Зачем нужны резисторы и конденсаторы в схемах?
Интересует вопрос: Зачем нужны резисторы, понятное дело этот компонент уменьшает ток в цепи, по крайней мере нам так объясняли в колледже. Хочется войти в сферу электроники, но пугает то, что какие-нибудь компоненты могут сгореть, если неправильно подключить. Тоесть, если сформулировать вопрос по другому, как можно рассчитать резисторы правильно? В каких компонентах они обязательно нужны?
Также, зачем нужны конденсаторы, их в схемах тоже много. Они собирают заряд при подключений к источнику питания, и если в цепи скачет напряжение, конденсатор компенсирует и подавляет этот скачек?
Думал с Арудино начать практическое изучение, смотрел ролики, и потом понял по комментариям, что на ютубе — не все профессионалы. Вот как-бы человек на ютубе подключается серво-привод, как понял по комментариям, серво-приводу нужны доп. питание, поскольку в начале он жрёт много, и весь аппарат типа может сгореть, а какое доп. питание ему нужно, и к какие еще компоненты такие требовательны? Ардуино плату беру на время у знакомого, который живет в другом городе, вдруг он сгорит, а я не опытен 🙂 Но меня так пока-что никуда не тянуло, как к электронике.
Петя, 17 лет) Может быть где-то не понятно, поскольку я сам много-го не понимаю, помогите пожалуйста)
- Вопрос задан более трёх лет назад
- 16038 просмотров
Простой 3 комментария
- Вконтакте
Без обид, но может вам с чего-то вроде этого начать?
- Вконтакте
Начни с того, чтобы что-то сделать (какой-то прибор, я начинал с драйвера для 1W лазера) и копай эту тему, пока будешь копать научишься начальному уровню, ведь без него ничего не сможешь сделать
И еще будь готов тратить деньги, для начала на паяльник с феном и хотя бы какой-то ЛБП, и можно простенький осцил, это уже около 15к
Для платы (проекта) требуется минимум 1к на реализацию прототипа, но обычно дороже (2-3)
Если готов тратится то я могу немного поучить тебя (а то скучно мне)
- Вконтакте
Вопрос, конечно очень обширный у Вас.) Как Вы правильно заметили, резисторы нужны чтобы уменьшить силу тока в какой-то цепи. Еще они нужны например чтобы уменьшить напряжение на каком-то участке цепи. по поводу расчетов, то загуглите такую тему как закон Ома, он в принципе и закрывает вопрос расчетов резисторов в цепи.
Тоже верно. Да Вы почти все уже и так знаете.)
Вообще, если Вас так тянет к электронике, то приготовьтесь много читать и не бойтесь что-нибудь спалить. Я вообще не доверяю электроникам, которые говорят, что в своей ничего не палили и не могут распознать сразу запах взорвавшегося танталового конденсатора.))
- Вконтакте
1. I=U/R; из школы знакомо? Возми ручку, вынь стержень, подуй. На конце скорость потока больше, так как сужается. Скорость или давление. Это же как течение жидкости, или скорость или давление (она не сжимаемая).
Летит электрон. Его скорость зависит от U (*вольт), а сколько их летит- показывает I (сила тока).
I*U скорость на колчество будет мошность. Если табун медлено пройдет по мосту он сдюжит. если пробежит — крякнет. Или если пробежит одна ложадь.
2. Например светодиод. Хочет 1.2 или 2.4 или 3 вольта (Чтоб через него бежали с нужной скоростью, прыгая внутри него через диэлектрик излучая фотоны). Пропустить может 60мА=60/1000000 Ампер. Если больше — перегреется и сгорит. Если удлинить провод зарядки, увеличится его сопротивление, и напряжение на выходе будет меньше при нагрузке. Если ничего не включено, как надо 5 вольт. А если включить — 4.5 и роутер не пашет. Значит подключив к батарее на 1 вольт получиш меньше на светодиоде. Как вентиль крана. Если электронов проходит меньше они тормозяться. Из 4 вольт можно сделать 2. Если светодиод нагреется он станет жрать больше. Чтоб не сгорел ставят резистор (или если они тропинку натопчут- лавинный пробой. ).
3 Кондентсатор это две обкладки и деэлектрик. Накапливает заряд. Пропускает через себя переменный ток.
4. Какая арда? С USB или rs232? Это зависит как ее подключать и через што питать.
gnd — земля. Чаше всего (-)
+5 или VCC — питалово. (+)
Часто питаются от USB.
На плате есть еше il1117 или чтото похожее. Это «кренка», делает из 9..5 вольт 5 или 3 вольта, их именуют интегральный стабилизатор напряжения. На входе кондер, на выходе тоже, чтоб сглаживать скачки и не перегружать его (расширительный бачек перед и после нежного смесителя в ванной ). Главное не путать полярность, они это не любят. Есть там кварц, 8Мгц или 16. Два маленьких 10пф кондентсатора. На них сделан колебательный контур. Кварц вибрирует накапливая и беря из контденсаторов энергию и эти колебания дают импульсы для пошаговой логики микроконтролера. Шаг на то чтоб открыть ключи и загрузить из памяти число. Шаг на то чтоб перегрузить его в дешифратор команды. Шаг на то чтоб команда открыла ключи врифметического девайса.
d0..d7 — это цифровые входы и выходы. 0 или 1. Да или не.
a0 — это аналоговые. Ими можно мерять. от 0 до напряжение питания (чипа).
Делаеш простейшую программку для арды, чтоб мерять через a0 (например) напряжение. Выводиш на монитор порта или куда нибудь еще (осцилограф например через ворд).
5. береш два резистора, 10к или 2 килоома. Можно сделать из проволки для нагревателя, грифеля от карандаша, ручки наполненой раствором соли, .
Если два резистора соединить концами, а к свободным присоединить напряжение (батарею) на сердине будет половина. Туда можно присоеденить А0. И мерять. Выдаст из 16000 например 8000.
Шукай формулы сложения резисторов. Если их паралельно, будет половина от их сопротивления. Если последовательно, надо считать по формуле (сума и деление). Кондентсаторы наоборот. Можон зарядить и также мерять. Получится вольтметр из арды.
6. резистор, светодиод батарейка 3вольта. Светится.
Землю арды на (-) батареи, там же где резистор присоединен. А0 на другой вывод резистора — меряеш напряжение на нем. Смотриш что кажет арда. А1 ставиш на (+) батарейки (3 вольта не больше!) — меряеш напряжение на ней.. Если подключиш второй светодиод, ток будет больше, это арда и покажет. Если вместо светодиода воткнеш резистор, можеш посчитав ток построить таблицу, числа которые пишет арда и то что там на самом деле. Будет измерение силы тока.
7. Можно добавить MOSFET и если ток больше чем можно или напряжение меньше чем безопасно для батареи отключать светодиод. Иди припаять паралельно светодиоду (с резистором) конденсатор (10мкф) и подсоединить его через резистор на 1 ком (ну хотябы 100ом) к д0 а другим концом к земле или (+). Мерять ток и как только он больше чем можно отключать (преводить в 0 или 1). Тоесть регулировать яркость. Или не дать сгореть (например лазер). Можно поддерживать ардой напряжение на конденсаторе (меряя на нем) и светить светодиодом.
8. Сервопривод. Да, у него как у вентилятора в ПК три лапы. (+) красный обычно, (-) — черный (земля) и сигнальный.
Внутри сервопривода от него идет кондентсатор (те что я разбирал были такие). Можно присоеденить (-) батареи к корпусу ПК, (+) батареи к (+) серва, и сигнальный вместо наушников. Он должен дрыгатся. Чем выше частота (чем чаше переключается + на -) тем больше проходит через контденсатор. Как регулятор громкости на наушниках. Дальше микросхема (ОУ) сравнивает его с напряжением питания и двигает в нужную сторону мотор. К валу мотора прикреплен резистор (как регулятор громкости) и он меняет сопротивление при врашении мотора (повороте серва). Микросхема просто старается так его повернуть чтоб разницы на ее входах не было. Какаха, но дешево.
9. Серв + и — к отдельной батарее. Арду к своей 5 или 3 вольта. Земли у них делать обшие. Сигнальный на а0 (где там у нее pwm) и выводя на нее звук можно им управлять. Если в цикле с задердкой переключать d0 с 1 на 0 и обратно, и к нему подключить через конденсатор (0.1..100мкф ) один из контактов наушника а второй на землю, то будет слышен гул. Контденсатор нужен чтоб через науники и д0 не тек постоянный ток, который может его замучить. И слишком большую емкость тоже не надо ставить, токи зарядки и сопротвление звуку. Этот же гул можно задать на вход сервы. Моторчик у него может жрать 100ма, может 1ампер (размер имеет значение) Поэтому лучше через отдельное питалово.
10. atmega8a стоила 72 цента. Камень можно легко перепаять. Кренки стоили 10 штук за 100р или даже меньше (хорошие, которые мне нравятся). Кварц спалить сложно. Светодиоды 603 иди 402 всегда полезны (100р — 100штук разных цветов). Конденсаторы тоже сложно сломать. Если екнет можно починить.
По доп вопросам пиши на мыло. Уж очень глюкавый этот сайт, трудно мне на нем чтото писать и читать.
Как отличить резистор от конденсатора
Какие только детали не понадобятся для изготовления предлагаемых конструкций! Здесь и резисторы, и транзисторы, и конденсаторы, и диоды, и выключатели. Из многообразия радиодеталей надо уметь быстро отличить по внешнему виду нужную, расшифровать надпись на ее корпусе, определить выводы. О том, как это сделать, и будет кратко рассказано ниже. Более же подробные сведения о радиодеталях вы найдете в описании конструкций самоделок.
Резистор . Эта деталь встречается практически в каждой конструкции. Представляет собой фарфоровую трубочку (или стержень), на которую снаружи напылена тончайшая пленка металла или сажи (углерода). Резистор обладает сопротивлением и используется для того, чтобы установить нужный ток в электрической цепи. Вспомните пример с резервуаром: изменяя диаметр трубы (сопротивление нагрузки), можно получить ту или иную скорость потока воды (электрический ток различной силы). Чем тоньше пленка на фарфоровой трубочке или стержне, тем больше сопротивление току. На схемах резистор обозначается латинской буквой R (от слова Resistans — сопротивляться).
Резисторы бывают постоянные и переменные. Из постоянных чаще всего используют резисторы типа МЛТ (металлизированное лакированное теплостойкое), ВС (влагостойкое сопротивление), УЛМ (углеродистое лакированное малогабаритное), из переменных — СП (сопротивление переменное) и СПО (сопротивление переменное объемное).
Резисторы различают по сопротивлению и мощности. Сопротивление, как вы уже знаете, измеряют в омах, килоомах и мегаомах. Мощность же выражают в ваттах и обозначают эту единицу буквами Вт. Резисторы разной мощности отличаются размерами. Чем больше мощность резистора, тем больше его размеры.
Сопротивление резистора проставляют на схемах рядом с его условным обозначением. Если сопротивление менее 1 кОм, цифрами указывают число ом без единицы измерения. При сопротивлении 1 кОм и более — до 1 МОм указывают число килоом и ставят рядом букву «к». Сопротивление 1 МОм и выше выражают числом мегаом с добавлением буквы «М». Например, если на схеме рядом с обозначением резистора написано 510, значит, сопротивление резистора 510 Ом. Обозначениям 3,6 к и 820 к соответствует сопротивление 3,6 кОм и 820 кОм. Надпись на схеме 1 М или 4,7 М означает, что используются сопротивления 1 МОм -и 4,7 МОм.
В отличие от постоянных резисторов, имеющих два вывода, у переменных резисторов таких выводов три. На схеме указывают сопротивление между крайними выводами переменного резистора. Сопротивление же между средним выводом и крайними изменяется при вращении выступающей наружу оси резистора. Причем, когда ось поворачивают в одну сторону, сопротивление между средним выводом и одним из крайних возрастает, соответственно уменьшаясь между средним выводом и другим крайним. Когда же ось поворачивают обратно, происходит обратное явление. Это свойство переменного резистора используется, например, для регулирования громкости звука в усилителях, приемниках, электрофонах.
К группе резисторов относятся и так называемые терморезисторы . В принципе, у любого резистора имеется определенная зависимость номинала от окружающей температуры. Эта зависимость называется Температурный Коэффициент Сопротивления — сокращенно — ТКС и носит величину в процентах на градус (как правило — градус Цельсия!). В процессе изготовления стараются снизить ТКС у резисторов до минимума. Довольно высокий ТКС имеют некоторые металлы (например — медь). Это свойство часто используется для контроля за температурой внутри аппаратуры, а также дает возможность косвенным путем вычислить температуру, например, силового трансформатора или электродвигателя. Используя некоторые из полупроводниковых материалов можно создать терморезисторы как с положительным, так и с отрицательным ТКС. Резисторы с положительным ТКС часто используют в цепях защиты аппаратуры от перегрева. При увеличении температуры сопротивление такого резистора увеличивается до величины иногда в несколько раз большей, чем начальная, что ограничивает ток, например в цепи пусковой обмотки электродвигателя. Терморезисторы с отрицательным ТКС часто используются для обеспечения так называемого «мягкого» пуска электродвигателей а также для продления службы обычных ламп накаливания. Такой резистор при комнатной температуре имеет некоторое начальное сопротивление, уменьшающееся в процессе нагрева. Таким образом мы имеем некоторое ограничение пускового тока. Справочные данные некоторых из отечественных терморезисторов можно скачать по этой ссылке.
Конденсатор . Надо сказать, что эту деталь, как и резистор, можно увидеть во многих самоделках. Как правило, самый простой конденсатор — это две металлические пластинки (обкладки) и воздух между ними. Вместо воздуха может быть фарфор, слюда или другой материал, не проводящий ток. Если резистор пропускает постоянный ток, то через конденсатор он не проходит. А вот переменный ток через конденсатор проходит. Благодаря такому свойству конденсатор ставят там, где нужно отделить постоянный ток от переменного.
Как вы знаете, у резистора основной параметр — сопротивление, у конденсатора же — емкость. Конденсаторы бывают постоянной и переменной емкости. У переменных конденсаторов емкость изменяется при вращении выступающей наружу оси. Кроме этих двух типов, в наших конструкциях используется еще одна разновидность конденсаторов — подстроечный. Обычно его устанавливают в то или иное устройство для того, чтобы при налаживании точнее подобрать нужную емкость и больше конденсатор не трогать. В любительских конструкциях подстроечный конденсатор нередко используют как переменный — он дешев и доступен. На схемах конденсатор обозначается буквой С (от латинского слова Capacitor — накопитель).
Единица емкости — микрофарада (мкФ) взята за основу в радиолюбительских конструкциях и в промышленной аппаратуре. Но чаще употребляется другая единица — пикофарада (пФ), миллионная доля микрофарады. На схемах вы встретите и ту, и другую единицу. Причем емкость до 9100 пФ включительно указывают на схемах в пикофарадах, а свыше — в микрофарадах. Если, например, рядом с условным обозначением конденсатора написано «27», «510» или «6800», значит, емкость конденсатора соответственно 27, 510 или 6800 пФ. А вот цифры 0,015, 0,25 или 1,0 свидетельствуют о том, что емкость конденсатора составляет соответствующее число микрофарад.
Типов конденсаторов очень много. Они отличаются материалом между пластинами и конструкцией. Бывают конденсаторы воздушные, слюдяные, керамические и др. Одна из разновидностей постоянных конденсаторов — электролитический . Такие конденсаторы выпускают большой емкости — от 0,5 до 68000 мкФ.
На схемах для них указывают не только емкость, но и максимальное напряжение, на которое их можно использовать . Например, надпись 5,0×10 В означает, что конденсатор емкостью 5 мкФ нужно взять на напряжение 10 В. Необходимо иметь в виду, что электролитичесие конденсаторы (за исключением специально изготовленных, так называемых «неполярных»!) не могут работать в цепях переменного тока значительной величины! Использование полярных электролитических конднсаторов в цепях переменного тока приводит к их разрушению и даже к взрыву.
Для переменных или подстроечных конденсаторов на схеме указывают крайние значения емкости, которые получаются, если ось конденсатора повернуть от одного крайнего положения до другого или вращать вкруговую (как у подстроечных конденсаторов). Например, надпись 5 — 180 свидетельствует о том, что в одном крайнем положении оси емкость конденсатора составляет 5 пФ, а в другом — 180 пФ. При плавном повороте из одного положения в другое емкость конденсатора будет также плавно изменяться от 5 до 180 пФ или от 180 до 5 пФ.
Номинальные значения емкости конденсаторов и сопротивления резисторов показаны на рисунке внизу:
Цифры номиналов зависят от допустимого отклонения (получается при изготовлении и последующей отбраковки элементов) от номинального значения в процентах.
Как проверить резистор мультиметром
При работе с электрической схемой возникают ситуации, когда необходимо проверить сопротивление резистора. Это может понадобиться при проверке исправности или подгонке его величины под требуемое значение, которое отличается от номинального. Проверять сопротивление можно, не выпаивая резистор, или после его выпайки. В этой статье я расскажу, как правильно проверить резистор мультиметром.
Содержание статьи
Особенности измерения сопротивления резистора мультиметром
Для того, чтобы узнать сопротивление резистора, нужно воспользоваться обычным мультиметром. Принцип измерений основан на законе Ома, который гласит, что сила тока находится в прямой пропорциональной зависимости от напряжения и обратно пропорциональной от сопротивления. Определение сопротивления происходит косвенным путем по формуле R = U/I. То есть, при известных напряжении и силе тока легко определить сопротивление.
Если ранее применялись стрелочные тестеры, то сегодня радиолюбители для проверки исправности резисторов чаще всего используют цифровые мультиметры с круговым переключателем, с помощью которого выставляется тип рабочего режима и диапазон измерений.
Цифровой тестер для проверки резисторов
Для измерения величины R переключатель выставляют в диапазон Ω. В комплекте к такому прибору идет один комплект щупов, имеющих разную расцветку. Принято красный щуп вставлять в отверстие com, а черный – VΩCX+.
Как проверить резистор не выпаивая: визуальная проверка
Процесс проверки резистора на работоспособность непосредственно на плате без полной выпайки является довольно трудоемким занятием, поэтому предварительно можно определить сгоревшую деталь визуально. Прежде всего осматривают корпус на предмет повреждений и сколов, надежности закрепления выводов.
О неисправностях свидетельствуют:
- Потемнение корпуса. Сгоревший резистор имеет потемневшую поверхность – полностью или частично в виде колечек. Слабое потемнение не свидетельствует о неисправности, а только о перегреве, который не привел к полному выходу детали из строя.
- Появление характерного запаха.
- Стирание маркировки.
- Наличие на плате сгоревших дорожек
Если условия позволяют, то неисправный резистор выпаивают, а на его место впаивают новый с таким же номиналом.
Внимание! Осмотр не гарантирует точного определения исправности, резистор может выглядеть как новый даже при оборванном контакте.
Подготовка мультиметра к проведению измерений: какие установить настройки
Перед измерениями прибор готовят к работе. Для этого его включают и концы щупов закорачивают между собой. Если на дисплее появляются нули, то прибор исправен и в цепи нет обрыва. На дисплее могут отражаться не нули, а доли Ома.
Подготовка прибора к проверке
При разомкнутых щупах на исправном мультиметре отображается цифра 1 и диапазон измерений. Кабельные шнуры подключают в соответствии с тем режимом, который вам необходим, – «Прозвонка» или «Измерение».
Как прозвонить резистор
Режим «Прозвонка» (имеется не во всех тестерах) применяется, чтобы убедиться, что в цепях, идущих через резистор или параллельных ему, отсутствует короткое замыкание. Для его установки регулятор поворачивают к значку диода. Если между точками установки щупов есть токопроводящая цепь, то через динамик генерируется звуковой сигнал.
Этот режим применяют только для резисторов, номинал которых не превышает 70 Ом. Для деталей с большим номиналом его использовать не имеет смысла, поскольку сигнал настолько слаб, что его можно не услышать.
Как определить номинал резистора по маркировке
Для определения работоспособности желательно знать номинал. Как определить номинал резистора по цветовой маркировке, мы подробно рассказали в этой статье.
Немного дополним информацию о способах маркировки SMD резисторов. Из-за малого размера на них практически невозможно нанести традиционную цветовую маркировку, поэтому предусмотрена особая система идентификации. В обозначение входят: 3 или 4 цифры, 2 цифры и буква.
В первой системе первые две или три цифры характеризуют численное значение резистора, а последняя является показателем множителя, обозначающим степень, в которую возводят 10 для получения окончательного результата. Если сопротивление ниже 1 Ом, то для определения местонахождения запятой служит символ R. Например, сопротивление 0,05 Ом выглядит как 0R05.
Высокоточные (прецизионные) резисторы имеют очень малые размеры, поэтому нуждаются в компактной маркировке. Она состоит из трех цифр – первые две являются кодом, а третья – множителем. Каждому коду соответствует трехзначное значение сопротивления, определяемое по таблице. Такая маркировка выполняется в соответствии со стандартом EIA-96, разработанным для резисторов с допуском по сопротивлению не выше 1%.
Таблица кодов для прецизионных резисторов
Код | Значение | Код | Значение | Код | Значение | Код | Значение | Код | Значение | Код | Значение |
01 | 100 | 17 | 147 | 33 | 215 | 49 | 316 | 65 | 464 | 81 | 681 |
02 | 102 | 18 | 150 | 34 | 221 | 50 | 324 | 66 | 475 | 82 | 698 |
03 | 105 | 19 | 154 | 35 | 226 | 51 | 332 | 67 | 487 | 83 | 715 |
04 | 107 | 20 | 158 | 36 | 232 | 52 | 340 | 68 | 499 | 84 | 732 |
05 | 110 | 21 | 162 | 37 | 237 | 53 | 348 | 69 | 511 | 85 | 750 |
06 | 113 | 22 | 165 | 38 | 243 | 54 | 357 | 70 | 523 | 86 | 768 |
07 | 115 | 23 | 169 | 39 | 249 | 55 | 365 | 71 | 536 | 87 | 787 |
08 | 118 | 24 | 174 | 40 | 255 | 56 | 374 | 72 | 549 | 88 | 806 |
09 | 121 | 25 | 178 | 41 | 261 | 57 | 383 | 73 | 562 | 89 | 825 |
10 | 124 | 26 | 182 | 42 | 267 | 58 | 392 | 74 | 576 | 90 | 845 |
11 | 127 | 27 | 187 | 43 | 274 | 59 | 402 | 75 | 590 | 91 | 866 |
12 | 130 | 28 | 191 | 44 | 280 | 60 | 412 | 76 | 604 | 92 | 887 |
13 | 133 | 29 | 196 | 45 | 287 | 61 | 422 | 77 | 619 | 93 | 909 |
14 | 137 | 30 | 200 | 46 | 294 | 62 | 432 | 78 | 634 | 94 | 931 |
15 | 140 | 31 | 205 | 47 | 301 | 63 | 443 | 79 | 649 | 95 | 953 |
16 | 143 | 32 | 210 | 48 | 309 | 64 | 453 | 80 | 665 | 96 | 976 |
Проверка сопротивления постоянного резистора
После подготовки прибора к работе приступают к измерениям. Для этого выпаивают одну из ножек сопротивления. Один из щупов подсоединяется к запаянной ножке, второй – к свободной. Если резистор исправен, то на дисплее появится показание, соответствующее номинальному значению в пределах допуска.
Как проверяют сопротивление резистора
При обрыве цепи на экране горит «1».
Внимание! Регулятором перед измерением выставляют переключатель на ближайшее к номиналу значение большего достоинства. Если регулятором была выполнена настройка на значение, меньшее, чем номинал детали, то на дисплее результаты измерений отображаться не будут, поскольку срабатывает внутренняя блокировка тестера.
Если с одной стороны от резистора в схеме впаян конденсатор, то ножку с этой стороны условно можно считать свободно висящей. И в этом случае можно провести измерения, не выпаивая резистор.
СМД-резисторы – компоненты поверхностного монтажа, измерение сопротивления которых осложняется их малыми размерами. Их обычно проверяют, как и все постоянные резисторы, выпайкой одной ножки.
Проверка переменного резистора
Проверка без выпайки из схемы переменных резисторов, имеющих как минимум три ножки, более сложная, по сравнению с проверкой постоянного резистора.
Наиболее легким вариантом является положение резистора в самом начале схемы, поскольку одна из крайних «ножек» подключается через емкость. Поэтому по постоянному току приравнивается к свободно висящей. Такой способ измерения позволяет определить общее сопротивление, которое присутствует между крайними контактами.
Провести точные измерения сопротивления резистора позволяет его выпайка из схемы. Аналогично выпаянной, проверяется и новая деталь. Этапы измерений:
Резистор — что это такое и для чего нужен
Компоненты электрической цепи
В электрических цепях важную роль играет проводник. Для чего нужен резистор и что это такое стоит разобраться подробнее. Он способен поделить напряжение и ограничить ток, измерить его и создать цепь обратной связи. Основная задача маленькой детали создать необходимое сопротивление для электрического тока.
Резисторы бывают различных цветов, форм и размеров
Что такое резистор
Резистор – это сопротивление. Он является пассивным элементом в цепи и способен только уменьшать ток. Происхождение названия идет от латинского «resisto», что дословно на русском языке означает «сопротивляюсь».
Предназначен проводник для того, чтобы преобразовывать напряжение в силу тока и наоборот, он поглощает часть энергии и ограничивает ток. Основное применение приходится на электрические и электронные устройства.
Справка! Соединение проводников может быть последовательным, параллельным или смешанным.
Также есть два вида полупроводников:
- линейные, сопротивление у которых от тока и напряжения не зависит;
- нелинейные, способные изменить сопротивление в зависимости от значений протекающего тока и напряжения.
Основным параметром резисторов является номинальное напряжение.
Как выглядит
Элементы могут быть проволочные и непроволочные. Последние отлично выполнят свою функцию в высокочастотной цепи, внешний вид и процесс их изготовления отличаются. Различают резисторы общего применения и специального. Первые не превышают 10 мегаом, а вторые способны работать под напряжением 600 вольт и выше. Внешним видом они тоже отличаются. На фото ниже легко увидеть разницу и понять, как выглядит резистор.
Разница во внешнем виде и размерах
Из чего состоит
Намотав проволоку на каркас из керамики или прессованного порошка получится проволочный резистор. При этом сама проволока должна быть из нихрома, константана или манганина. Так получится создать полупроводник с высоким удельным сопротивлением.
Непроволочные элементы изготовлены на основе диэлектрика из проводящих смесей и пленок. Разделяют тонкослойные и композиционные, но все они имеют повышенную точность и стабильность в работе.
Регулировочные и подстроечные элементы представляют собой кольцевую резистивную пластину по которой движется бегунок. Он скользит по кругу, меняя расстояние точек на резистивном слое, в результате сопротивление меняется. Следует понять, что же делает резистор для прибора.
Для чего используется
Для чего нужен резистор? При помощи этой детали в электрической цепи можно ограничить количество проводимого тока, в результате правильно подобранной детали легко получить необходимую величину. Чем выше сопротивление, тем ниже будет на выходе сила тока, при условии стабильного напряжения.
Как работают резисторы понять легко, они могут использоваться в качестве преобразователя напряжения в ток и наоборот, в измерительных аппаратах их применяют для деления напряжения, а также они могут понизить или полностью устранить радиопомехи.
Обозначение на схемах
В России и Европе резистор на схеме обозначаются прямоугольником, размерами 4*10мм. Для определения значений сопротивления есть условные обозначения. Постоянный элемент на схеме обозначается следующим образом:
Обозночения постоянных элементов на схеме
Переменные, в том числе подстроечные, а также нелинейные следующим образом:
Обозначения переменных проводников
Важно! Всегда есть погрешность в заявленном производителем сопротивлении, она обозначается с помощью букв и цифр в процентном выражении.
Принцип работы резистора
В основе работы проводников лежит закон Ома, согласно которому напряжение зависит от величины тока и напряжения. Различные номиналы деталей помогут изменить ток и напряжение на необходимую величину. Суть заключается в том, что ток, движущейся по цепи, попадает в деталь и снижает свое продвижение.
Пример схемы
Резисторы могут соединяться параллельно и последовательно, на схемах также часто встречаются смешанные варианты. На фото ниже можно увидеть отличия в обозначениях деталей на схемах.
Обозначения элементов на схемах
Типы резисторов
К типам резисторов общего применения относят постоянные, сопротивление которых невозможно изменить и переменные, когда допустимо его менять в пределах допустимых значений. Мощность рассеивания при этом будет в пределах 0,125-100 Вт, а сопротивление не превысит 10 мегаом.
Постоянные
Отличаются постоянные проводники наличием только двух выводов и постоянным сопротивлением. Поскольку этот вид предназначен только для уменьшения силы тока, то он отлично справляется со своей задачей в различных электрических приборах. Постоянные элементы делятся на общего и специального назначения.
Переменные
Переменные имеют три вывода, а на схеме можно увидеть пограничные значения рабочего режима. Поменять сопротивление поможет бегунок, который движется по резистивному слою. Во время движения сопротивление падает между средним и одним из боковых выводов, соответственно в другой стороне увеличивается. Переменные резисторы делятся на подстроечные и регулировочные.
Классификация резисторов
Резисторы отличаются не только возможностью регулировать сопротивление. Они могут изготавливаться из разных резистивных материалов, иметь различное количество контактов и иметь другие особенности.
По типу резистивного материала
Элементы могут быть проволочными, непроволочными или металлофольговыми. Высокоомная проволока является признаком проволочного элемента, для ее изготовления используют такие сплавы, как нихром, константан или никелин. Пленки с повышенным удельным сопротивлением являются основой непроволочных элементов. В металлофольговых используется специальная фольга. Теперь выясним из чего состоят резисторы.
Конструкция полупроводника
Непроволочные делятся на тонкослойные и композиционные, толщина первых измеряется в нанометрах, а вторых – в долях миллиметра. Тонкослойные делятся на:
- металлоокисные;
- металлизированные;
- бороуглеродистые;
- металлодиэлектрические;
- углеродистые.
Композиционные в свою очередь подразделяются на объемные и пленочные. Последние могут быть с органическим или неорганическим диэлектриком. Чтобы понять есть ли полярность у резистора следует знать, что стороны у них идентичны.
По назначению сопротивления
Постоянные и переменные полупроводники также имеют некоторые различия в характеристиках. Постоянные делятся на проводники общего и специального назначения. Последние могут быть:
- высокочастотными;
- высоковольтными;
- высокомегаомными;
- прецизионными.
Такие детали используются в точных измерительных приборах, они выделяются особой стабильностью.
Переменные резисторы можно разделить на подстроечные и регулировочные. Последние могут быть с линейной или нелинейной функциональной характеристикой.
По количеству контактов
В зависимости от назначения резистора у него может быть один, два и более контактов. Сами контакты также отличаются, например, у SMD-резисторов это контактная площадка, у проволочных – особого состава проволока. Есть резисторы металлопленочные, с квантовыми точечными контактами, а в переменных они подвижные.
Разное количество контактов на элементах
Другие
Отличаются резисторы формой и типом сопротивления, а также характером зависимости величины сопротивления от напряжения. Описание зависимости величины может быть линейной или нелинейной. Использование элемента простое, емкость указывается на корпусе, минус и плюс не отличаются.
Резисторы могут быть защищены от влаги или нет, корпус может быть лакированным, вакуумным, герметичным, впрессованным в пластик или компаундированным. Нелинейные подразделяются на:
- варисторы;
- магниторезисторы;
- фоторезисторы;
- позисторы;
- тензорезисторы;
- терморезисторы.
Все они выполняют свою определенную функцию, одни меняют сопротивление от температуры, другие от напряжения, третьи от лучистой энергии.
Основные характеристики и параметры резисторов
Характерны для полупроводников такие параметры, как номинальное значение сопротивления, его допустимое отклонение. Мощность рассеяния также определяется номинальным и допустимым значениями. Элементы различны по максимальному рабочему напряжению и коэффициентом температуры сопротивления, а также шумами.
Виды соединения резисторов
Различают три типа соединения резисторов:
- параллельное;
- последовательное;
- смешанное.
Для последовательного соединения конец одного резистора нужно паять с началом другого и далее по цепочке. Так компоненты соединяются друг за другом и пропускают общий ток, проводник нужно правильно припаять. Количество таким образом соединенных проводников будет влиять на протекающий ток и оказывать общее сопротивление.
Параллельное соединение элементов отличается тем. Что все они сходятся в одной общей точке в начале и в другой точке в конце. В этом случае через каждый элемент течет свой ток, а значит сопротивление снижается. Смешанное соединение объединяет в себе оба предыдущих варианта, а расчет итогового сопротивления подсчитывают разбив схему на простые участки.
Какими могут быть номиналы резисторов
Номиналы резисторов четко определены и имеют показатели от нуля и до десяти. При этом всегда учитывается допустимое отклонение, а потому производители выпускают элементы с определенным шагом. Шагами при 10% отклонения будут: 100, 120, 150, 180, 220 и далее по схеме. Полупроводники отличаются разновидностью сборки, своими свойствами.
Как маркируются резисторы
В основном для таких элементов используется цветовая маркировка, но SMD-резисторы имеют буквенную. Цветовая включает от 4 до 6 полос, несущих определенную информацию. Две первые цифры покажут номинальное сопротивление, а третья число, на которое умножаются первые два, в результате получается величина сопротивления. Четвертая говорит о точности проводника. Если полос больше, то меняется только первый показатель на одну цифру.
Цветовое обозначение на элементах
Внимание! Первой полосой считается та, которая ближе других расположена к краю элемента.
Чем отличается резистор от реостата, транзистора
Реостат является электрическим аппаратом. Который способен регулировать ток и напряжение в электрической цепи. В общем это аналог переменного резистора. Он включает проводящий элемент и регулятор сопротивления. Влиять на изменение показателя можно плавно, а при желании это можно сделать ступенчато. В стандартизации реостатом называют резисторы переменные, регулировочные и подстроечные.
Транзистор является прибором для управления электрическим током. По сути он усиливает ток и может им управлять, а проводник регулирует сопротивление в сети. Внешне два элемента значительно отличаются друг от друга. Резистор имеет цилиндрическую форму и цветную окраску, а транзистор облачен в пластиковый или металлический квадратный корпус.
Важно! Резистор способен работать при любом токе, а транзистор только при постоянном.
Выводы: проводники имеют одинаковую функциональность, а у транзистора разную. Также транзистор – это полярный элемент, а резистор – неполярный. По этой причине перепутать два элемента можно только в том случае, если человек совершенно далек от электротехники и радиоэлектроники.
Резистор необходимый элемент во всех микросхемах современных электроприборах. Оказывая сопротивление в цепи, полупроводник делит или уменьшает напряжение, благодаря чему, различные приборы могут работать от сети. Сопротивление тока измеряется в Омах, а грамотный подбор полупроводника обеспечит продолжительную работу любого электроприбора. Так мы выяснили, что такое резистор и для чего он нужен, чем отличается от реостата и транзистора и как обозначается на схемах.