик. Формула для этого следующая (см. также рисунок 3):
- R – электрическое сопротивление проводника;
- l – длина проводника;
- S – площадь поперечного сечения проводника;
- ρ – удельное сопротивление вещества проводника (выбирается по таблицам).
Другими словами, чем тоньше и длиннее проводник, тем больше его сопротивление электрическому току. Весомое значение имеет также материал, из которого изготовлен проводник.
Как измерять электрического сопротивление?
Для измерения электрического сопротивления необходимо придерживаться следующих правил:
- Измерение проводить нужно параллельно элементу электрического цепи;
- Элемент должен быть обесточен;
- Элемент не должен быть подключен к электрической цепи;
- Измерение имеет смысл только для обычного резистора.
Значение омического сопротивления лучше всего определять с помощью цифрового мультиметра, чтобы избежать ошибок и неточностей в показаниях.
При измерении с помощью измерительного прибора измеряемый элемент не должен быть подключен к источнику напряжения во время измерения. Измеряемый элемент должен быть отпаян от электрической цепи, по крайней мере, с одной стороны. В противном случае расположенные параллельно элементы будут влиять на результат измерения.
Электрическое сопротивление.
Электрическое сопротивление — это физическая величина, характеризующая противодействие проводника или электрической цепи электрическому току.
Электрическое сопротивление определяется как коэффициент пропорциональности R между напряжением U и силой постоянного тока I в законе Ома для участка цепи.
Единица сопротивления называется омом (Ом) в честь немецкого ученого Г. Ома, который ввел это понятие в физику. Один ом (1 Ом) — это сопротивление такого проводника, в котором при напряжении 1 В сила тока равна 1 А.
Удельное сопротивление.
Сопротивление однородного проводника постоянного сечения зависит от материала проводника, его длины l и поперечного сечения S и может быть определено по формуле:
,
где ρ — удельное сопротивление вещества, из которого изготовлен проводник.
Удельное сопротивление вещества — это физическая величина, показывающая, каким сопротивлением обладает изготовленный из этого вещества проводник единичной длины и единичной площади поперечного сечения.
Из формулы следует, что
,
Величина, обратная ρ, называется удельной проводимостью σ:
.
Так как в СИ единицей сопротивления является 1 Ом. единицей площади 1 м 2 , а единицей длины 1 м, то единицей удельного сопротивления в СИ будет 1 Ом·м 2 /м, или 1 Ом·м. Единица удельной проводимости в СИ — Ом -1 м -1 .
На практике площадь сечения тонких проводов часто выражают в квадратных миллиметрах (мм 2 ). В этом случае более удобной единицей удельного сопротивления является Ом·мм 2 /м. Так как 1 мм 2 = 0,000001 м 2 , то 1 Ом·мм 2 /м = 10 -6 Ом·м. Металлы обладают очень малым удельным сопротивлением — порядка (1·10 -2 ) Ом·мм 2 /м, диэлектрики — в 10 15 -10 20 большим.
Зависимость сопротивлений от температуры.
С повышением температуры сопротивление металлов возрастает. Однако существуют сплавы, сопротивление которых почти не меняется при повышении температуры (например, константан, манганин и др.). Сопротивление же электролитов с повышением температуры уменьшается.
Температурным коэффициентом сопротивления проводника называется отношение величины изменения сопротивления проводника при нагревании на 1 °С к величине его сопротивления при 0 ºС:
.
Зависимость удельного сопротивления проводников от температуры выражается формулой:
.
В общем случае α зависит от температуры, но если интервал температур невелик, то температурный коэффициент можно считать постоянным. Для чистых металлов α = (1/273)К -1 . Для растворов электролитов α < 0. Например, для 10% раствора поваренной соли α = -0,02 К -1 . Для константана (сплава меди с никелем) α = 10 -5 К -1 .
Зависимость сопротивления проводника от температуры используется в термометрах сопротивления.