Восстанавливаемый предохранитель как работает
Перейти к содержимому

Восстанавливаемый предохранитель как работает

Самовосстанавливающиеся предохранители

Самовосстанавливающиеся предохранителиПринцип работы обычного плавкого предохранителя основан на тепловом действии электрического тока. В керамическую или стеклянную колбу помещается тонкий медный провод, который перегорает, когда проходящий через него ток вдруг превышает некоторое, заранее определенное, значение. Это влечет за собой необходимость замены такого предохранителя на новый.

Самовосстанавливающиеся предохранители, в отличие от обычных плавких предохранителей, могут срабатывать и восстанавливаться многократно. Такие самовосстанавливающиеся предохранители часто используются в компьютерах и игровых приставках для защиты USB и HDMI портов, а также для защиты аккумуляторных батарей в портативной технике.

Суть в следующем. Непроводящий кристаллический полимер содержит введённые в него мельчайшие частицы технического углерода, которые распределены по объёму полимера так, что свободно проводят электрический ток. На тонкий лист пластика напылены токоведущие электроды, которые распределяют энергию по всей площади элемента. К электродам прикреплены выводы, служащие для включения элемента в электрическую цепь.

Устройство предохранителей

Особенностью такого проводящего пластика является высокая нелинейность положительного температурного коэффициента сопротивления (ТКС), что и служит для защиты цепи. После того, как ток превысит определенное значение, элемент нагреется, и сопротивление проводящего пластика резко увеличится, а это приведет к разрыву электрической цепи, куда включен элемент.

Превышение температурного порога приводит к трансформации кристаллической структуры полимера в аморфную, и цепочки технического углерода, по которым проходил ток, теперь разрушаются – сопротивление элемента резко возрастает.

Характеристики предохранителей

Рассмотрим основные характеристики самовосстанавливающихся предохранителей.

1. Максимальное рабочее напряжение – напряжение, которое может выдержать предохранитель без разрушения, при условии протекания через него номинального тока. Обычно, это значение лежит в пределах от 6 до 600 вольт.

2. Максимальный ток, не приводящий к срабатыванию, номинальный ток самовосстанавливающегося предохранителя. Бывает обычно от 50мА до 40 А.

3. Минимальный ток срабатывания – значение тока, при котором проводящее состояние переходит в непроводящее, т.е. значение тока, при котором цепь размыкается.

4. Максимальное и минимальное сопротивление. Сопротивление в рабочем состоянии. Желательно выбирать элемент с наименьшим значением этого параметра из доступных, чтобы на нем не терялась лишняя мощность.

5. Рабочая температура (обычно от -400 С до +850 С).

6. Температура срабатывания, или по другому – температура «защелкивания» (обычно от +1250 С и выше).

7. Максимально допустимый ток – максимальный ток короткого замыкания при номинальном напряжении, который может выдержать элемент без разрушения. Если этот ток будет превышен, то предохранитель просто сгорит. Обычно это значение измеряется десятками ампер.

8. Скорость срабатывания. Время нагрева до температуры срабатывания составляет долю секунды, и зависит от тока перегрузки и температуры окружающей среды. В документации на конкретную модель эти параметры указываются.

Самовосстанавливающиеся предохранители выпускаются как в корпусах для монтажа в отверстия, так и в SMD корпусах. По внешнему виду такие предохранители напоминают варисторы или SMD резисторы, и широко применяются в цепях защиты различных электрических устройств.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

«Восстановить работоспособность!» Самовосстанавливающиеся PPTC-предохранители MULTIFUSE

Самовосстанавливающиеся предохранители являются миниатюрной альтернативой традиционным громоздким предохранителям. Они обеспечивают безупречную защиту компьютерной и портативной техники, батарейных устройств, автомобильной электроники. Широкий выбор этих изделий предлагает компания Bourns.

Рис. 1. Схема подключения PPTC-предохранителя

Рис. 1. Схема подключения PPTC-предохранителя

Наиболее распространенной и стандартной защитой электронных устройств от возникновения аварийных ситуаций является применение предохранителей. По принципу действия они делятся на четыре группы: плавкие, самовосстанавливающиеся, электронные и электромеханические [1]. Вместо традиционных плавких вставок с каждым годом все шире используются миниатюрные самовосстанавливающиеся предохранители. Эти устройства по аналогии с обычными предохранителями подключаются последовательно с нагрузкой (рисунок 1), но их эксплуатация имеет ряд особенностей.

Самовосстанавливающиеся предохранители – это устройства, ограничивающие ток в цепи, но в отличие от обычных плавких вставок, не утрачивающие работоспособность после срабатывания. Как правило, под самовосстанавливающимися предохранителями подразумеваются PPTC-термисторы.

Рис. 2. Срабатывание полимера с положительным температурным коэффициентом при увеличении температуры

Рис. 2. Срабатывание полимера с положительным температурным коэффициентом при увеличении температуры

PPTC (Polymeric positive temperature coefficient device) – полимерные устройства с положительным температурным коэффициентом сопротивления. Впервые такие устройства были открыты, описаны и запатентованы компанией Bell Labs в 1939 году (патент номер US#2,258,958) [2].

Принцип работы PPTC-предохранителя основан на способности полимера изменять проводящую структуру при нагревании). На рисунке 2 показана идеализированная кривая зависимости логарифма сопротивления от температуры предохранителя. При комнатной температуре полимер имеет кристаллическую структуру, так что движение заряженных частиц происходит упорядоченно, и ток в цепи определяется рабочим значением сопротивления нагрузки RL (рисунок 1). В случае возникновения аварийной ситуации ток в цепи резко увеличивается, нагревая полимер. При определенной температуре происходит срабатывание предохранителя, а именно – меняется фазовое состояние полимера из кристаллического в аморфное (рисунок 3). В результате сопротивление термистора резко возрастает, и ток в цепи теперь определяется значением сопротивления RMF.

Рис. 3. Принцип работы самовосстанавливающегося предохранителя

Рис. 3. Принцип работы самовосстанавливающегося предохранителя

Области применения

PPTC-предохранители прекрасно зарекомендовали себя как непременные элементы защиты в необслуживаемых устройствах с возможностью возникновения многократных перегрузок по току и устройствах, где замена плавкой вставки является проблематичной. Особенно актуальна защита с применением PPTC-предохранителей в разъемах электроники, где цепи питания могут замкнуться из-за внешнего воздействия и привести к перегрузке по току. Иными словами, сфера применения таких предохранителей включает в себя компьютеры и мобильные устройства (телефоны, планшеты, плееры), трансформаторы, звуковоспроизводящую технику, электромоторы, элементы питания, медицинское и измерительное оборудование, автомобильную электронику и телекоммуникационные сети.

Существует множество стандартов, в которых регламентируется необходимость защиты от токовых перегрузок. Например, стандарты PC 97, PC 98, PC 99 и PC 2001, которые разработаны совместно Microsoft и Intel для IBM-совместимых компьютеров; USB OTG (разработан USB Implementers Forum, Inc.); Telcordia GR-1089-CORE для защиты интерфейса абонентской линии или EN60742 для защиты трансформатора. Требования перечисленных стандартов можно успешно выполнить, используя PPTC-предохранители серий MULTIFUSE® производства Bourns.

Технические характеристики

Так как самовосстанавливающиеся предохранители имеют ярко выраженный положительный температурный коэффициент сопротивления, их характеристики зависят от температуры окружающей среды. Для срабатывания PPTC-предохранитель должен нагреться, поэтому переключение происходит не мгновенно, а в течение некоторого времени, которое зависит не только от температуры окружающей среды, но и от протекающего через предохранитель тока перегрузки. Предохранитель остается в «горячем» состоянии, обеспечивая постоянную защиту до тех пор, пока находится под напряжением или пока не будут устранены причины его срабатывания. После устранения причин выключения предохранитель охлаждается и его сопротивление со временем возвращается к номинальному значению.

С учетом вышесказанного для самовосстанавливающихся предохранителей можно выделить основные характеристики.

Ток пропускания, Ihold at 23°C, – это номинальный рабочий ток, то есть максимальный установившийся ток при температуре 23°C, не приводящий к срабатыванию предохранителя, а именно – к переходу из проводящего состояния в разрывное.

Ток срабатывания, Itrip at 23°C, – минимальный ток, приводящий к обязательному срабатыванию предохранителя при температуре 23°C.

Максимально допустимый ток срабатывания, Imax, – ток, который может быть прерван предохранителем при возникновении перегрузки без опасности разрушения самого защитного элемента.

Максимальное рабочее напряжение, Vmax, – это максимально допустимое напряжение, не приводящее к разрушению предохранителя при номинальном токе пропускания.

Время срабатывания, Time to Trip или ttrip at 23°C, – период времени после возникновения перегрузки (дополнительно указывается ток срабатывания Itrip, при котором происходило измерение времени, в течение которого падение напряжения на предохранителе станет больше 80% от величины напряжения питания защищаемой цепи, то есть сопротивление элемента станет значительно выше.

Мощность рассеяния, Tripped Power Dissipation или РD at 23°C, – мощность, рассеиваемая корпусом предохранителя при температуре 23°C.

Первоначальное сопротивление, Initial Resistance Rmin или Rmax at 23°C, – сопротивление предохранителя при указанных условиях перед его подключением в схему.

Сопротивление через час после срабатывания, One Hour Post-Trip Resistance или R1max at 23°CC — максимальное сопротивление предохранителя при температуре 23°C через 1 час после его срабатывания или пайки оплавлением.

В последние годы самовосстанавливающиеся предохранители стали чрезвычайно популярными изделиями, и все ведущие производители компонентов защиты цепей, среди которых TE Connectivity (Raychem), LittleFuse и, конечно же, Bourns, имеют их в своем портфеле. PPTC-предохранители производства компании Bourns семейства Multifuse® (рисунок 4) уже довольно широко известны на российском рынке, но разнообразие серий и исполнений вызывает некоторое замешательство у тех, кто только планирует использовать их в своих изделиях. Мы постараемся рассмотреть самые перспективные и применяемые серии этих предохранителей.

Рис. 4. Внешний вид планарных и выводных предохранителей Multifuse

Рис. 4. Внешний вид планарных и выводных предохранителей Multifuse

Технические параметры Multifuse® для планарного и выводного монтажа представлены в сводных таблицах 1 и 2.

Таблица 1. Сравнение и области применения контактных и бесконтактных энкодеров

Наименование Ihold, А Itrip, А Vmax, В Диапазон рабочих
температур, °C
MF-S 1,2…4,2 2,7…7,6 15…30 -40…85
MF-LR 1,9…9 3,9…16,7 15…20 -40…85
MF-LS 1,8…3,4 3,8…6,8 15…24 -40…85
MF-LSMF 1,85…3 3,7…5,2 6…33 -40…85
MF-SMDF 0,55…2 1,2…4 10…60 -40…85
MF-MSMF 0,1…2,6 0,3…5,2 6…60 -40…85
MF-USMF 0,05…1,75 0,15…3,5 6…30 -40…85
MF-USML 1,75…3,8 3,5…8 6 -40…85
MF-NSMF 0,12…2 2,29…4 6…30 -40…85
MF-NSML 1,5…4 3…8 6 -40…85
MF-PSMF 0,1…1,1 0,3…2,2 6…15 -40…85
MF-PSHT 0,1 0,6 16 -40…125
MF-FSMF 0,1…0,5 0,3…1 6…15 -40…85
MF-SM 0,3…3 0,6…6 6…30 -40…85
MF-SMHT 1,36…1,6 2,72…3,2 16 -40…125
MF-SM013/250 0,13 0,26 60 -40…85
MF-SM013/250V 0,13 0,26 60 -40…85
MF-SD/250 0,13 0,26 60 -40…85

Таблица 2. Характеристики выводных предохранителей Multifuse®

Наименование Ihold, А Itrip, А Vmax, В Диапазон рабочих
температур, °C
MF-R 0,05…11 0,1…22 16…60 -40…85
MF-RHT 0,7…13 1,4…24 16 -40…125
MF-RM 0,05…0,55 0,12…1,25 240 (AC) -20…85
MF-RX/72 0,2…3,75 0,4…7,5 72 -40…85
MF-R/90 0,55…0,75 1,1…1,5 90 -40…85
MF-RX/250 0,12…0,18 0,24…0,36 250 (AC) -40…85
MF-R/600 0,15…0,16 0,3…0,32 600 (AC) -40…85

Расшифровка наименования PPTC-предохранителей серии Multifuse

Наименования моделей предохранителей имеют удобную и понятную структуру, позволяющую легко расшифровать основные рабочие параметры. В общем случае название имеет вид MF – UUUU ZZZ/YY X – V.

  • MF – сокращение от названия серии Multifuse;
  • UUUU – серия предохранителя:
    • MSMF, NSMF, PSMF, USMF, SM – планарные;
    • R, RG, RM – радиальные выводные;
    • S, SVS, VS, VSN – аксиальные выводные.

    Названия серий, оканчивающиеся на буквы HT, обозначают расширенный рабочий температурный диапазон. Например, для серии SMHT температура работы находится в диапазоне -40…125°C, а для серии SM – -40…85°C.

    • ZZZ – ток пропускания через предохранитель (Ihold). Например, значение 030 соответствуют току 0,3 А, а число 300 – 3 А;
    • YY – максимальное напряжение (Vmax). Если на месте «YY» стоит пропуск, то следует принимать стандартное напряжение для данной серии, а его значение необходимо уточнить в соответствующем описании;
    • X – отметка о применении при изготовлении технологии FreeXpansion Design™, которая значительно увеличивает стабильность параметров полимера с положительным температурным коэффициентом при многократных срабатываниях;
    • V – требование к упаковке:
      • V = 0 – элементы без упаковки;
      • V =2 – предохранители поставляются в лентах, накрученных на катушки (этот вариант целесообразен для линии автоматического монтажа).

      Например, модель MF-MSMF 250/16 X-2 подразумевает, что используется PPTC-предохранитель типа Multifuze производства Bourns планарной серии MSMF с током пропускания 2,5 А при 23°C и максимальным напряжением 16 В. Буква «Х» обозначает, что при изготовлении применялась технология FreeXpansion Design™. Цифра «2» обозначает упаковку в катушках по 1500 штук в каждой.

      Алгоритм подбора PPTC-предохранителя

      При выборе самовосстанавливающегося PPTC-предохранителя необходимо определить следующие параметры:

      1. номинальный ток пропускания через предохранитель (Ihold);
      2. максимальное напряжение, которое может быть приложено к PPTC-предохранителю (Vmax);
      3. максимальный аварийный ток (Imax);
      4. максимальная рабочая температура вашего устройства;
      5. форм-фактор корпуса предохранителя.

      Обратим внимание, что при выборе предохранителя критически важно учитывать зависимость тока пропускания Ihold от окружающей температуры. Для каждой серии предохранителей существуют таблицы поправочных коэффициентов, позволяющие избежать случайных срабатываний (таблица 3).

      Таблица 3. Зависимость тока пропускания Ihold от температуры окружающей среды для серии MF-MSMF

      Наименование Ihold, А
      Температура окружающей среды, °C
      -40 -20 0 23 40 50 60 70 85
      MF-MSMF010 0,16 0,14 0,12 0,1 0,08 0,07 0,06 0,05 0,03
      MF-MSMF014 0,23 0,19 0,17 0,14 0,12 0,1 0,09 0,08 0,06
      MF-MSMF020 0,29 0,26 0,23 0,2 0,17 0,15 0,14 0,12 0,1
      MF-MSMF020/60 0,29 0,26 0,23 0,2 0,17 0,15 0,14 0,12 0,1
      MF-MSMF030 0,44 0,39 0,35 0,3 0,26 0,23 0,21 0,18 0,15
      MF-MSMF050 0,77 0,68 0,59 0,5 0,44 0,4 0,37 0,33 0,29
      MF-MSMF075 1,15 1,01 0,88 0,75 0,65 0,6 0,55 0,49 0,43
      MF-MSMF075/24 1,15 1,01 0,88 0,75 0,65 0,6 0,55 0,49 0,43
      MF-MSMF110 1,59 1,43 1,26 1,1 0,95 0,87 0,8 0,71 0,6
      MF-MSMF110/16 1,59 1,43 1,26 1,1 0,95 0,87 0,8 0,71 0,6
      MF-MSMF110/24X 2 1,7 1,4 1,1 0,95 0,88 0,8 0,73 0,61
      MF-MSMF125 1,8 1,63 1,43 1,25 1,08 0,99 0,91 0,81 0,68
      MF-MSMF150 2,17 1,95 1,72 1,5 1,3 1,18 1,09 0,97 0,82
      MF-MSMF150/24X 2,1 1,9 1,7 1,5 1,25 1,13 1 0,88 0,69
      MF-MSMF160 2,3 2,2 1,9 1,6 1,45 1,3 1,15 1,03 0,91
      MF-MSMF200 3,08 2,71 2,35 2 1,8 1,6 1,5 1,4 1,25
      MF-MSMF250/16X 3,9 3,42 2,96 2,5 2,24 1,98 1,85 1,29 0,94

      Примеры использования

      Рассмотрим задачу создания защиты электронных устройств от возникновения аварийных ситуаций при питании портативного устройства от USB 2.0. Ток потребления от шины питания USB не должен превышать 500 мА [3]. Допустим, что эксплуатация устройства происходит при экстремальной температуре 70°C. Напряжение питания USB лежит в диапазоне 4,4…5,25 В. Обратившись к документации, выберем модели с подходящим максимальным рабочим напряжением (в данном случае – 6 В). В перечень таких моделей попадут MF-MSMF110, MF-MSMF125, MF-MSMF150 и другие. Теперь проверим, подойдут ли они по току удержания (Ihold), с учетом поправки на высокую температуру окружающей среды. Обратившись к таблице 3, мы видим, что для нашей задачи и по этому параметру подходит любой из перечисленных предохранителей, время срабатывания, однако, будет несколько отличаться. Стоит заметить, что протекание тока 0,5 А через Multifuse не вызывает нагрева самого устройства, так как выделяющаяся мощность и падение напряжения пренебрежимо малы. Типовая схема организации защиты USB-порта изображена на рисунке 5.

      Рис. 5. Применение компонентов компании Bourns для USB

      Рис. 5. Применение компонентов компании Bourns для USB

      Для защиты от электростатических разрядов рекомендуется ставить варисторы CG0603MLC-05E семейства Chip Guard или двунаправленные TVS-диоды (супрессоры) CDSOD323-T05C. В соответствии со стандартом техники безопасности UL60950 [4] порт должен выдержать короткое замыкание в течении 60 секунд без возгорания.

      Другой пример – светодиодное освещение. Драйвер, он же источник питания, со стабилизацией выходного тока должен быть рассчитан на область безопасной работы светодиодной нагрузки. Наиболее часто такие устройства выполняют с помощью высокочастотного ШИМ-контроллера с обратной связью по току, протекающему через светодиоды. Хорошо известно, что светодиоды очень чувствительны к перегреву. Для нормального времени жизни и надежной работы температура p-n-перехода не должна превышать 85°С. Компания Bourns рекомендует применять устройства с положительным температурным коэффициентом сопротивления совместно со светодиодами для защиты последних от перегрева.

      На рисунке 6 изображена комплексная защита светодиодного светильника совместно с ключевым источником питания [5]. Основываясь на конкретных требованиях проекта, параметры представленных компонентов нужно корректировать. Для температурной и токовой защиты предлагается использовать миниатюрную серию MF-MSMF. Например, Multifuse MF-MSMF075 (Ihold = 0,75 А, Vmax = 13,2 В) переходит из проводящего состояния с низким сопротивлением в состояние с высоким сопротивлением за 0,2 секунды при аварийном токе Itrip = 8 А и температуре предохранителя, равной 23°C.

      Рис. 6. Применение компонентов производства компании Bourns для светодиодных решений

      Рис. 6. Применение компонентов производства компании Bourns для светодиодных решений

      Помимо самовосстанавливающегося предохранителя, компания Bourns® предлагает использовать в светодиодных устройствах высокоточные резисторы с низким температурным коэффициентом (75 PPM) и мощностью рассеивания до 3 Вт в качестве датчика тока (например, серия CRA2512) в стандартном корпусе 2512, компактные индуктивности (серия SRU1048) для планарного монтажа с высотой менее 4,8 мм при токах до 7,8 А, а также диоды Шоттки (серия CD1005-B0520) с обратным напряжением до 30 В.

      Чтобы устройство соответствовало стандартам IEC6100-4-5 Surge (защита от скачков напряжения), IEC6100-4-4 EFT (устойчивость к быстрым переходным процессам), IEC6100-4-2 Level 4 ESD (устойчивость к электромагнитным воздействиям), рекомендуется применять супрессоры (TVS-диоды) серии SMAJ c напряжением 5…179 В и рассеиваемой мощностью до 400 Вт.

      Стоит уделить особое внимание самовосстанавливающимся предохранителям серии MF-RM. Специально разработанные для однофазной сети переменного тока c номинальным напряжением 220 В самовосстанавливающиеся предохранители Multifuse производства Bourns позволяют отказаться от применения дорогостоящих входных автоматических выключателей или плавких вставок. Серия MF-RM отлично показала себя в роли токовой защиты и защиты от перегрева в таких областях применения, как счетчики электрической энергии, электрические вентиляторы, кофемашины и другая кухонная техника, а также во всевозможных адаптерах переменного тока [6]. Время срабатывания самовосстанавливающихся предохранителей серии MF-RM существенно меньше, чем у автоматических выключателей и плавких вставок. На рисунке 7 показана схема организации защиты устройств, подключаемых к однофазной сети переменного тока. Совместно с предохранителем серии MF-RM рекомендуется использовать варистор серии MOV-10DxxxK для защиты нагрузки от возможных скачков напряжения в сети.

      Рис. 7. Применение компонентов Bourns для защиты устройств, подключаемых к однофазной сети переменного тока

      Рис. 7. Применение компонентов Bourns для защиты устройств, подключаемых к однофазной сети переменного тока

      Cамовосстанавливающиеся предохранители обладают рядом интересных преимуществ:

      • Быстрое срабатывание. Компоненты PPTC имеют меньшую теплоемкость по сравнению с другими решениями, и нагреваются быстрее. В результате они быстрее срабатывают.
      • Меньший размер. Компоненты PPTC занимают меньше места на плате, их легче интегрировать в изделие.
      • Комбинированная защита от превышения тока или перегрева устройства. Удобство разработки заключается в том, что в одном корпусе PPTC-предохранителя совмещаются защиты и от превышения порогового тока, и от тепловой перегрузки, что позволяет сэкономить на себестоимости конечного продукта.
      • Стабильная защита. Компоненты PPTC гарантируют разрыв цепи на протяжении всего времени отказа системы.
      • Отсутствие необходимости в обслуживании. Работа схемы возобновится после устранения перегрузки по току и при остывании предохранителя, не требуя вмешательства обслуживающего персонала. Не нужно менять плавкую вставку или вручную включать автоматический выключатель!

      Заключение

      Проблема максимальной экономии пространства на плате остро ставит вопрос о минимизации габаритов компонентов защиты. Самовосстанавливающиеся предохранители прекрасно вписываются в эту концепцию, являясь миниатюрной альтернативой традиционным громоздким предохранителям, обеспечивая безупречную защиту компьютерной и портативной техники, батарейных устройств, автомобильной электроники. Иными словами, везде, где присутствует источник питания и нагрузка, целесообразно применение PPTC-предохранителя. Компания КОМПЭЛ, получившая статус официального дистрибьютора Bourns, предлагает широкую номенклатуру PPTC со склада и под заказ, а также техническую поддержку, бесплатные образцы и проектные поставки по специальным ценам.

      Самовосстанавливающиеся предохранители. Мифы и реальность

      В комментариях к моей прошлой статье о способах защиты от неправильного подключения полярности источника питания меня неоднократно корили за то, что не упомянул способ защиты с использованием самовосстанавливающегося предохранителя. Чтобы исправить эту несправедливость поначалу хотел просто добавить в статью дополнительную схему защиты и короткое к ней пояснение. Однако решил, что тема самовосстанавливающихся предохранителей заслуживает отдельной публикации. Дело в том, что устоявшееся их название не слишком отражает суть вещей, а копаться в даташитах и разбираться в принципе работы при применении таких “элементарных” компонентов, как предохранитель, часто начинают уже после того, как начала глючить первая партия плат. Хорошо если не серийная. Итак, под катом вас ждёт попытка разобраться, что же это за зверь такой PolySwitch, оригинальное название, кстати, лучше отражает суть прибора, и понять с чем его едят, как и в каких случаях имеет смысл его использовать.

      Физика тёплого тела.

      PolySwitch, это PPTC (Polymeric Positive Temperature Coefficient) прибор, который имеет положительный температурный коэффициент сопротивления. По правде, гораздо больше общих черт он имеет с позистором, или биметаллическим термопредохранителем, чем с плавким, с которым его обычно ассоциируют не в последнюю очередь благодаря усилиям маркетологов.
      Вся хитрость заключается в материале из которого наш предохранитель изготовлен — он представляет собой матрицу из не проводящего ток полимера, смешанного с техническим углеродом. В холодном состоянии полимер кристаллизован, а пространство между кристаллами заполнено частицами углерода, образующими множество проводящих цепочек.

      Если через предохранитель начинает протекать слишком большой ток, он начинает нагреваться, и в какой-то момент времени полимер переходит в аморфное состояние, увеличиваясь в размерах. Из-за этого увеличения углеродные цепочки начинают разрываться, что вызывает рост сопротивления, и предохранитель нагревается еще быстрее. В конце-концов сопротивление предохранителя увеличивается настолько, что он начинает заметно ограничивать протекающий ток, защищая таким образом внешнюю цепь. После остывания прибора происходит процесс кристаллизации и предохранитель снова становится превосходным проводником.
      Как выглядит температурная зависимость сопротивления видно из следующего рисунка

      На кривой отмечено несколько характерных для работы прибора точек. Наш предохранитель является отличным проводником пока температура находится в рабочем диапазоне Point1 < T<Point2 (normal operating conditions). После того, как она достигает некоего граничного значения сопротивление начинает быстро возрастать и в диапазоне Point3-Point4 изменяется по закону, близкому к экспоненциальному.

      Идеальный сферический конь в вакууме.

      Пора переходить от теории к практике. Соберём простую схему защиты нашего ценного устройства, настолько простую, что изображённая по ГОСТу она выглядела бы просто неприлично.

      Что же будет происходить, если в цепи вдруг возникнет недопустимый ток, превышающий ток срабатывания? Сопротивление материала из которого прибор изготовлен начнёт возрастать. Это приведёт к увеличению падения напряжения на нём, а значит и рассеиваемой мощности равной U*I. В результате температура растёт, это снова приводит к… В общем начинается лавинообразный процесс нагрева прибора с одновременным увеличением сопротивления. В результате проводимость прибора падает на порядки и это приводит к желаемому уменьшению тока в цепи.
      После того как прибор остывает его сопротивление восстанавливается. Через некоторое время, в отличие от предохранителя с плавкой вставкой, наш Идеальный Предохранитель снова готов к работе!
      Идеальный ли? Давайте вооружившись нашими скромными познаниями в физике прибора попробуем разобраться в этом.

      Гладко было на бумаге, да забыли про овраги.

      Пожалуй, главная проблема заключается во времени. Время вообще такая субстанция, которую очень трудно победить, хотя многим очень хотелось… Но не будем о политике — ближе к нашим полимерам. Как вы наверное уже догадались, я веду к тому, что изменение кристаллической структуры вещества гораздо более длительный процесс чем перестройка дырок с электронами, например в туннельном диоде. Кроме этого, для того чтобы разогреть прибор до нужной температуры, требуется некоторое время. В результате, когда ток через предохранитель вдруг превысит пороговое значение, его ограничение происходит совсем не мгновенно. При токах, близких к пороговому, этот процесс может занять несколько секунд, при токах близких к максимально допустимому для прибора, доли секунды. В результате за время срабатывания такой защиты сложное электронное устройство успеет выйти из строя, возможно, не один десяток раз. В подтверждение привожу типичный график зависимости времени срабатывания (по вертикали) от вызвавшего это срабатывание тока (по горизонтали) для гипотетического PTVC прибора.

      Обратите внимание, что на графике приведены для сравнения две зависимости, снятые при разных температурах окружающей среды. Надеюсь вы ещё помните, что первопричиной перестройки кристаллической структуры служит температура материала, а не протекающий через него ток. Это значит, что при прочих равных, для того чтобы разогреть прибор до состояния метаморфозы от более низкой температуры необходимо затратить больше энергии чем от более высокой, а значит, и процесс этот в первом случае займёт больше времени. Как следствие, получаем зависимость таких важнейших параметров прибора, как максимальный гарантированный ток нормальной работы и гарантированный ток срабатывания от температуры окружающей среды.

      Прежде чем привести график уместно упомянуть об о основных технических характеристиках данного класса приборов.

      • Максимальное рабочее напряжение Vmax — это максимально допустимое напряжение, которое может выдерживать прибор без разрушения при номинальном токе.
      • Максимально допустимый ток Imax — это максимальный ток, который прибор может выдержать без разрушения.
      • Номинальный рабочий ток Ihold — это максимальный ток, который прибор может проводить без срабатывания, т.е. без размыкания цепи нагрузки.
      • Минимальный ток срабатывания Itrip — это минимальный ток через прибор, приводящий к переходу из проводящего состояния в непроводящее, т.е. к срабатыванию.
      • Первоначальное сопротивление Rmin, Rmax — это сопротивление прибора до первого срабатывания (при получении от изготовителя).

      В нижней части графика находится рабочая область прибора. Что произойдёт в средней части зависит, судя по всему, от взаимного расположения звёзд на небе, ну а побывав в верхней части графика прибор отправится в путешествие (trip), которое вызовет метаморфозы его кристаллической структуры и как следствие срабатывание защиты. Ниже приведена таблица с данными реальных приборов. Разница в токе срабатывания в зависимости от температуры впечатляет!

      Таким образом, в устройствах предназначенных для работы в широком температурном диапазоне применять PPTC следует с осторожностью. Если вы считаете, что проблемы у нашего кандидата на звание Идеального Предохранителя закончились, то заблуждаетесь. Есть у него ещё одна слабость, присущая людям. После стрессового состояния, вызванного чрезмерным перегревом, ему необходимо придти в норму. Однако физика горячего тела очень похожа на физику мягкого. Как и человек после инсульта, прежним наш предохранитель уже не станет никогда! Для убедительности приведу очередной график, процесса реабилитации после стресса, вызванного превышением протекающего тока, который, меткие на слово англичане, обозвали Trip Event. и как они не боятся нашего роспотребнадзора?

      Из графика видно, что процесс восстановления может длиться сутками, но полным не бывает никогда. С каждым случаем срабатывания защиты нормальное сопротивление нашего прибора становится всё выше и выше. После нескольких десятков циклов прибор вообще теряет способность выполнять возложенные на него функции должным образом. Поэтому не стоит использовать их в случаях когда перегрузки возможны с высокой периодичностью.
      Пожалуй на этом стоило бы и закончить, и наконец приступить к обсуждению областей применения и схемотехнических решений, но стоит обсудить ещё некоторое нюансы, для чего посмотрим на основные характеристики широко распространённых серий нашего героя дня.

      При выборе элемента, который вы будете использовать в проекте обратите внимание на максимально допустимый рабочий ток. Если высока вероятность его превышения, то стоит обратиться к альтернативному виду защиты, либо ограничить его с помощью другого прибора. Ну например проволочного резистора.
      Ещё один очень важный параметр — максимальное рабочее напряжение. Понятно, что когда прибор находится в нормальном режиме напряжение на его контактах очень мало, но вот после перехода в режим защиты оно может резко возрасти. В недалёком прошлом этот параметр был очень мал и ограничивался десятками вольт, что не давало возможности использовать такие предохранители в высоковольтных цепях, скажем для защиты сетевых блоков питания.
      В последнее время ситуация улучшилась и появились серии, рассчитанные на достаточно высокое напряжение, но обратите внимание, что они имеют весьма небольшие рабочие токи.

      Скрестим ужа и трепетную лань.

      Судя по тому, какое разнообразие устройств PolySwitch предлагает рынок, использовать их в разрабатываемых вами устройствах можно, а в отдельных случаях даже нужно, но к выбору конкретного прибора и способа его использования следует подходить с большой тщательностью.
      Кстати, что касается схемотехники, прямая замена плавких предохранителей на PolySwitch хорошо проходит только в простейших случаях.
      Например: для встраивания в батарейные отсеки, или для защиты оборудования (электродвигатели, активаторы, монтажные блоки) и электропроводки в автомобильных приложениях. Т.е. устройств, которые не выходят из строя мгновенно при перегрузке. Специально для этого имеется широкий класс исполнения данных устройств в виде перемычек с аксиальными выводами и даже дисков для аккумуляторов.

      В большинстве же случаев PolySwitch стоит комбинировать с более быстродействующими устройствами защиты. Такой подход позволяет компенсировать многие из их недостатков, и в результате их с успехом применяют для защиты периферийных устройств компьютеров. В телекоммуникации, для защиты АТС, кроссов, сетевого оборудования от всплесков тока, вызванных попаданием линейного напряжения и молниями. А так же при работе с трансформаторами, сигнализациями, громкоговорителями, контрольно-измерительным оборудованием, спутниковым телевидением и во многих других случаях.

      Вот простенький пример защиты USB порта.

      В качестве комплексного подхода рассмотрим гипотетическую схему комплексно решающую задачу построения сверхзащищённого светодиодного драйвера с питанием от сети переменного напряжения 220В.

      В первой ступени самовосстанавливающийся предохранитель применён в связке с проволочным резистором и варистором. Варистор защищает от резких бросков напряжения, а резистор ограничивает протекающий в цепи ток. Без этого резистора в момент включения импульсного источника питания в сеть через предохранитель может течь недопустимо большой импульс тока, обусловленный зарядом входных ёмкостей. Вторая ступень защиты предохраняет от неправильного переключения полярности, или ошибочном подключении источника питания со слишком большим напряжением. При этом, в момент аварийной ситуации, бросок тока принимает на себя защитный TVS диод, а PolySwitch ограничивает протекающую через него мощность, предотвращая тепловой пробой. Кстати, эта связка настолько напрашивается в ходе разработки схемотехники и так широко распространена, что породила отдельный класс приборов — PolyZen. Весьма удачный гибрид ужа и трепетной лани.

      Ну, и на выходе наш самовосстанавливающийся предохранитель служит для предотвращения короткого замыкания, а так же на случай выхода из рабочего режима светодиодов, или их драйвера в результате перегрева, либо неисправности.
      В схеме также присутствуют элементы защиты от статики, но это уже не тема данной статьи…

      Принцип работы самовосстанавливающегося предохранителя

      Упаковка: В блистр-ленте на катушке диаметром 180 мм по 4000 штук самовосстанавливающихся предохранителей для поверхностного монтажа типоразмера 0805.

      Cамовосстанавливающиеся предохранители

      Разработчики электронных устройств наверняка знают, к каким фатальным для этих устройств последствиям может привести перегрузка по току. Существует несколько способов защиты от таких ситуаций. Самый распространенный из них — использование плавких предохранителей. Безусловно, они работают хорошо, но рассчитаны только на одно срабатывание. При выходе плавкого предохранителя из строя он требует замены. Это не всегда удобно, а во многих случаях требуется вмешательство квалифицированного специалиста.

      Преимущества самовосстанавливающихся предохранителей заключаются в том, что они рассчитаны на многократное срабатывание, а их разрушение происходит при токе, во много раз превышающем ток срабатывания. Уже сегодня СП нашли себе широкое применение в различных областях, таких как персональные компьютеры, трансформаторы, электромоторы, звуковоспроизводящая техника, аккумуляторные батареи, медицинское и измерительное оборудование, автомобильная электроника и др.


      Три одинаковых предохранителя.

      Устройство

      Самовосстанавливающиеся предохранители изготавливаются из проводящего пластика, отформованного в тонкий лист с напылением электродов с обеих плоскостей. Проводящий пластик — это особое вещество, ноу-хау фирмы Bourns, состоящее из непроводящего электрический ток кристаллического полимера и распределенных в нем мельчайших частиц технического углерода, проводящих электрический ток. Электроды гарантируют равномерное распределение энергии по всей площади поверхности, к ним крепятся проволочные или лепестковые выводы. Особенностью, которая позволяет использовать этот материал в качестве СП, является то, что этот проводящий пластик проявляет высокий нелинейный положительный температурный коэффициент сопротивления (ТКС).

      Интересно по теме: Как проверить стабилитрон.

      Положительным ТКС обладает довольно большое количество материалов. Особенность материала СП — это сильная крутизна графика зависимости сопротивления от температуры самого СП или окружающей среды и практически скачкообразное изменение сопротивления из проводящего в непроводящее. До определенной, так называемой «переходной» температуры, сопротивление СП практически не возрастает. При достижении «переходной» температуры сопротивление возрастает в логарифмической пропорции.

      В самовосстанавливающемся предохранителе при превышении номинального тока сильно возрастает его электрическое сопротивление , и ток в свою очередь практически прекращает течь. По истечению какого-то времени сопротивление предохранителя снова приходи в норму и прибор становится снова полностью работоспособным. Как правило, это несколько минут. Вот это время и стоит подождать, чтобы начать разбираться в причинах поломки.


      Размеры восстанавливающихся предохранителей.

      Принцип работы

      При комнатной температуре материал СП имеет кристаллическую структуру. Проводящие частицы технического углерода расположены в нем по границам кристаллов достаточно плотно и близко друг к другу, образуя цепочки, по которым может идти электрический ток. При возникновении аварийной ситуации (например, при коротком замыкания нагрузки в цепи, где стоит СП) через СП начинает течь ток, превышающий номинальный, вследствие чего температура его материала начинает расти.

      Будет интересно➡ Устройство плавкого предохранителя

      Поскольку это самонагревание продолжается, температура СП продолжает расти, пока не достигнет так называемой температуры «фазовой трансформации», при которой происходит изменение фазового состояния полимера из кристаллического в аморфное, сопровождаемое небольшим расширением. Проводящие частицы технического углерода более не сжаты кристаллами полимера в плотные цепочки, движутся относительном друг друга и больше не могут проводить электрический ток. В результате сопротивление материала СП резко возрастает, и он выключается.

      В большинстве случаев выбор между обычными плавкими предохранителями и СП делается исходя из требований конкретного приложения. Преимущества и недостатки каждого из решений определяются принципом работы этих защитных элементов.

      СП остается в «горячем» состоянии, обеспечивая постоянную защиту до тех пор, пока находится под напряжением или пока не будут устранены причины его срабатывания. Выключение — это реверсивный процесс. После устранения причин выключения СП охлаждается, полимер снова кристаллизуется, проводящие цепочки восстанавливаются, и сопротивление СП быстро возвращается к первоначальному уровню. СП снова готов к работе.

      Схема включения

      Схема включения СП такая же, как для обычных плавких предохранителей. СП включается в цепь питания последовательно с нагрузкой. Главными техническими характеристиками являются:

      • Максимальное рабочее напряжение (Vmax) — это максимально допустимое напряжение, которое может выдерживать СП без разрушения при номинальном токе.
      • Максимально допустимый ток (Imax) — это максимальный ток, который СП может выдержать без разрушения.
      • Номинальный рабочий ток (Ihold) — это максимальный ток, который СП может проводить без срабатывания, т.е. без размыкания цепи нагрузки.
      • Минимальный ток срабатывания (Itrip) — это минимальный ток через СП, приводящий к переходу из проводящего состояния в непроводящее, т.е. к срабатыванию.
      • Первоначальное сопотивление (Rmin–Rmax) — это сопротивление СП до первого срабатывания (при получении от изготовителя).

      Так как СП — это устройства с ярко выраженным положительным ТКС, их характеристики зависят от температуры окружающей среды. В таблице 2 приводится зависимость нормального рабочего тока и минимального тока срабатывания от температуры окружающей среды.

      На всякое нагревание, как известно, требуется какое-то время. В связи с тем, что СП нагреваются, они переключаются не мгновенно, а требуют некоторого времени, которое зависит не только от температуры окружающей среды, но и от протекающего через них тока перегрузки.


      Импортные самовостанавливающиеся предохранители

      Назначение и принцип действия

      Основная задача плавких предохранителей – защита электрической сети и электрооборудования от сверхтоков, возникающих при коротком замыкании или в результате критических перегрузок. При этом они обеспечивают бесперебойную работу защищаемых цепей в номинальном режиме.

      В отличие от автоматического выключателя, часто применяемого в электротехнике, плавкая вставка срабатывает только один раз, после чего он подлежит замене. Однако срабатывает такое устройство со стопроцентной вероятностью, в то время как автоматика после многократного отключения может подвести. Именно поэтому для защиты дорогостоящего оборудования используют плавкие вставки. Не отказываются от применения этих защитных устройств и в силовых цепях.

      Устройство и принцип защиты

      В конструкции плавкого предохранителя есть два основных элемента: корпус (держатель) с контактами и плавкую вставку (рисунок 1). Строго говоря, только сочетание этих элементов можно называть предохранителем. Очень часто деталь плавкой вставки (особенно если она заменяемая) называют плавким предохранителем. В данной статье мы тоже иногда будем придерживаться этой традиции.


      Рис. 1. Конструкция плавкого предохранителя

      Рабочим элементом вставки является проводник из меди или сплава металлов. Благодаря этому плавкому элементу происходят отключения цепи в критических ситуациях.

      В качестве плавкого элемента может быть одна или несколько медных проволок, пластина либо фигурная деталь. Эти проводники помещаются в жаропрочный корпус: стеклянный, керамический (рис. 2) или пластиковый. В зависимости от назначения, пространство вокруг плавкого элемента может быть заполнено кварцевым песком или окружено легкоиспаряющимся веществом, предназначенным для гашения электрической дуги.


      Рис. 2. Керамические плавкие вставки

      При прохождении номинальных токов через проволоку вставки, она незначительно нагревается, не достигая температуры плавления. Но в режиме короткого замыкания резко возрастает величина тока, что приводит к плавлению вставок. Это приводит к разрыву цепи.

      Нагревание предохранителя происходит также при перегрузках, то есть в результате превышения номинального напряжения на защищаемом участке цепи. При достижении рабочих напряжений величины, называемой током отключения, температура плавкого элемента возрастает до точки плавления и цепь разрывается. После восстановления параметров цепи плавкую вставку необходимо заменить.

      Плавкие вставки имеют некую инерционность срабатывания. При КЗ задержка незаметна, так как в этом случае плавкий элемент нагревается молниеносно.

      Иначе обстоит дело в случаях с перегрузками. Для достижения температуры плавления требуется больше времени. Поэтому, чтобы повысить скорость срабатывания, элементам вставок придают специальную форму и нагружают их силами упругости (один конец пластины соединяют с растянутой пружиной).

      В некоторых моделях под действием пружины наружу выходит штифт, называемый индикатором срабатывания (рисунок 3). Он выступает в роли указателя срабатывания и свидетельствует о том, что вставку надо менять.


      Рис. 3. Строение плавкой вставки

      Цифрами на рисунке обозначено:

      • I – патрон;
      • 2 – плавкая пластина;
      • 3 – шарики из олова;
      • 4 – плавкая вставка;
      • 5 – кварцевый песок;
      • 6 – пружина;
      • 7 – текстолитовая шайба;
      • 8 – спусковой механизм указателя срабатывания;
      • 9 – колпачок;
      • 10 – ободок колпачка;
      • 11 – указатель срабатывания;
      • 12 – асбоцементная прокладка;
      • 13 – цементная заливка.

      В ряде случаев для увеличения скорости срабатывания используют вставки с параллельно натянутыми проволоками разных диаметров. Перегорание самой тонкой проволоки увеличивает нагрузку на остальные элементы, ускоряя их плавление.

      С целью снижения перенапряжений в некоторых конструкциях вставок применяют проволоки с разными сечениями отдельных участков. При срабатывании такого предохранителя, первым перегорает участок с наименьшим сечением вставки. Если пары расплавленного металла спровоцируют в точке разрыва электрическую дугу, то перегорит участок с большим сечением.

      Конструктивные особенности предохранителей можно узнать по их маркировке. К сожалению, время-токовые характеристики наносятся не на все типы изделий. Но модели, на которые нанесены буквенно-цифровые коды, можно легко классифицировать по их назначению.

      Типы корпусов, габаритные и установочные размеры

      Самовосстанавливающиеся предохранители выпускаются в нескольких типах корпусов:

      • Дисковые с радиальными проволочными выводами: серии MF-R, MF-RX (рис. 5). Общего применения, для печатного монтажа в отверстия или для навесного монтажа.
      • Для поверхностного монтажа: серии MF-SM, MF-MSM. Общего применения.
      • В плоских прямоугольных корпусах с ленточными выводами: серии MF-S, MF-LS (рис. 6). Применяются для защиты аккумуляторных батарей от короткого замыкания и перегрева в процессе зарядки.
      • В бескорпусном исполнении в виде дисков без выводов.

      Маркируются логотипом производителя, идентификатором серии, кодовым обозначением нормального рабочего тока (Ihold) и кодовым обозначением даты производства. На самовосстанавливающиеся предохранители в бескорпусном исполнении в виде дисков маркировка не наносится.

      Преимущества и недостатки

      К достоинствам плавких предохранителей относятся:

      • полная гарантия отключения аварийного участка цепи;
      • стабильность технических характеристик защиты;
      • можно применять для избирательности;
      • быстродействие;
      • безотказность;
      • простота конструкции.

      Основные недостатки:

      • в трёхфазных сетях возможен перекос фаз;
      • вероятность длительного горения дуги;
      • влияние окружающей среды (температуры) на характеристики плавких вставок;
      • сложность в настройках селективной защиты;
      • необходимость замены вставки после каждого срабатывания защиты.

      Основные параметры самовосстанавливающихся предохранителей

      • Hабочее напряжение. Оно показывает, при каком напряжении в сети предохранитель может работать достаточно долгое время, не выходя из строя. Как правило, в прибор ставится предохранитель с немного большим рабочим напряжением, чем то, на которое рассчитан сам прибор.
      • Номинальный рабочий ток. Это максимальное значение тока через предохранитель, при котором он нормально работает, не срабатывая (не размыкая цепи).
      • Ток срабатывания. Это минимальный ток, при котором самовосстанавливающийся предохранитель сработает. Этот параметр очень важен, так как от него напрямую зависит надежность защиты прибора или аппаратуры. Если заменить на меньшее значение, предохранитель станет чаще срабатывать (давать ложные сработки), если на большее – он не сработает в нужный момент и аппаратура может выйти из строя.
      • Максимальный ток , который может выдержать предохранитель, не выходя из строя.
      • Рабочая температура.
      • Максимальное и минимальное сопротивление. Первое значение указывает сопротивление предохранителя, когда он сработал, а второе – в нормальном состоянии.
      • Скорость срабатывания. Чем меньше это время, тем лучше.

      Будет интересно➡ Устройство плавкого предохранителя

      Как правило, на самом самовосстанавливающемся предохранителе указывается только рабочее напряжение, температура и ток срабатывания – это самые важные параметры. Остальные можно посмотреть в справочнике в Интернете. Самовосстанавливающийся предохранитель широко используется в электронике для защиты электронной аппаратуры. Полимерный компонент резко увеличивает сопротивлением при превышении порогового значения протекающего через него тока. После уменьшения напряжения через заданный интервал времени предохранитель уменьшает свое сопротивление, поэтому его назвали самовосстанавливающимся. Самовосстанавливающиеся предохранители широко используются для защиты коммуникационных портов и интерфейсов. Ведущим производителем компонентов является компания Bourns.

      Это интересно! Все о полупроводниковых диодах.

      Виды и устройство

      В зависимости от решаемых задач классификация предохранителей может быть следующей (рисунок 5):

      • ножевые предохранители;
      • слаботочные плавкие вставки;
      • вилочные предохранители;
      • кварцевые;
      • пробочного типа
      • газогенерирующие.


      Рис. 5. Виды плавких предохранителей

      Существуют также самовосстанавливающиеся предохранители, инерционные и откидывающиеся (рис. 6). Изделия инерционного типа предназначены для защиты электромоторов, которые при запуске создают большие нагрузки. Плавкие элементы нагреваются, но не перегорают. После того, как двигатель запустится, инерционный предохранитель переходит в режим ожидания.

      Откидывающиеся вставки применяют в защите линий электропередач. В аварийных ситуациях плавкий элемент размыкает цепь. Под действием высокой температуры вставка удлиняется, в результате чего происходит давление на спусковой механизм, который отбрасывает предохранитель из его гнезда. Таким образом, обеспечивается надёжное отключение аварийного участка.


      Рис. 6. Откидывающиеся плавкие предохранители

      Устройство самовосстанавливающегося предохранителя отличается от других типов электрических аппаратов. Рабочим элементом изделия является полимер с положительным температурным коэффициентом расширения. Полимер содержит углеродистые включения, которые проводят ток.

      При нагревании углеродные связи разрываются, в результате чего растёт электрическое сопротивление. При достижении температуры плавления полимера сопротивление стремится к бесконечности, то есть, цепь размыкается. При остывании возобновляется электропроводность полимера. Предохранитель самовосстанавливается.

      Расчет мощности и сопротивления

      Сопротивление полимерных предохранителей как минимум в два раза больше в сравнении с плавкими. В отличие от плавких предохранителей полимерные не обеспечивают полного разрыва цепи. Поэтому в “отключенном” состоянии (т.е. в состоянии высокого сопротивления) полимерные предохранители характеризуются током утечки. Величина тока утечки может достигать нескольких сотен миллиампер. Плавкие предохранители при срабатывании полностью разрывают цепь протекание тока.

      При выборе полимерного предохранителя следует принимать во внимание изменение параметров в рабочем диапазоне температур, габаритные размеры, а также соответствие стандартам. Для некоторых типов полимерных предохранителей в Табл. 1 приведены зависимости номинального тока срабатывания предохранителей от температуры.

      Скорость реакции полимерных предохранителей хуже, чем у плавких. Времятоковая характеристика полимерных предохранителей во многом аналогична той, которую имеют плавкие предохранители типа Littelfuse Slo-Blo. Времятоковая характеристика отключения – зависимость времени “перегорания” от протекающего тока. Это, по сути, время отключения как функция тока.


      Строение самовосстанавливающихся предохранителей

      Максимально допустимый ток через полимерный предохранитель 10-100 А, тогда как у некоторых типов плавких максимальный ток может достигать величины 10 тыс. ампер. Определения некоторых основных электрических характеристик полимерных предохранителей во многом соответствуют тем, которые используются для плавких. Вместе с тем, в связи с особенностями технологии в документации, предоставляемой компанией Littelfuse, в качестве основных приводятся следующие электрические характеристики полимерных предохранителей.

      Ток удержания Ihold (hold current). По сути, номинальный ток предохранителя. Ток удержания – максимальный ток, который может протекать через предохранитель, и который не приводит к переходу в непроводящее состояние при заданной температуре окружающего воздуха (как правило, – это 20 или 23 °C).

      Будет интересно➡ Устройство плавкого предохранителя

      Ток срабатывания Itrip (trip current) – минимальный ток, при котором полимерный предохранитель переходит в непроводящее состояние при заданной температуре окружающего воздуха.

      Максимальный ток Imax (maximum fault current) – максимальный ток, который предохранитель может выдержать без повреждения при напряжении Vmax.

      Максимальное напряжение Vmax (maximum voltage device) – максимальное напряжение, которое может выдержать предохранитель без повреждения при протекании максимального тока Imax. Следует учитывать не только номинальное значение рабочего напряжения, но и возможность возникновения разного рода импульсных помех (например, в системе электропитания автомобилей). Полимерные предохранители общего применения компании Littelfuse предназначены для работы при напряжении до 60 В. Для сравнения плавкие предохранители рассчитаны на напряжение 1000 В и более.

      Мощность рассеивания Pdmax (power dissipated) – мощность, рассеиваемая предохранителем при переходе в непроводящее состояние при заданной температуре окружающего воздуха (обычно 20 или 23 °C).

      Минимальное сопротивление Rmin (minimum resistance of device in initial state). Минимальное начальное сопротивление предохранителя в проводящем состоянии до монтажа на плату, по сути, до его пайки.

      Типовое сопротивление Rtyp (typical resistance of device in initial state). Типовое сопротивление предохранителя в проводящем состоянии до монтажа на плату.

      Максимальное сопротивление после восстановления R1max (maximum resistance) – максимальное сопротивление при заданной температуре, измеренное по истечению одного часа после восстановления или через 20 с после пайки при температуре 260 °C.

      Полимерные предохранители (Polyfuse, Resettable PTC) это не аналог плавких предохранителей и по сравнению с ними – инерционные устройства, что необходимо учитывать при выборе предохранителя для конкретного приложения. Следует также принимать меры для ограничения протекающего тока и падения напряжения на нем. В некоторых случаях даже сопротивление соединительных проводов, например, электропроводка транспортного средства или внутреннее сопротивление аккумулятора может ограничить ток до допустимого уровня в цепи предохранителя.

      Интересно по теме: Как проверить стабилитрон.

      Нельзя забывать, что при восстановлении полимерного предохранителя его характеристики ухудшаются после каждого срабатывания, поэтому на реальное число срабатываний влияют также специфические особенности эксплуатации некоторых приборов (например, тех, в которых перегрузка по току – частое явление). Ток срабатывания в значительной мере зависит от температуры окружающей среды. Если устройство предназначено для эксплуатации в расширенном диапазоне температур, использование полимерных предохранителей потенциально может привести к ложным срабатываниям. Диапазон рабочих температур полимерных предохранителей всего -40…85 °С.

      Введение

      Традиционный способ защиты от перегрузки по току – применение плавких или самовосстанавливающихся предохранителей.
      Компания Littelfuse – ведущий производитель пассивных электронных компонентов для «защиты» разного рода электротехнических устройств. Одно из важных направлений – производство предохранителей, основное назначение которых – защита от избыточного тока при возникновении аварийных ситуаций в системе. Кроме классических плавких предохранителей компания в настоящее время выпускает и т.н. самовосстанавливающиеся предохранители (polymeric positive temperature coefficient devices) .

      Самовосстанавливающиеся предохранители – по сути, полимерные терморезисторы с положительным температурным коэффициентом (Positive Temperature Coefficient – PTC). В некоторых приложениях полимерные PTC-предохранители (в дальнейшем полимерные предохранители) можно с успехом использо- вать для замены стандартных плавких предохранителей (fuse).

      И плавкие и полимерные предохранители предназначены для защиты устройств от перегрузок по току при возникновении аварийных режимов в системе, предохранения оборудования и людей от возникновения пожара и возможного риска поражения электрическим током, а также для изолирования дефектных блоков и узлов от основной системы еще до момента возникновения более неблагоприятных последствий.

      Однако эти типы предохранителей базируется на разной технологии изготовления, и соответственно обладают разными уникальными характеристиками, преимуществами и недостатками. Понимание особенностей технологий и принципа действия поможет сделать правильный выбор предохранителя для конкретного приложения с учетом всех его многочисленных параметров. Пожалуй, основное их отличие заключается в том, что полимерные предохранители восстанавливают свои характеристики (за исключением экстремальных случаев) после прекращения действия перегрузки, т.е. после снижения уровня протекающего тока. Однако восстановление характеристик происходит не полностью, что, конечно, следует учитывать при их применении в конкретном приложении. Традиционные плавкие предохранители для возобновления работоспособности системы подлежат обязательной замене после перегорания.

      Поскольку полимерные предохранители восстанавливаются автоматически, их применение оправдывается в тех цепях, в которых перегрузки по току случается довольно часто, а также, если доступ к месту их установки затруднен. В таких случаях сокращаются расходы на гарантийное и сервисное обслуживание. Однако для окончательного выбора типа предохранителя необходимо учитывать все эксплуатационные характеристики устройства.

      И полимерные и традиционные плавкие предохранители реагируют, по сути, на тепло, выделяемое при протекании тока. В плавком предохранителе происходит расплавление плавкой вставки (т.е. обрыв цепи) и, в конечном счете, его разрушение. Самовосстанавливающийся только ограничивает ток в цепи вследствие существенного увеличение величины его сопротивления, что также происходит в процессе его нагревания.

      Упрощенное устройство полимерного предохранителя и принцип его действия следующий. Полимерный предохранитель представляет собой компаунд, состоящий из непроводящего полимерного материала (как правило, полиэтилена) и проводящих фракций графита. Благодаря наличию графитовых каналов в нормальном состоянии полимерный предохранитель является проводником со сравнительно низким собственным сопротивлением. При разогреве выше определенной температуры (т.н. температуры перехода) молекулы полимера получают дополнительную энергию, и изначальная кристаллическая структура трансформируется в аморфную, вследствие этого разрушаются графитовые каналы, что приводит к резкому изменению проводимости и соответственно к повышению сопротивления предохранителя. При снижении температуры полимер кристаллизуется, графитовые каналы восстанавливаются, что приводит к возврату проводящих свойств предохранителя.

      Характеристика переключения приведена на Рис. 1. Однако недостаток в том, что величина сопротивления после восстановления всегда больше первоначальной. Число переходов от проводящего состояния к непроводящему и обратно практически неограниченно, т.е. при отсутствии катастрофических факторов срок службы полимерного предохранителя не ограничен.

      В статье рассматриваются характеристики и особенности полимерных предохранителей (Polyfuse, Resettable PTC), выпускаемых компанией Littelfuse.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *