Почему металлы хорошие проводники
Перейти к содержимому

Почему металлы хорошие проводники

Почему металлы являются хорошими проводниками электричества и теплоты? Какая особенность строения металлов предопределяет

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Kvant. Металлы

«Металлом называется светлое тело, которое ковать можно»,— писал в 1763 году Ломоносов. Загляните в ваш учебник химии и вы увидите, что металлы обладают характерным металлическим блеском («светлое тело»), хорошо проводят тепло и электрический ток. Правда, тут же вы прочтете, что существуют элементы, проявляющие свойства как металлов, так и неметаллов. Другими словами, нет четкой грани, отделяющей одно от другого. Химика, который интересуется, в первую очередь, химическими реакциями и для которого каждый элемент — свой особый мир, такая неоднозначность не очень смущает. А вот физика это не устраивает. Если физика делит тела на металлы и неметаллы, то нужно понять, в чем их принципиальное различие. Поэтому надо так определить, что такое металл, чтобы, как и в других случаях в области точных наук, удовлетворить двум требованиям:

  1. все металлы должны обладать всеми без исключения приписываемыми им признаками;
  2. иные объекты должны не обладать хотя бы одним из этих признаков.

Вооружившись этими соображениями, посмотрим, все ли металлы без исключения имеют все свойства, приписываемые им учебником. Начнем с «ковать можно», т. е. с пластичности, говоря современным языком. И тут же, по созвучию, мы вспомним пластмассы: ведь не зря они так названы, многим из них свойственна пластичность — способность необратимо изменять форму без разрушения. Конечно, медь, железо, алюминий ковать легко, со свинцом еще проще, индий — довольно редкий и дорогой металл — можно мять почти как воск (а воск ведь — не металл!), щелочные металлы и того мягче. А попробуйте стукнуть по обычному чугуну — и он разлетится на кусочки! Ну, тут металлурги скажут: это потому, что чугун — не простое вещество. Он состоит из кристаллов железа, разделенных прослойками углерода, т. е. графита. Вот по этим-то прослойкам чугун и ломается. Ну что же, все верно. Только вот беда — хрупкий графит, как оказывается, современная физика относит к металлам! Да и не один графит: числятся, например, среди металлов мышьяк, сурьма и висмут, но ковать их можно с таким же успехом, как стекло — разлетаются на мелкие кусочки!

Проделайте такой простой опыт: разбейте баллон сгоревшей лампы, достаньте оттуда вольфрамовую спираль и попробуйте ее раскрутить. Ничего не выйдет, она рассыпется в пыль! Но ведь как-то ее сумели скрутить на заводе? Значит, может быть и такое — то можно деформировать, то нельзя, в зависимости от того, что происходило с образцом в прошлом. Что ж, придется, видимо, с этим признаком — пластичностью — расстаться. Тем более, что он присущ многим неметаллам; ведь то же стекло — нагрей его, и оно станет мягким и податливым.

Итак, укорачиваем формулировку и двигаемся дальше.

На очереди — «блеск», или, говоря научным языком, оптические свойства. Блестящих предметов много: и вода, и стекло, и полированные камни, да мало ли что еще. Так что просто «блеском» не обойтись, вот и говорится: для металлов характерен металлический блеск. Ну, это совсем хорошо: получается, что металл — это металл. Правда, интуитивно мы чувствуем, что металлическим блеском блестят полированные медь, золото, серебро, железо. А широко распространенный минерал пирит — разве не блестит, как металлы? Про типичные полупроводники германий и кремний и говорить не приходится, по внешнему виду их от металлов никак не отличишь. С другой стороны, не так давно научились получать хорошие кристаллы таких соединений, как двуокись молибдена; кристаллы эти коричнево-фиолетовые и на обычный металл мало похожи. Оказывается, это вещество надо считать металлом. Почему — будет ясно чуть дальше.

Так что блеск как чисто «металлический» признак отпадает.

На очереди — теплопроводность. Пожалуй, этот признак можно отбросить сразу — все без исключения тела проводят тепло. Правда, про металлы говорится, что они хорошо проводят тепло. Но, боюсь, на вопрос «что такое хорошо и что такое плохо?» в этом случае ни один папа не ответит.

Хорошо ли проводит тепло медь? Посмотрим в таблицу и сразу же столкнемся со встречным вопросом: а какая медь и при какой температуре? Если взять чистую медь, например ту, из которой делают провода для радиоприборов, и нагреть ее до красного каления, т. е. отжечь, то при комнатной температуре она да еще чистое серебро будут проводить тепло лучше любого другого металла. Но погните такой медный образец, стукните или зажмите в тисках — и его теплопроводность станет заметно хуже. А что произойдет, если кусочек отожженной меди начать охлаждать? Сначала теплопроводность будет расти, увеличится в десятки раз при температуре около 10 К, а потом начнет быстро падать и при достижении абсолютного нуля должна стать нулевой (рис. 1).

Возьмем теперь другой металл — висмут. Картина для него очень похожа на ту, которую мы видели для меди, только максимум теплопроводности лежит при 3 К, а при комнатной температуре висмут проводит тепло плохо, не многим лучше, чем кристалл кварца. Но кварц-то — не металл! И тот же кварц, как видно из рисунка 1, по своим теплопроводным свойствам иногда оказывается не хуже меди. А плавленный кварц, т. е. кварцевое стекло, проводит тепло плохо, примерно как нержавеющая сталь.

Кварц — не исключение. Все кристаллы хорошего качества ведут себя подобным образом, только числа будут немного различными. У алмаза, например, уже при комнатной температуре теплопроводность лучше, чем у меди.

Отбрасываем с чистым сердцем теплопроводность и жалеть об этом не будем. И не только потому, что по этому признаку металл от неметалла не так уж легко отличить, но и потому, что, оказывается, специфические черты в теплопроводности металлов (а такие есть) являются следствием его электропроводности — последнего оставшегося свойства.

И опять в формулировке, приведенной в начале статьи, уточнение — не просто электропроводность, а хорошая электропроводность. А ведь когда речь шла о теплопроводности, эпитет «хорошая» нас насторожил и, как оказалось, не напрасно. Что же — и последнее свойство под подозрением? Надо обязательно его спасать, а то мы останемся вообще без металлов, а заодно без полупроводников, без изоляторов. Вот это наука получается! Любой школьник в большинстве случаев не задумываясь скажет, с чем он имеет дело, а копнули поглубже — остановились в недоумении.

И есть от чего. Возьмем таблицы физических величин и посмотрим на числа. Вот, к примеру, при комнатной температуре удельное сопротивление ρ (Ом·см) меди

1,55·10 -6 ; у висмута ρ

10 -4 ; у графита ρ

10 -3 ; у чистых кремния и германия ρ

10 2 (но, добавляя примеси, его можно довести до

10 -3 ); у мрамора ρ = 10 7 — 10 11 ; у стекла ρ = 10 10 ; а где-то в конце списка — янтарь с удельным сопротивлением до 1019. И где же тут кончаются металлы-проводники и начинаются диэлектрики? А мы еще не упомянули про электролиты. Обычная морская вода неплохо проводит ток. Что же — и ее считать металлом?

Посмотрим, не поможет ли нам температура. Если повышать температуру, то различия между веществами начнут сглаживаться: у меди сопротивление начнет расти, у стекла, например, уменьшаться. Значит, надо проследить за тем, что произойдет при охлаждении. И вот тут мы наконец увидим качественные различия. Посмотрите на рисунок 2: при температурах жидкого гелия, вблизи абсолютного нуля, вещества разделились на две группы. У одних сопротивление остается небольшим, у сплавов или у не очень чистых металлов ρ почти не изменяется при охлаждении, у чистых металлов сопротивление сильно уменьшается. Чем чище и совершеннее кристалл, тем значительнее это изменение. Иногда ц при температуре, близкой к абсолютному нулю, меньше, чем при комнатной, в сотни тысяч раз. У других веществ, например у полупроводников, с понижением температуры сопротивление начинает стремительно возрастать, и чем ниже температура, тем оно больше. Бели бы можно было добраться до абсолютного нуля, то ρ стало бы бесконечно большим. Впрочем, достаточно и того, что сопротивление реально становится столь большим, что никаким современным прибором его уже не измеришь.

Итак, мы добрались до ответа: металлы — это такие вещества, которые проводят электричество при любой температуре.

В противоположность этому диэлектрики перестают проводить ток, если их охладить до абсолютного нуля. Если пользоваться таким определением, то и графит, и двуокись молибдена оказываются металлами. А куда же отнести полупроводники? Если речь идет о чистых, совершенных кристаллах, то они, строго говоря, диэлектрики. Но если в них содержится много примесей, то они могут стать металлами, т. е. сохранять проводимость при самых низких температурах.

Что же у нас осталось в конце концов? Нам удалось выявить единственный существенный признак, руководствуясь которым мы можем, если не в повседневной практике, то хотя бы в принципе, всегда отличить металл от неметалла. А раз этот признак единственный, то оказываются автоматически удовлетворенными оба условия, выполнения которых мы потребовали в начале статьи.

Почему металлы проводят ток?

Уже давно было замечено, что одни элементы, такие как медь, золото, серебро, железо, свинец, олово, и в чистом виде, и при сплавлении друг с другом образуют металлы. Другие, например фосфор, сера, хлор, азот, кислород, не только сами металлами не являются, но и соединяясь с металлами превращают их в диэлектрики. Пример тому — обыкновенная соль NaCl. Поэтому в химии появилось деление элементов на металлы и неметаллы.

Такая классификация, однако, не более чем констатация фактов, хотя на первый взгляд она претендует на то, чтобы объяснить свойства веществ исходя только из строения атомов. В самом деле, посмотрим на таблицу Менделеева. Элементы, расположенные в одном столбце, очень похожи по своим химическим свойствам. А вот будут ли изготовленные из них кристаллы или сплавы проводить электрический ток? Глядя на таблицу, ответить на этот вопрос нельзя. Так, все элементы первой группы — металлы, за исключением первого — водорода. Но ведь закон, который кому-то разрешено нарушать,— уже не закон. Правда, во второй группе дело обстоит лучше: здесь все элементы — привычные металлы; а в третьей группе опять сбой: бор — полупроводник, а алюминий — прекрасный металл. Дальше еще хуже. Первый элемент четвертой группы — углерод; мы уже упоминали, что графит, так называют кристалл углерода,— это металл. А вот алмаз — тоже кристалл, составленный из атомов углерода, но расположенных иначе, чем в графите,— изолятор. Кремний и германий — классические полупроводники. Олово — казалось бы, типичный металл. Однако. Если всем знакомое белое блестящее олово долго подержать при температуре -30 °С, то его кристаллическая структура изменится, а внешне оно посереет. И это олово — его так и называют «серое олово» — полупроводник! А свинец всегда металл.

Если начинать смешивать разные элементы, то картина совсем усложнится. Возьмем, например, и сплавим два металла индий и сурьму — в пропорции один к одному. Получим широко применяемый в технике полупроводник InSb. С другой стороны, мы уже говорили, что двуокись молибдена МoО2 при Т ≈ 0 К проводит ток, т. е. МoО2 — металл. (И 2, и Re2О3 и некоторые другие оксиды — тоже металлы.) А если получающиеся из атомов кристаллы сильно сжать, сдавить, то, оказывается, чуть ли не все вещества становятся металлами, даже такие типичные металлоиды, как сера. Правда, для нее давление перехода в металлическое состояние очень велико — несколько сотен тысяч атмосфер (а для водорода еще больше).

Похоже, что разделить элементы на металлы и неметаллы — не такая уж простая задача. Во всяком случае, ясно, что, рассматривая отдельные атомы, мы не можем сказать, будет ли вещество, составленное из этих атомов, проводить ток при Т ≈ 0 К, потому что огромную роль играет то, как расположены атомы друг относительно друга. Поэтому для ответа на вопрос «почему металлы проводят ток?» надо изучать, как атомы взаимодействуют между собой, образуя твердое тело.

Посмотрим, как обстоит дело с простейшим из металлов — литием. Порядковый номер Li — три. Это означает, что ядро атома Li содержит три протона и положительный заряд ядра компенсируют три электрона. Два из них образуют заполненную s-оболочку, ближайшую к ядру, и сильно связаны с ядром. Оставшийся электронрасположен на второй s-оболочке. На ней мог бы поместиться еще один электрон, но его у лития нет. Все остальные разрешенные состояния энергии свободны, и электроны на них попадают только при возбуждении атома (например, при сильном нагреве паров лития). Схема уровней в атоме лития показана на рисунке 3.

Рассмотрим теперь множество атомов лития, находящихся в ограниченном объеме. Они могут образовывать газ (пар), жидкость или твердое тело. При достаточно низкой температуре силы взаимного притяжения препятствуют тепловому движению атомов, образуется кристалл. Это наверняка происходит при абсолютном нуле температуры, когда все известные вещества, кроме гелия,— кристаллы.

Итак, из опыта известно, что при низких температурах твердое тело — устойчивое состояние для лития. Но, как известно, устойчивым всегда является такое состояние вещества, в котором его внутренняя энергия меньше, чем в других возможных агрегатных состояниях при той же температуре. Суммарное уменьшение энергии при переходе из одного состояния в другое легко измерить — ведь это и есть теплота испарения или плавления.

С микроскопической точки зрения при низких температурах внутренняя энергия вещества есть, в первую очередь, сумма энергий электронов атомов, составляющих тело. Но электроны в атомах занимают строго определенные уровни энергии. Значит, мы можем ожидать, что при сближении атомов изменятся уровни энергии. При этом распределение электронов по уровням должно оказаться таким, чтобы их суммарная энергия была меньше, чем сумма энергий электронов в таком же количестве изолированных друг от друга атомов.

Что произойдёт с уровнями, можно понять исходя из аналогии движения электрона в атоме с любой колебательной системой, например с маятником. Пусть у нас есть два совершенно одинаковых маятника. Пока они не взаимодействуют друг с другом, частота колебаний обоих маятников одна и та же. Введем теперь взаимодействие между ними — свяжем их, например, мягкой пружинкой. И сразу же вместо одной частоты появятся две. Посмотрите на рисунок 4: связанные маятники могут колебаться синфазно, а могут навстречу друг другу. Очевидно, в последнем случае их движение будет более быстрым, т. е. частота колебаний такой системы выше собственной частоты колебаний одного маятника. Таким образом, связь приводит к расщеплению частот. Если связать три маятника, то станет уже три собственных частоты, у системы из четырех связанных маятников четыре собственные частоты и так далее до бесконечности.

Поведение любой другой колебательной системы подобно. Если мы заменим маятники, например, на электрические колебательные контуры, то, как хорошо знают радиолюбители, при введении связи между ними их собственные частоты также расщепляются. Электроны в атоме — это тоже своеобразная колебательная система. Как и маятник, электроны имеют массу, есть сила Кулона, возвращающая их к положению равновесия; и этим определяется движение электронов в атоме, характеризуемое, согласно квантовой механике, собственной частотой. Для электронов включение взаимодействия при взаимном сближении приводит к тому, что частоты, бывшие до того одинаковыми, становятся немного разными.

В квантовой механике имеется прямая связь между энергией и частотой колебаний, выражаемая формулой \(

E = h \nu\), где h = 6,6·10 -34 Дж·с — постоянная Планка, а ν — частота колебаний. Поэтому надо ожидать, что при сближении двух атомов лития каждый из уровней, показанных на рисунке 3, расщепится на два. Каждому новому уровню энергии будет соответствовать своя электронная оболочка теперь уже не отдельного атома, а «молекулы». Оболочки заполняются электронами по тому же правилу, что и у атома,— по два электрона на оболочку. Та пара оболочек, которая получилась из самого нижнего уровня, будет полностью заполнена электронами. Действительно, на них можно разместить четыре электрона, а их у двух атомов лития — шесть. Остаются два электрона, которые теперь расположатся на нижнем из уровней второй пары. Заметьте, какой произошел качественный скачок: раньше эти два электрона занимали два из четырех состояний, имеющих одинаковую энергию. Теперь у них появилась возможность выбирать, и они расположились так, чтобы их суммарная энергия была поменьше. Нетрудно сообразить, что произойдет при добавлении следующих атомов: для трех атомов каждый исходный уровень расщепится на три (см. рис. 3). Девять электронов расположатся так: шесть на нижней триаде уровней, возникших из уровня ближайшей к ядру внутренней заполненной оболочки атома; еще два электрона — на нижнем уровне следующей триады; оставшийся электрон — на среднем уровне той же триады. Еще одно место на этом уровне остается свободным, а верхний уровень полностью пуст. Если взять n атомов (\(

n \gg 1\)), то каждый уровень расщепится на n тесно расположенных уровней, образующих, как говорят, полосу или зону разрешенных значений энергии. В нижней полосе все состояния заняты, а во второй — только половина, и именно те, энергия которых ниже. Следующая полоса — полностью пустая.

Расстояние между соседними уровнями в зоне легко оценить. Естественно считать, что при сближении атомов изменение энергии электронов атома примерно равно теплоте испарения вещества, пересчитанной на один атом. Она составляет для металлов обычно несколько электронвольт, а значит, и полная ширина зон ΔE, определяемая взаимодействием соседних атомов, должна иметь тот же масштаб, т. е. ΔE

1 эВ ≈ 10 -19 Дж. Для расстояния между уровнями получим \(

\delta E \sim \dfrac<\Delta E>\), где n — число атомов в образце. Это число чрезвычайно велико: межатомное расстояние составляет всего несколько ангстремов, и объем, приходящийся на один атом, оказывается всего

10 -22 см 3 . Если наш образец имеет, для определенности, объем 1 см 3 , то для него n ≈ 10 22 . Поэтому численно оказывается δE ≈ 10 -22 · ΔE ≈ 10 -41 Дж. Эта величина столь мала, что всегда можно пренебречь квантованием энергии внутри зоны и считать, что в пределах зоны разрешены любые значения энергии.

Итак, в кристалле уровни энергии размываются в зоны, имеющие ширину, сравнимую с расстоянием между ними. Разрешенными для электронов являются состояния внутри зоны, и здесь электроны могут иметь практически любую энергию (разумеется, в пределах ширины зоны). Но очень важно, что число мест в каждой зоне строго ограничено и равно удвоенному числу атомов, составляющих кристалл. И это обстоятельство, совместно с принципом минимума энергии, определяет распределение электронов по зонам. Теперь у нас все готово, чтобы наконец понять, почему литий проводит ток. Взглянем опять на рисунок 3. Что же получилось? Пока атомы были сами по себе, все электроны находились во вполне определенных состояниях, строго одинаковых для всех атомов. Теперь атомы объединились в кристалл. Сами атомы в кристалле не только одинаковы, но и совершенно одинаково расположены относительно соседей (за исключением, конечно, тех, которые попали на поверхность кристалла). А все электроны имеют теперь разные энергии. Это может быть только в том случае, если электроны больше не принадлежат отдельным атомам, а каждый электрон «поделили» между собой все атомы. Другими словами, электроны свободно передвигаются внутри идеального кристалла, образуя как бы жидкость, которая заполняет весь объем образца. И электрический ток — это направленный поток этой жидкости, аналогичный текущей по трубам воде.

Чтобы заставить воду течь по трубе, надо создать разность давлений у концов трубы. Тогда под действием внешних сил молекулы приобретут направленную скорость — вода потечет. Очень важно здесь появление именно направленной скорости, ведь сами по себе молекулы хаотически движутся с громадными скоростями — при комнатной температуре средняя скорость теплового движения молекулы порядка 10 3 м/с. Так что дополнительная энергия, приобретаемая молекулой в потоке, мала по сравнению с энергией теплового движения.

Дополнительная энергия, которую надо сообщить электрону, чтобы он участвовал в общем направленном движении электронов в кристалле (а это и есть ток), также мала по сравнению с собственной энергией электрона. В этом нетрудно убедиться. Мы уже говорили, что энергия электрона по порядку величины равна 1 эВ = 1,6·10 -19 Дж. Если вспомнить, что для свободного электрона \(

E = \dfrac<2>\) и m = 9,1·10 -31 кг, то легко найти скорость: υ

10 6 м/с. Предположим, что все электроны участвуют в токе, а их в 1 м 3 проводника n

10 28 Z (Z — заряд ядра). Тогда в проводе с поперечным сечением S = 10 -6 м 2 при токе I ≈ 10 А (при большем токе провод расплавится) направленная скорость электронов равна \(

\upsilon_H = \dfrac \approx 10^ <-2>— 10^<-3>\) м/с. Значит, энергия электрона, участвующего в токе, больше энергии Е свободного электрона всего на 10 -8 Е, т. е. на 1,6·10 -27 Дж.

И тут мы сталкиваемся с удивительным фактом: оказывается,электроны, которые расположены в нижней зоне, называемой обычно валентной, не могут изменить свою энергию на малую величину. Ведь если какой-то электрон увеличит свою энергию, то это значит, что он должен перейти на другой уровень, а все соседние уровни в валентной зоне уже заняты. Свободные места есть только в следующей зоне. Но чтобы туда попасть, электрон должен изменить свою энергию сразу на несколько электрон-вольт. Вот так и сидят электроны в валентной зоне и ждут журавля в небе — энергичного кванта. А кванты нужной энергии бывают у видимого или ультрафиолетового света.

Итак, жидкость есть, а течь она не может. И если бы у лития было всего два электрона в атоме, т. е. если бы мы строили картинку для атомов лития, то получили бы мы изолятор. Но твердый гелий — действительно изолятор, так что мы можем уже поздравить себя с некоторым успехом: мы еще не объяснили, почему в металлах может течь ток, зато поняли, почему диэлектрики, где электронов полным-полно и все они «размазаны» по всему кристаллу, не проводят ток.

А что же литий? Да ведь у него есть вторая зона, которая заполнена только наполовину. Энергию, разделяющую занятые и свободные уровни внутри этой зоны, называют энергией Ферми Eф. Как мы уже говорили, разность энергий между уровнями в зоне очень невелика. Электрону, который расположен в зоне возле уровня Ферми, достаточно чуть-чуть увеличить свою энергию — и он на свободе, там, где состояния не заняты. Электронам из приграничной полосы ничто не мешает увеличить энергию под действием электрического поля и приобрести направленную скорость. А ведь это и есть ток! Но так же легко этим электронам и потерять направленную скорость, столкнувшись с атомами-примесями (которые всегда есть) или с другими нарушениями идеальной структуры кристалла. Этим объясняется сопротивление току.

Кажется, ясно, почему гелий — изолятор, а литий — проводник. Попробуем-ка наши представления применить к следующему элементу — бериллию. И тут — осечка, модель не сработала. У бериллия — четыре электрона, и, казалось бы, должны быть полностью заняты первая и вторая зоны, а третья обязана быть пустой. Получается изолятор, в то время как бериллий — металл.

Дело вот в чем. Если ширина зон достаточно велика, то они могут налезть друг на друга. Про такое явление говорят, что зоны перекрываются. У бериллия так и происходит: минимальная энергия электронов в третьей зоне меньше, чем максимальная во второй. Поэтому электронам оказывается энергетически выгодно оставить пустой часть второй зоны и занять состояния внизу третьей. Вот и получается металл.

А что будет с другими элементами? Перекрываются зоны или нет, заранее сказать нельзя, для этого нужны громоздкие расчеты на ЭВМ, и то не всегда можно получить достоверный ответ. Но вот что примечательно: из нашей схемы следует, что если брать элементы с нечетным числом электронов, то всегда должен получаться металл, если только структурной единицей в кристалле является отдельный атом. А вот водород, например, азот и фтор не желают кристаллизоваться в такую решетку. Они предпочитают сначала объединиться попарно, а уже молекулы, содержащие по четному числу электронов, выстраиваются в кристалл. И законы квантовой механики не мешают ему быть диэлектриком.

Итак, мы теперь знаем, что такое металл с точки зрения физики, и разобрались в самой сути явления, поняв, почему в принципе существуют изоляторы и проводники. Мы увидели, что нельзя предложить простой способ объяснения, почему какое-то конкретное вещество оказалось диэлектриком или металлом. Сделать это можно, лишь вооружившись всей мощью аппарата современной квантовой механики и вычислительной техники, но это уже задача специалистов.

Проводники: Серебро, Медь, Алюминий, Железо, Золото, Никель, Вольфрам, Ртуть.

Двадцатый век — век пластмасс. До появления широкого спектра синтетических полимерных материалов, человек использовал в конструировании металлы и материалы природного происхождения — дерево, кожу и т.д. Сегодня мы завалены пластмассовыми изделиями, начиная от одноразовой посуды, заканчивая тяжелонагруженными деталями двигателей автомобилей. Пластмассы во многом превосходят металлы, но никогда не вытеснят их полностью, поэтому рассказ начнется с металлов. Металлам посвящены сотни книг, дисциплина, посвященная им, называется «металловедение».

Нас интересуют металлы с точки зрения электронной техники. Как проводники, как часть электронных приборов. Все остальные применения — например такие, как конструкционные материалы, в данное пособие пока не вошли.

Главное для электронной техники свойство металлов — это способность хорошо проводить электрический ток. Посмотрим на таблицу удельного сопротивления различных чистых металлов:

Металл Удельное сопротивление Ом*мм 2 /м
Серебро 0,0159
Медь 0,0157
Золото 0,023
Алюминий 0,0244
Иридий 0,0474
Вольфрам 0,053
Молибден 0,054
Цинк 0,059
Никель 0,087
Железо 0,098
Платина 0,107
Олово 0,12
Свинец 0,192
Титан 0,417
Висмут 1,2

Видим лидеров нашего списка: Ag, Cu, Au, Al.

Серебро

Ag — Серебро. Драгоценный металл. <Понятие «драгоценный металл» означает в том числе особые условия по работе с металлом, устанавливаемые законодательством.>Серебро — самый дешевый из драгоценных металлов, но, тем не менее, слишком дорог, чтобы массово делать из него провода. На 5% лучшая электропроводность по сравнению смедью, при разнице в цене почти в 100 раз.

Примеры применения

В виде покрытий проводников в СВЧ технике. Ток высокой частоты, из-за скин-эффекта в большей части течет по поверхности проводника, а не в его толще, поэтому тонкое покрытие высокочастотного волновода серебром дает бОльший прирост проводимости, чем покрытие серебром проводника для постоянного тока.

Волновод для СВЧ излучения, покрытый изнутри слоем серебра.

В сплавах контактных групп. Контакты силовых, сигнальных реле, рубильников, выключателей чаще всего изготовлены из сплава с содержанием серебра. Переходное сопротивление такого контакта получается ниже медного, он меньше подвержен окислению. Так как контакт обычно миниатюрен, вклад этой малой добавки серебра в стоимость всего изделия незначителен. Хотя при утилизации большого количества реле, стоимость серебра делает целесообразным работу по отделению контактов в кучку для последующего аффинажа.

Согласно документации производителя контакты содержат серебро и кадмий.

Различные реле. Верхнее реле имеет даже посеребренный корпус с характерной патиной. Содержание драгметаллов в изделиях, выпущенных в СССР было указано в паспортах на изделия.

В качестве присадки в припоях. Качественные припои (как твёрдые так и мягкие) часто содержат серебро.

Проводящие покрытия на диэлектриках. Например, для получения контактной площадки на керамике, на неё наносится суспензия из серебряных частиц с последующим запеканием в печи (метод «вжигания»).

Компонент электропроводящих клеев и красок. Электропроводящие чернила часто содержат суспензию серебряных частиц. По мере высыхания таких чернил, растворитель испаряется, частицы в растворе оказываются всё ближе, слипаясь и создавая проводящие мостики, по которым может протекать ток. Хорошее видео с рецептом по созданию таких чернил.

Недостатки

Несмотря на то, что серебро благородный металл, оно окисляется в среде с содержанием серы:

Образуется темный налет — «патина». Также источником серы может служить резина, поэтому провод в резиновой изоляции и посеребренные контакты — плохое сочетание.

Потемневшее серебро можно очистить химически. В отличии от чистки абразивными пастами (в том числе зубной пастой) это самый нежный способ чистки, не оставляющий царапин.

Cu — медь. Основной металл проводников тока. Обмотки электродвигателей, провода в изоляции, шины, гибкие проводники — чаще всего это именно медь. Медь нетрудно узнать по характерному красноватому цвету. Медь достаточно устойчива к коррозии.

Примеры применения

Провода. Основное применение меди в чистом виде. Любые добавки снижают электропроводность, поэтому сердцевина проводов обычно чистейшая медь.

Гибкие многожильные провода различного сечения.

Гибкие тоководы. Если проводники для стационарных устройств можно в принципе изготовить из любого металла, то гибкие проводники делают почти всегда только из меди, алюминий для этих целей слишком ломкий. Содержат множество тоненьких медных жилок.

Теплоотводы. Медь не только на 56\% лучше алюминия проводит ток, но ещё имеет почти вдвое лучшую теплопроводность. Из меди изготавливают тепловые трубки, радиаторы, теплораспределяющие пластины. Так как медь дороже алюминия, часто радиаторы делают составными, сердцевина из меди, а остальная часть из более дешевого алюминия.

Радиаторы охлаждения процессора. Центральный стержень изготовлен из меди,он хорошо отводит тепло от кристалла процессора, а алюминиевый радиатор сразвитым оребрением уже охлаждает сам стержень.

При изготовлении фольгированных печатных плат. Печатные платы, в любом электронном устройстве изготовлены из пластины диэлектрика, на который наклеена медная фольга. Все соединения между элементами печатной платы выполнены дорожками из медной фольги.

Техника сверхвысокого вакуума. Из металлов и сплавов только нержавеющая сталь и медь пригодны для камер сверхвысокого вакуума в таких приборах, как ускорители элементарных частиц или рентгеновские спектрометры. Все остальные металлы в вакууме слегка испаряются и портят вакуум.

Аноды рентгеновских трубок. В рентгеноструктурном анализе требуется монохроматическое рентгеновское излучение. Его источником зачастую является облучаемая электронами медь (спектральная линия Cu Kα), которая к тому же прекрасно отводит тепло. Если же требуется другое излучение (Co или Fe), его получают от маленького кусочка соответствующего металла на массивном медном теплоотводе. Такие аноды всегда охлаждаются проточной водой.

Интересные факты о меди

  • Медь — достаточно дорогой металл, поэтому недобросовестные производители стараются экономить на нем. Занижают сечение проводов (когда написано 0,75 мм 2 , а фактически 0,11 мм 2 ) Окрашивают алюминий»под медь» в обмотках, внешне обмотка выглядит как медная, а стоит соскрести изоляцию — оказывается, что она сделана из алюминия. Этим грешат и китайские, и отечественные производители, кабель сечением 2,5 мм 2 вполне может оказаться сечением 2,3 мм 2 , поэтому запас прочности и входной контроль не будут лишними. Разумеется, надежность контакта в электроарматуре жилы сечением 2,3мм 2 , рассчитанной на жилу 2,5 мм 2 , будет невысокой.
  • Медь окрашивает пламя в зелёный цвет, это свойство использовали для обнаружения меди в руде, когда не был доступен химический анализ. Зеленый след в пламени — показатель наличия меди.

Окрашивание пламени в зеленый цвет — показатель наличия меди.

Алюминий

Al — Алюминий. «Крылатый металл» четвертый по проводимости после серебра, золота и меди. Алюминий хоть и проводит ток почти в полтора раза хуже меди, но он легче в 3,4 раза и в три раза дешевле. А если посчитать проводимость, то эквивалентный медному проводник из алюминия будет дешевле в 6,5 раз! Алюминий бы вытеснил медь как проводник везде, если бы не пара его противных свойств, но об этом в недостатках.

Чистый алюминий, как и чистое железо, в технике практически не применяется. Любой «алюминиевый» предмет состоит из какого-нибудь сплава алюминия. Сплавы могут содержать кремний, магний, медь, цинк и другие металлы. Их свойства отличаются очень сильно, и это необходимо учитывать при обработке. Ниже перечислены несколько самых распространенных марок алюминия: (Даны марки сплавов согласно номенклатуре Американской Алюминиевой Ассоциации (АА), Первая цифра — серия марок сплава, в зависимости от того, какой легирующей добавки больше, остальные цифры обычно не соотносятся с концентрацией и необходимо обращение к справочнику.)

  • 1199. Чистый 99,99% алюминий. Бывает почти исключительно в виде фольги.
  • 1050 и 1060. Чистый алюминий 99,5% и 99,6% соответственно. Из-за высокой теплопроводности иногда используется как материал для радиаторов. Мягок, легко гнется. Провода, пищевая фольга, посуда.
  • 6061 и 6082. Сплавы: 6061: Si 0,6%, Mg 1,0%, Cu 0,28%, 6082: Si, Mg, Mn. Первый более распространен в США, второй — в Европе. Легко точить, фрезеровать. Наилучший материал для самоделок. Прочен. Легко поддается сварке, паяется твердыми припоями. Легко анодируется. Плохо гнется. Не годится для литья.
  • 6060. Состав: Mg, Si. Более мягок, чем 6061 и 6082, при обработке резанием слегка «пластилиновый», за что его не любят токари. Распространен и дешев, других особых преимуществ не имеет. Дешевый алюминиевый профиль из непонятного сплава имеет хорошие шансы оказаться им.
  • 5083. Сплав с магнием (>4% Mg). Отличная коррозионная стойкость, устойчив в морской воде. Один из лучших вариантов для деталей, работающих под дождем. Тоже может встретиться в магазине стройматериалов, наряду с другими подобными марками.
  • 44400, он же «силумин». Сплав с большим процентом кремния (Si >8%). Литейный. Низкая температура плавления, при пайке твердыми припоями риск расплавить саму деталь. Хрупок, при изгибе ломается. На изломе видны характерные кристаллы.
  • 7075. 2,1–2,9% Mg, 5,1–6,1% Zn, 1,2–1,6% Cu. Очень своеобразный сплав, отличается даже цветом (пленка окислов слегка золотистая). Неожиданно твердый для алюминия, по твердости сравним с мягкой сталью. Плохо анодируется. Не паяется вообще. Не предназначен для сварки. Не гнется и не куется вообще. Не годится для литья. Резанием обрабатывается отлично, прекрасно полируется. Хорош для ответственных деталей. Используется для винтов в велосипедах, в оружии (материал многих деталей винтовки M16).

Относительно невысокая температура плавления (660°С у чистого, меньше 600°С у литейных сплавов) алюминия делает возможным отливку деталей в песочные формы в условиях гаража/мастерской. Однако многие марки алюминия не годятся для литья.

Примеры применения

Провода. Алюминий дешев, поэтому толстые силовые кабели, СИП, ЛЭП выгодно делать из алюминия. В старых домах квартирная проводка сделана алюминиевым проводом (с 2001 года ПУЭ запрещает в квартирах использовать алюминиевый провод, только медный, см ниже. (Правила устройства электроустановок, 7-е издание, п. 7.1.34). Также алюминий не используется как проводник в ответственных применениях.

Слева старый алюминиевый провод. Справа алюминиевые кабели различного сечения, пригодные для укладки в грунт. В частности, кабелем справа был подключен к электроэнергии целый этаж здания. Кабель помимо наружной резиновой оболочки имеет бронирующую стальную ленту для защиты нижележащей изоляции от повреждений, к примеру, лопатой при раскопке.

Теплоотводы. Не только домашние батареи делают из алюминия, но и радиаторы у микросхем, процессоров.

Различные алюминиевые радиаторы.

Корпуса приборов. Корпус жёсткого диска в вашем компьютере отлит из алюминиевого сплава. Небольшая добавка кремния улучшает прочностные качества алюминия, сплав силумин: это корпуса жёстких дисков, бытовых приборов, редукторов и т. д. Анодированный алюминий (алюминий, у которого электрохимическим путем окисная

пленка на поверхности сделана потолще и прочнее) хорошо окрашивается и просто красив. Окисная пленка (Al2O3 — из того же вещества состоят драгоценные
камни рубины и сапфиры) достаточно твёрдая и износостойкая, но, к сожалению, алюминий под ней мягок, и при сильном воздействии ломается как лёд на воде.

Экраны. Электромагнитное экранирование часто делается из алюминиевой фольги или тонкой алюминиевой жести. Можете провести простой эксперимент, мобильный телефон завернутый в фольгу потеряет сеть — он будет заэкранирован.

Отражающее покрытие у зеркал. Тонкая пленка алюминия на стекле отражает 89% (значения примерные, точное значение зависит от длины волны и типа покрытия) падающего света (Серебро 98%, но на воздухе темнеет из-за сернистых соединений). Любой лазерный принтер содержит вращающееся зеркало, покрытое тонким слоем алюминия.

Зеркала от оптической системы планшетного сканера. Обратите внимание, оптические зеркала имеют металлизацию стекла снаружи, в отличии от привычных бытовых зеркал, где отражающее покрытие для защиты за стеклом. Бытовые зеркала дают двойное отражение — от поверхности стекла и от отражающего покрытия, что не так критично в быту, как защищенность отражающего покрытия.

Электроды обкладок конденсаторов. Алюминиевая фольга, разделенная слоем диэлектрика и туго свернутая в цилиндр — часть электрических конденсаторов (впрочем, для уменьшения габаритов конденсаторов фольгу заменяют алюминиевым напылением). Тот факт, что пленка оксида алюминия тонкая, прочная и не проводит ток, используется
в электролитических конденсаторах, обладающими огромными для своих габаритов электрическими емкостями.

Микропровод. Тончайшей проволокой из алюминия подключают кристаллы микросхемы к выводам корпуса. Также может использоваться медная и золотая проволока.

Недостатки

Алюминий — металл активный, но на воздухе покрывается оксидной пленкой, которая предохраняет металл от разрушения и скрывает его активную натуру. Если не дать алюминию формировать стабильную защитную пленку, например капелькой ртути, алюминий активно реагирует с водой. В щелочной среде алюминий растворяется, попробуйте залить алюминиевую фольгу средством для прочистки труб — реакция будет бурная, с выделением взрывоопасного водорода. Химическая активность алюминия, в паре с большой
разницей в электроотрицательности с медью делает невозможным прямое соединение проводов из этих двух металлов. В присутствии влаги (а она в воздухе есть почти всегда)
начинает протекать гальваническая коррозия с разрушением алюминия.

Два идентичных трансформатора от микроволновых печей. Левый вышел из строя по причине алюминиевых обмоток — отгорел провод от контакта — алюминий плохо паяется мягкими припоями, попытка обеспечить контакт также как и у медного провода привела к поломке.

Алюминий ползуч. Если алюминиевый провод очень сильно сжать, он деформируется и сохранит новую форму — это называется «пластическая деформация». Если сжать его
не так сильно, чтобы он не деформировался, но оставить под нагрузкой надолго — алюминий начнет «ползти» меняя форму постепенно. Это пакостное свойство ведет к тому, что хорошо затянутая клемма с алюминиевым проводом спустя 5–10–20 лет постепенно ослабнет и будет болтаться, не обеспечивая былого электрического контакта. Это одна из причин, почему ПУЭ запрещает тонкий алюминиевый провод для разводки электроэнергии по конечным потребителям в зданиях. (См п. 7.1.34 ПУЭ 7 издания) В промышленности не сложно обеспечить регламент — так называемая «протяжка» щитка, когда электрик периодически (1–2 раза в год) проверяет затяжку всех клемм в щитке. В домашних же условиях, обычно пока розетка с дымом не сгорит — никто и не озаботится качеством контакта. А плохой контакт — причина пожаров.

Алюминий, по сравнению с медью, менее пластичный, риска от ножа на жиле, при сьёме изоляции с провода быстрее приведет к сломавшейся жиле, чем у меди, поэтому изоляцию с алюминиевых проводов надо счищать как с карандаша, под углом, а не в торец.

Интересные факты об алюминии



    Алюминий — хороший восстановитель, что используется для восстановления других металлов, например титана из состояния диоксида. Теодор Грей (Настоятельно рекомендую книги Теодора Грея «Элементы. Путеводитель по периодической таблице», «Научные опыты с периодической таблицей», «Эксперименты. Опыты с периодической таблицей». Они очень хорошо сделаны визуально, и опыты в них не приторно безопасные, как в большинстве современных пособий, могут и бабахнуть.) в домашних условиях проводил
    такой опыт. В смеси с окислом железа алюминиевая пудра образует термит — адскую смесь, которая горит разогреваясь до 2400°С при этом восстанавливается железо и весело стекает вниз, что используется для сварки рельсов, иным способом такой кусок железа качественно и быстро не прогреть. Термитные карандаши позволяют в полевых условиях сваривать провода, а бравый спецназовец термитной горелкой пережжет дужку самого крепкого замка.

Алюминиевый корпус внешнего аккумулятора для телефона. Экструдированный анодированный окрашенный профиль.

Еще раз важное замечание. Алюминиевые и медные проводники напрямую соединять нельзя!
Для соединения проводников из меди и алюминия используйте промежуточный металл,
например, стальную клемму.

Источники

В крупных строительных магазинах (OBI, Leroy Merlin, Castorama) обычно есть в наличии алюминиевый профиль разных размеров и форм. Неплохим источником может послужить штампованная алюминиевая посуда — она очень дешева и существует разных форм. Но обратите внимание на марки. Если нужен 6061 и тем более 7075, придется покупать его у фирмы, специализирующейся на продажах металлов.

Железо

Fe — железо. Основной конструкционный материал в промышленности используется также и в электротехнике. Плохая, по сравнению с медью, электропроводность компенсируется очень низкой ценой. И, что важнее в России, меньшей привлекательностью для охотников за металлом, заземление из толстой ржавой трубы простоит без охраны дольше красивой медной шины.

В технике железо применяется почти исключительно в виде сплавов с углеродом — чугуна и сталей. Свойства сталей разных марок весьма различны: от мягких до твердых инструментальных.

Примеры применения

Метизы. Винты, шайбы, гайки из стали изготавливаются огромными количествами на специально разработанном для этого оборудовании. Метизы из других металлов встречаются очень редко и значительно дороже. Поэтому, в большинстве случаев, медный наконечник медного провода будет притянут к медной же шине стальным болтом (или омеднённым). Также важным является высокая прочность стали, медный болт не затянуть с усилием стального. Обратите внимание на цифры на головке болта: они обозначают его прочность. Чем больше число, тем сильнее можно затягивать болт.

Клеммные колодки, соединители. Соединители типа «орех» содержат стальные пластинки с защитным покрытием от коррозии. Также, применение стали необходимо для предотвращения гальванической коррозии при соединении медных и алюминиевых проводов.

Соединитель «орех». Внутри пластиковой оболочки комплект стальных пластин с винтами, позволяет сделать ответвление от жилы кабеля не разрезая саму жилу. Также позволяет перейти от алюминиевой жилы на медную.

Контуры заземления. Требования электробезопасности обязывают предусматривать заземление. Часто, в промышленных условиях, заземляющую шину изготавливают из стального проката, закрепленного по периметру стены. Плохая электропроводность стали компенсируется большим сечением проводника. Во многих случаях правила безопасности и стандарты предписывают делать детали заземления именно из стали по соображениям механической прочности.

Стальная полоса, огибающая колонну — шина заземления.

Широко используются магнитные свойства стали — из стальных пластин собирают сердечники трансформаторов, дросселей.

Недостатки

Коррозия. Железо ржавеет, при этом плотность ржавчины ниже плотности исходного железа, из-за этого конструкция распухает. Поэтому железо покрывают защитными покрытиями — оцинковка, лужение, хромирование, окраска и т.д. Разные марки стали подвержены коррозии в разной степени, причем по закону подлости сильнее всего ржавеют именно те, которые легче всего обрабатываются на станках.

Золото

Au — Золото. Самый бестолковый драгоценный металл. Имеет меньше всего применений в технике из всех драгоценных металлов, но является символом богатства. На удивление дороже платины (2017 г.), что лишено здравого смысла и является лишь результатом спекуляций.

Примеры применения

Покрытия контактов. Благодаря тому, что золото на воздухе не окисляется, контакты покрывают очень тонким слоем золота. В силу мягкости золота покрытие не подходит для контактов много работающих на истирание, в таких случаях подбирают более твердые покрытия (например родиевые), или легируют золото.

Золотое покрытие на различных электронных компонентах: покрытие на контактах платы для установки в слот, покрытие на контактах мембранных кнопок мобильного телефона, покрытие на штырьках процессора.

Защита от коррозии. В некоторых ответственных применениях используется золотое покрытие для защиты проводников от коррозии (в основном — военка). Когда-то покрытие золотом являлось единственным способом защитить детали электроники от коррозии в условиях джунглей, поэтому у многих старых радиодеталей позолочены даже корпуса. А сейчас обычно просто заливают плату компаундом в «кирпич».

Интересные факты о золоте

Золото — один из четырех металлов, имеющий оттенок в не окислившемся состоянии. Все остальные металлы белые (желтоватый цвет имеют золото и цезий,
медь — красноватая и в сплавах золотистая, осмий имеет голубой отлив).

Плотность золота отличается от плотности вольфрама незначительно (19,32 г/см 3 > у золота, 19,25 г/см 3 ), этим пользуются для подделки золотых слитков, покрывая вольфрамовый слиток слоем золота. Некоторые теории заговора утверждают, что возможно это одна из причин, почему США никому не дают проверить подлинность их золотого
запаса. И, возможно, поэтому они отдали Германии их золото не сразу.

Можно извлечь золото химически из горы старой электроники, но это не всегда экономически целесообразно и преследуется по закону (ст. 191, 192 УК РФ).

Бестолковость золота требует пояснений. Представим добычу благородных металлов в 2016 году.
Из всей добытой платины 64% потребила промышленность. (Здесь и далее цифры примерные, усредненные по нескольким источникам).
Из всего добытого серебра 68% потребила промышленность.
Из всего добытого палладия 96% потребила промышленность.
Из всего добытого золота всего 10% потребила промышленность. Остальное ушло на украшения и на слитки в сейфах.

Никель

Ni — Никель. Замечательный металл, но в электронной технике основное применение в виде покрытий, как в чистом виде, так и в паре с хромом.

Примеры применения

Покрытие контактов. Наносится на медь, пластик для надежного контакта и для декоративных целей. Жадные китайцы иногда вообще делают контакты из пластмассы, покрывая сверху слоем никеля и хрома, внешне выглядит нормальным, даже как то работает, но ни о какой надежности речи не идет.

Различные разъемы, покрытые никелем для надежного контакта.

У разъема справа для экономии металла сердцевина штыря сделана полой с заливкой пластиком. Латунная никелированная трубочка, из которой сделан штырь, не самый худший вариант.

Тоководы у ламп. Сплав Платинит (46% Ni, 0,15% C, остальное — Fe) не содержит платины, но имеет очень близкое к платине значение линейного
температурного расширения (и близкое к стеклу), что позволяет делать из него надежные электроды, проходящие через стекло. Для аналогичных целей используют сплав Ковар (29% Ni, 17% Co, 54% Fe). Такие электроды при изменении температуры не вызывают растрескивания стекла и потерю герметичности. Место сплавления стекла с этими сплавами имеет красноватый оттенок что ошибочно воспринимается за медь.

Промежуточные защитные слои. Для защиты от коррозии, взаимной диффузии металлов при создании покрытий, могут формироваться промежуточные слои из никеля. Например при покрытии меди слоем золота, если не предусмотрен разделительный слой из никеля, золотое покрытие со временем из-за диффузии растворится в меди и потеряет целостность. Жала современных паяльников защищены слоем никеля, так как жало из голой меди медленно растворяется в олове, теряя форму.

Вольфрам

W — Вольфрам. Тугоплавкий металл, температура плавления 3422°С, что определяет основное его использование — нити накала и электроды.

Примеры применения

Нити накала. В лампах накаливания, в галогеновых лампах спираль изготовлена из вольфрама, нагревается электрическим током до белого каления, при этом сохраняя свою форму. Также катоды в радиолампах изготавливаются из вольфрама, но раскаливаются не до таких высоких температур, как осветительные лампы, специальное покрытие на катоде позволяет протекать термоэлектронной эмиссии при невысоких температурах.

Нить накаливания этой галогеновой лампы изготовлена из вольфрама. Галоген, обычно пары иода, химически связывает испаряющийся с нити вольфрам и возвращает его на нить, что позволяет повысить температуру накала спирали и уменьшить габарит лампы без страха, что вольфрам постепенно осядет на стенках колбы.

Мощная лампа накаливания от проектора. Даже тугоплавкий вольфрам со временем испаряется и оседает на стенках колбы в виде темного налета. Данного недостатка лишены галогеновые лампы.

Электроды дуговых ламп и сварочные электроды. В ксеноновых дуговых лампах, ртутных дуговых лампах, электроды должны выдерживать температуру электрической
дуги, при этом не расплавляясь и не изменяя своей формы, что под силу только вольфраму. Также электроды для сварки неплавящимся электродом изготовлены из вольфрама (TIG сварка).

Аноды рентгеновских трубок. Поток электронов от катода в рентгеновской трубке, разогнанный высоким напряжением тормозится бомбардируя анод, очень сильно нагревая его, поэтому такие аноды, особенно если они не имеют водяного охлаждения, зачастую изготавливаются из вольфрама. Однако в физических лабораториях часто применяют и аноды из меди или кобальта в связи с особенностями спектра рентгеновского излучения от таких анодов.

Источники

Вольфрам — не очень пластичный материал, поэтому спиральку из лампы накаливания
вряд ли удастся выпрямить и использовать по своему разумению. Если вдруг понадобится
вольфрамовый стержень — вам пригодится любой магазин по сварочному делу, электрод для
TIG-горелки без содержания лантана и других присадок. Проволоку для нитей накала самодельной
техники нетрудно купить на eBay.

  • Цветовая маркировка электродов:
  • Зеленый — чистый вольфрам.
  • Красный, оранжевый — вольфрам + торий. Радиоактивно! Не шлифовать, не резать — пыль опасна!
  • Голубой — вольфрам + сложная смесь.
  • Черный, желтый, синий — вольфрам + лантан.
  • Серый — вольфрам + церий.
  • Белый — вольфрам + цирконий.

Ртуть

Hg — Ртуть. При комнатной температуре — блестящий, собирающийся в шарики жидкий металл. По экологическим соображениям использование ртути сокращается, но она широко использовалась в старых приборах, поэтому заслуживает упоминания.

Как и большинство металлов, ртуть образует сплавы. Но ртуть, будучи жидкой при комнатной температуре, способна сплавляться с металлами без дополнительного нагревания, растворять их. Растворенный в ртути металл, сплав металла с ртутью называется «амальгама».

Примеры применения

Жидкий контакт в датчиках положения, ртутных электроконтактных термометрах.

Различные ртутные приборы. Слева — мощный ртутный переключатель, замыкающий/размыкающий цепь при наклоне. Ниже на чёрных платках — аналогичные китайские ртутные переключатели — датчики положения из детского набора с Arduino. Сверху — колба ртутного электроконтактного термометра. В стекло вплавлены проволочки так, что при температуре 70°С столбик ртути в капилляре замыкает цепь (температура указана на корпусе).

В термометрах. Низкая температура замерзания, высокая температура кипения и большой коэффициент теплового расширения делают ртуть одним из самых удобных веществ для лабораторных и медицинских термометров. В бытовых термометрах ртуть уже очень давно не используется.

В манометрах и барометрах. Ртуть тяжелая, поэтому для уравновешивания атмосферного давления достаточно 70–80 см высоты столбика ртути. Хотя ртутные барометры в основном вышли из употребления, единицы измерения давления «миллиметр ртутного столба», а в вакуумной технике — «микрон ртутного столба» и «торр» (округленный вариант мм. рт. ст.) используются и по сей день. Нормальным атмосферным давлением считается 760 мм. рт. ст.

В нормальных элементах. Батарейка (Попытка запитать от такой батарейки самоделку обернется провалом — батарейка имеет большое внутреннее сопротивление (порядка единиц кОм) и не предназначена отдавать токи больше сотых долей микроампера, да и то с перерывами.) с электродами из жидкой ртути, в которой растворены сульфаты ртути и кадмия, имеет ЭДС, известную и стабильную до единиц микровольт (теоретически 1,018636 В при 20°С). Такие элементы до сих пор используются в метрологии в качестве опорных источников напряжения, хотя и вытесняются полупроводниковыми схемами. Сосуд с ртутью в нормальном элементе запаян, однако он стеклянный, и ртути в нем много. Поэтому будьте осторожны, если найдете где-нибудь круглую железную банку с бакелитовой крышкой, клеммами и надписью «нормальный элемент» на бакелите. Внутри у нее — стеклянная колба с весьма опасными веществами.

Элемент нормальный насыщенный, НЭ-65, класс точности 0,005. Внешний вид корпуса нормальных элементов может различаться. Справа — содержимое корпуса, видна ртуть в нижней части колб. Такие элементы должны утилизироваться специализированной организацией.

Фото внутренностей Нормального Элемента

В диффузионных вакуумных насосах. Струя ртутного пара, выходящая из сопла с большой скоростью, захватывает молекулы воздуха и вытягивает их из откачиваемого объема. Затем ртутный пар конденсируется за счет охлаждения жидким азотом и используется снова. Насосы такого типа когда-то использовались для откачки радиоламп. Сейчас вместо ртути используются нетоксичные и не требующие жидкого азота силиконовые масла, но в некоторых лабораториях до сих пор можно найти старые ртутные системы.

Пары ртути — рабочий газ люминесцентных ламп. Несмотря на то, что люминесцентная лампа должна содержать небольшое количество ртути, в некоторых лампах ртути добавлено от души, и видно, как в колбе перекатывается шарик ртути. Пары ртути при возбуждении их электрическим током излучают яркий свет, преимущественно в синей и ультрафиолетовой области. Помимо них в спектре ртути есть яркие желтый и зеленый дублеты, по наличию которых ртутную лампу легко отличить от любой другой, посмотрев на нее через призму или отражение в компакт-диске. Специальная ртутная лампа в лабораториях используется как источник зеленого света с известной длиной волны.

В мощных тиратронах и ртутных выпрямителях. Используется так же, как и в ртутных лампах. Мощные ртутные вентили широко использовались для питания локомотивов на железных дорогах и в других подобных задачах до появления полупроводниковых приборов.

Как растворитель для металлов при выделении золота и платины из сырья амальгамацией и в производстве зеркал. Ртуть выпаривается, металл остается. Иногда этот процесс неправильно называют «аффинаж», путая его с совершенно другим способом очистки драгметаллов.

В ртутных счетчиках времени наработки. В старой технике ртутный капиллярный кулономер использовался как счетчик часов, которые проработал прибор. Гениальная по простоте и надёжности конструкция.

Ртутный счетчик времени наработки от осцилографа. В углу показан крупным планом разрыв столбика ртути в капилляре каплей электролита. Ртуть под действием тока растворяется на одном конце капли и восстанавливается на другом, в результате этот разрыв движется по капилляру на расстояние, пропорциональное пропущенному через капилляр количеству электричества. Благодарю Александра @Talion_amur за предоставленный образец.

В амальгамных зубных пломбах. Встречаются и по сей день, особенно в США.

Токсичность

Все изделия, содержащие ртуть, должны утилизироваться специализированной службой. Недопустимо выбрасывать их с бытовым мусором во избежание скопления ртути на свалке.

Все разливы ртути должны быть собраны, а поверхности демеркуризованы. Ртуть хорошо испаряется при комнатной температуре, поэтому закатившийся в щель шарик ртути долгое время будет отравлять воздух.

Демеркуризация:

Если у вас разбилось изделие с ртутью, то предпринимайте следующие действия:

1. Откройте форточки и обеспечьте проветривание.

2. Вызовите специализированную службу демеркуризации в вашем городе. Профессионалы не только грамотно уберут ртуть, но также и произведут замеры концентрации паров ртути в помещении.

Если вдруг в вашем городе не оказалось службы демеркуризации, вы находитесь вдали от цивилизации то процесс демеркуризации придется продолжить самостоятельно.

3. Соберите видимые шарики ртути в герметичную тару. Их удобно собирать вместе при помощи двух хорошо обрезанных листов бумаги, сливая шарики в подготовленную тару. Мельчайшие шарики ртути из щелей можно вытянуть при помощи спиринцовки, или щетки из металла, которые смачивает ртуть (например медь). Разумеется после использования такой «инструмент» окажется загрязнен ртутью и подлежит утилизации.

Затем при помощи химических средств оставшаяся, не видимая глазу ртуть переводится в нелетучие, но по прежнему ядовитые соли, которые спокойно можно удалить с поверхности моющими средствами. Для этого используются 0,2% водный раствор перманганата натрия («марганцовка») подкисленный добавлением 0,5% соляной кислоты или 20% раствор хлорного железа (того, которым платы травят). Вопреки указаниям в старых книгах, засыпание места разлива порошком серы не эффективно.

4. Тщательно промыть обработанные площади водой с моющим средством.

5. Всю собранную ртуть и загрязненные предметы герметично упаковать и сдать в специализированную организацию.

Что однозначно не стоит делать при разливе ртути:

1. Паниковать и спешить. Иногда, при небольших авариях больше вреда наносит паника и спешка, чем сама авария. Вспоминается байка, записанная Ю.А.Золотовым:

Однажды, когда профессор МГУ Алексей Николаевич Кост вел практикум по органической
химии, у одного из студентов разбилась колба с эфиром и его пары вспыхнули.
Началась паника, кто-то прибежал с углекислотным огнетушителем и с трудом погасил
пожар. Все это время Кост совершенно невозмутимо сидел за своим столом и с
кем-то разговаривал. Потом, когда все успокоились, подошел к месту происшествия и приказал:

— Спички!

Ему дали коробок, он чиркнул спичкой и бросил ее в еще не просохшую эфирную
лужу. Огонь вспыхнул вновь, все оторопели. А Кост, не суетясь, взял противопожарное
одеяло, ловко накрыл им пламя и изрек:

— Гореть надо умеючи!

2. Пытаться собрать ртуть пылесосом, пылесос только в турборежиме раздробит и испарит шарики ртути, в итоге все помещение и сам пылесос окажутся загрязнены ртутью. Аналогично не стоит использовать для сбора ртути веники, щетки — они только раскидывают и дробят шарики ртути.

3. Сливать ртуть в раковину или унитаз. Ртуть значительно тяжелее воды, поэтому навсегда осядет в первом попавшемся изгибе трубы — в гидрозатворе или колене.

Пара слов о токсикологии ртути.

Некоторые в детстве играли шариками ртути, и «с ними ничего не было». Действительно, вопреки распространенному мнению металлическая ртуть при кратковременном контакте малоопасна. Причина малой токсичности металлической ртути — в ее плохой биодоступности. Нерастворимая в воде и химически инертная, почти как благородные металлы, она не может быстро попасть в организм.

Опасно вдыхание паров ртути, и это практически единственный путь поступления ее в организм. Касание ртути пальцами никакой дополнительной опасности не добавляет. Более того, дажепроглатывание ртути обычно проходит без последствий для здоровья. Ртуть химически достаточно инертна и выходит из организма естественным путем. Поэтому она является причиной не острых отравлений, а вялотекущих хронических, проявляющихся в медленном постепенном ухудшении здоровья и не всегда вовремя диагностируемых врачами. Именно этим ртуть и коварна: маленький шарик, закатившийся под плинтус, будет годами испаряться и отравлять воздух в квартире, а жильцы не будут понимать, чем и почему они болеют. Порча здоровья от контакта со ртутью в течение нескольких дней может быть необратима.

Растворимые соединения ртути намного опаснее, и именно они образуются, когда ртуть так или иначе попадает в организм человека, животных или в растений. Рекорд по токсичности принадлежит диметилртути — это ужасно токсичное из известных человечеству веществ, настолько токсичное, что при первой возможности ищут менее опасную альтернативу если предстоит работа с ней. Капля диметилртути способна убить человека сквозь резиновые перчатки, причем первые симптомы отравления могут появиться только на следующий день.

Если вы выкинув ртуть подальше от дома думаете, что проблема устранена — то вы серьезно ошибаетесь. Ртуть — яд кумулятивный, способный к накоплению в живых организмах
и передаче дальше по пищевой цепочке. Примером отравления человека ртутью является болезнь Минамата. Ртуть из выброшенной люминесцентной лампы отравит если не вас, то ваших потомков.

Дополнительные сведения

Если вы нашли где-нибудь ртуть, не пытайтесь ее продать. Ртуть и ее соли считаются сильнодействующими ядовитыми веществами (ст. 234 УК РФ). На содержащие ртуть приборы заводского производства, соответствующие официальным стандартам, запрет не распространяется. Найденную ртуть и неисправные ртутьсодержащие приборы, следует сдавать на переработку в специализированные службы в вашем городе. Единственный широко доступный источник ртути (если вдруг понадобится в научной работе) — медицинские термометры.

Электропроводность металлов

Электропроводность металлов

Электропроводность металлов и сплавов – физическое свойство, которое учитывается при производстве разных видов изделий. Например, для изготовления электрических кабелей, микросхем используют металлы с высокими показателями электропроводности.

Данный параметр зависит от факторов окружающей среды: температуры, давления, агрегатного состояния, наличия магнитных полей и т. д. Если говорить о чистых металлах и влиянии температуры на их электропроводность, то с ростом она падает. Подробнее о том, что собой представляет электропроводность металлов, вы узнаете из нашего материала.

Природа электропроводности металлов

Электропроводностью называют способность тела, вещества проводить ток. Кроме того, этим термином обозначается физическая величина, которая численно характеризует данную способность. Электропроводность металла определяется числом свободных ионов в проводнике – их движение и является электрическим током. Данный показатель исчисляется в сименсах, а в международной системе единиц для его обозначения используется буква «S».

В зависимости от того, какой электропроводностью обладают металлы и иные вещества, среди них выделяют проводники, диэлектрики и полупроводники. Правда, между данными группами практически не существует четкого разграничения.

Чем обусловлена высокая электропроводность металлов-проводников? Они имеют большое количество свободных ионов. Среди веществ этой группы выделяют два рода, исходя из физической природы протекания тока. К первому относятся металлы с электронной проводимостью, по которым ток проходит благодаря движению свободных электронов.

Ко второму причисляют растворы кислот, щелочей, солей или электролиты, имеющие ионную проводимость. Иными словами, здесь интересующий нас процесс связан с движением положительных и отрицательных ионов. Уровень электропроводности проводников превышает 106(Ом·м)-1.

VT-metall предлагает услуги:

Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

Диэлектрики обладают малым числом свободных ионов, поэтому отличаются низкой электропроводностью, практически не проводят ток. Такими материалами являются дерево, смолы, пластмассы, стекло, пр. Для них данный показатель составляет менее 106(Ом·м)-1.

По своим проводящим свойствам полупроводники занимают промежуточное положение между материалами описанных выше групп. К ним относятся германий, кремний, селен, прочие соединения, получаемые искусственно.

Природа электропроводности металлов

Существует зависимость электропроводности металлов и иных веществ от температуры, но она является индивидуальной для каждого материала. Повышение степени нагрева металлов приводит к сокращению времени свободного пробега электронов. Увеличение температуры влечет за собой возрастание тепловых колебаний кристаллической решетки, на которой рассеиваются электроны, что вызывает уменьшение электропроводности.

Полупроводникам свойственна другая зависимость электропроводности металлов от температуры: ее повышение провоцирует рост электропроводности, поскольку увеличивается число электронов проводимости и положительных носителей заряда. У диэлектриков электропроводность тоже может возрастать, однако для этого требуется очень высокое электрическое напряжение.

Металлы способны проводить ток, поскольку воздействие электромагнитного поля вызывает потерю связи между электроном и атомом из-за высокой степени ускорения.

Электрическое сопротивление металлов

Электрическое сопротивление является частью закона Ома и исчисляется в омах (Ом). Нужно понимать, что электрическое и удельное сопротивление являются разными явлениями. Если первое представляет собой свойство объекта, то второе характеризует материал.

Так, электрическое сопротивление резистора зависит от формы и удельного сопротивления материала, использованного для изготовления данного элемента электрической цепи.

Электрическое сопротивление металлов

Допустим, проволочный резистор состоит из длинной тонкой проволоки и обладает более высоким сопротивлением, чем аналогичный элемент, но выполненный из короткой и толстой проволоки. При этом оба они сделаны из одного металла.

Если сравнить два резистора из проволоки одинаковой длины и диаметра, то большим электрическим сопротивлением будет обладать тот, который состоит из материала с высоким удельным сопротивлением. А его аналогу из материала с низким удельным сопротивлением будет свойственно меньшее электрическое сопротивление.

В этом случае работает тот же принцип, что и в гидравлической системе, прокачивающей воду по трубам:

  • Чем больше длина трубы и меньше ее толщина, тем с более высоким сопротивлением сталкивается жидкость.
  • Вода будет испытывать на себе меньшее сопротивление в пустой трубе, чем в заполненной песком.

Под удельным сопротивлением понимают способность материала препятствовать прохождению электрического тока. В физике существует и обратная величина, известная как проводимость. Она выглядит таким образом:

Σ = 1/ρ, где ρ – удельное сопротивление вещества.

Электропроводность металлов и других веществ зависит от свойств носителей зарядов. В металлах присутствуют свободные электроны – на внешней оболочке их число доходит до трех. Во время химических реакций с элементами из правой части таблицы Менделеева атом металла отдает их. С электропроводностью чистых металлов все несколько иначе. В их кристаллической структуре эти наружные электроны общие и переносят заряд под действием электрического поля.

В случае с растворами в качестве носителей заряда выступают ионы.

Степень электропроводности разных металлов и сплавов

Развитием электронной теории электропроводности металлов занимался немецкий физик Пауль Друде. Именно благодаря его исследованиям стало известно о сопротивлении, наблюдаемом при прохождении электрического тока через проводник. В результате удалось разделить вещества на группы, исходя из степени их проводимости.

Степень электропроводности разных металлов и сплавов

Данная информация необходима, например, чтобы выбрать наиболее подходящий металл для производства кабеля, обладающего определенным набором свойств. Ошибка в этом случае чревата перегревом под действием тока избыточного напряжения и последующим возгоранием.

Серебро – это металл, обладающий самой высокой электропроводностью. При +20 °C этот показатель равен 63,3×104 см-1. Тем не менее, производство серебряной проводки является нерентабельным, поскольку речь идет о достаточно редком металле. В большинстве случаев он идет на изготовление ювелирных изделий, украшений, монет.

Среди неблагородных цветных металлов самая высокая электропроводность характеризует медь – она составляет 57×104 см-1 при +20 °C. Помимо этого, медь хорошо справляется с постоянными электрическими нагрузками, долговечна, надежна, имеет высокую температуру плавления, поэтому может долго работать в нагретом состоянии. Все названные свойства позволяют активно применять данный металл для бытовых целей и на производстве.

Не реже меди используется алюминий, ведь по электропроводности он уступает только серебру, меди и золоту. Его температура плавления практически в два раза ниже, чем у меди, из-за чего алюминий не может выдерживать предельные нагрузки. По этой причине его применяют в сетях с невысоким напряжением. Узнать электропроводность остальных металлов можно в соответствующей таблице.

По проводимости любой сплав значительно уступает чистому металлу, что объясняется слиянием структурной сетки, вызывающим нарушение нормального функционирования электронов. Так, медные провода изготавливают только из металла с максимальной долей примесей 0,1 % или даже 0,05 %, если речь идет об отдельных разновидностях кабеля.

Приведенные показатели – это удельная электропроводность металлов, которая представляет собой отношение плотности тока к величине электрического поля в проводнике.

Опасность металлов с высокой электропроводностью

Щелочные металлы имеют крайне высокую электропроводность, объясняют этот факт тем, что в них электроны практические не привязаны к ядру и могут быть без труда выстроены в требуемой последовательности. Еще одна особенность этих металлов состоит в низкой температуре плавления в сочетании со значительной химической активностью, что обычно не позволяет использовать их в качестве материалов для кабелей.

Находясь в незащищенном виде, металлы с высокой электропроводностью несут в себе большую опасность. Прикосновение к оголенным проводам вызывает электрический ожог, разряд воздействует на внутренние органы, что нередко становится причиной мгновенной смерти человека.

Поэтому металл закрывают специальными изоляционными материалами, которые могут быть жидкими, твердыми, газообразными – конкретный тип подбирается в соответствии со сферой использования изделия. Вне зависимости от агрегатного состояния защиты она призвана изолировать электрический ток в цепи, чтобы не допустить его воздействия на окружающую среду.

Зависимость электропроводности металлов от факторов внешней среды

Проводимость не является постоянной величиной. В таблицах приведены сведения, характерные для нормальных условий или при температуре +20 °С. В реальной жизни сложно обеспечить идеальные условия для работы цепи. Удельное сопротивление, а значит, и проводимость, определяется такими характеристиками:

  • температурой;
  • давлением;
  • наличием магнитных полей;
  • светом;
  • агрегатным состоянием вещества.

Изменения интересующего нас параметра зависят от условий среды и свойств конкретного материала. Электропроводность ферромагнетиков, в число которых входят железо и никель, увеличивается при совпадении направления тока с направлением силовых линий магнитного поля. Зависимость электропроводности от теплопроводности металлов и окружающей температуры практически линейная, даже есть понятие температурного коэффициента сопротивления – данную величину можно уточнить в таблицах.

Правда, направление зависимости определяется конкретным веществом: у металлов оно при увеличении температуры повышается, у редкоземельных элементов и растворов электролитов увеличивается в пределах одного агрегатного состояния.

Полупроводники характеризуются гиперболической и обратной зависимостью электропроводности от температуры: рост степени нагрева приводит к повышению электропроводности металлов. Данная особенность качественно отличает проводники от полупроводников. Зависимость ρ проводников от температуры выглядит следующим образом:

Зависимость электропроводности металлов от факторов внешней среды

На графике отображено удельное сопротивление меди, платины, железа. Некоторые металлы характеризуются иначе: ртуть при понижении температуры до 4°K становится сверхпроводимой, почти полностью теряя удельное сопротивление.

У полупроводников зависимость будет представлена так:

Зависимость полупроводников

Когда металл переходит в жидкое агрегатное состояние, его ρ повышается, а дальнейшее изменение свойств может быть разным. Так, висмут в расплавленном виде имеет более низкое удельное сопротивление, чем при комнатной температуре, а у жидкой меди оно повышается в десять раз. Никелю свойственно выходить из линейного графика уже при достижении температуры +400 °C, но далее ρ падает.

Температурная зависимость вольфрама так высока, что приводит к перегоранию ламп накаливания: ток нагревает спираль, из-за чего ее сопротивление многократно возрастает.

Удельное сопротивление сплавов зависит от задействованной при производстве технологии. Данное свойство простой механической смеси определяется как средний показатель ее компонентов. Тогда как для сплава замещения оно окажется иным и обычно отличается в большую сторону.

Рекомендуем статьи

Стоит пояснить, что под сплавом замещения понимают такой, в котором несколько элементов формируют одну кристаллическую решетку. Данная особенность прослеживается у нихрома, используемого для изготовления спиралей электроплит. Удельное сопротивление, а значит, и электропроводность этого металла совпадает с показателем проводников, а при подключении к сети он нагревается до красноты.

Выше были представлены только основные теории, касающиеся физических свойств металлов, а именно электропроводности, сопротивления. Например, не была затронута квантовая теория проводимости Зоммерфельда. Этого краткого знакомства вполне достаточно, чтобы понять, что сопротивление является сложным и комплексным понятием, которое невозможно полностью разобрать на основе простейшего закона Ома.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *