Чем объясняется замедление срабатывания реле напряжения
Перейти к содержимому

Чем объясняется замедление срабатывания реле напряжения

Реле времени с электромагнитным и механическим замедлением

При работе схем защиты и автоматики часто требуется создать выдержку времени между срабатыванием двух или нескольких аппаратов. При автоматизации технологических процессов также может возникнуть необходимость производить операции в определенной временной последовательности.

Для создания выдержки времени служат аппараты, называемые реле времени.

Требования, предъявляемые к реле времени

Общими требованиями для реле времени являются:

а) стабильность выдержки времени вне зависимости от колебаний питающего напряжения, частоты, температуры окружающей среды и других факторов;

б) малые потребляемая мощность, масса и габариты;

в) достаточная мощность контактной системы.

Возврат реле времени в исходное положение происходит, как правило, при его обесточивании. Поэтому к коэффициенту возврата не предъявляется особых требований, и он может быть очень низким.

В зависимости от назначения реле к ним предъявляются специфические требования.

Для схем автоматического управления приводом при большой частоте включений в час требуются реле времени с высокой механической износостойкостью. Требуемые выдержки времени находятся в пределах 0,25 — 10 с. К этим реле не предъявляются высокие требования относительно точности работы. Разброс времени срабатывания может достигать 10%. Реле времени должны работать в условиях производственных цехов, при вибрации и тряске.

Реле времени для защиты энергосистем должны иметь большую точность выдержки времени. Эти реле работают относительно редко, поэтому к ним не предъявляются особые требования по износостойкости. Выдержки времени таких реле составляют 0,1 — 20 с.

Реле времени с электромагнитным замедлением

Конструкция реле времени с электромагнитным замедлением типа РЭВ-800. Магнитная цепь реле состоит из магнитопровода1, якоря 2 и немагнитной прокладки 3. Магнитопровод укрепляется на плите 4 с помощью литого алюминиевого цоколя 5. Этот же цоколь служит для крепления контактной системы 6.

На ярме прямоугольного сечения магнитопровода устанавливается короткозамкнутая обмотка в виде сплюснутой гильзы 8. Намагничивающая обмотка 7 устанавливается на цилиндрическом сердечнике. Якорь вращается относительно стержня 1 на призме. Усилие, развиваемое пружиной 9, изменяется с помощью корончатой гайки 10, которая фиксируется после регулировки с помощью шплинта. Магнитопровод реле выполняется из стали ЭАА. Сердечник катушки имеет круглое сечение, что позволяет применять катушку цилиндрической формы, удобную в производстве. Стержень 1 имеет сечение вытянутого прямоугольника, что увеличивает длину линии касания якоря с торцом ярма и повышает механическую износостойкость реле.

Для получения большого времени при отпускании необходимо иметь высокую магнитную проводимость рабочего и паразитного зазоров в замкнутом состоянии магнитной системы. С этой целью торцы ярма и сердечника и прилегающая к ним поверхность якоря тщательно шлифуются.

Реле времени с электромагнитным замедлениемЛитое основание из алюминия создает дополнительный короткозамкнутый виток, увеличивающий выдержку времени (в схеме замещения все короткозамкнутые обмотки заменяются одним витком с суммарной электрической проводимостью).

У реальных магнитных материалов после отключения намагничивающей обмотки поток спадает до Фост, который определяется свойствами материала магнитопровода и геометрическими размерами магнитной цепи. Чем меньше коэрцитивная сила магнитного материала при заданных размерах магнитной цепи, тем ниже величина остаточной индукции, а, следовательно, остаточного потока. При этом возрастает наибольшая выдержка времени, которая может быть получена от реле. Применение стали ЭАА позволяет увеличить выдержку времени реле.

Для получения большой выдержки времени желательно иметь высокую магнитную проницаемость на ненасыщенном участке кривой намагничивания. Этому требованию сталь ЭАА также удовлетворяет.

Выдержка времени при прочих равных условиях определяется начальным потоком Фо уравнения. Этот поток определяется кривой намагничивания магнитной системы в замкнутом состоянии. Поскольку напряжение и ток в обмотке пропорциональны друг другу, то зависимость Ф(U) повторяет, только в другом масштабе, зависимость Ф(Iw). Если система при номинальном напряжении не будет насыщена, то поток Фо будет в сильной степени зависеть от питающего напряжения. При этом выдержка времени также будет зависеть от напряжения, приложенного к обмотке.

реле времени с электромагнитным замедлением типа РЭВ-800В схемах привода на обмотку реле времени часто подается напряжение ниже номинального, при этом реле будет иметь пониженные выдержки времени. Для того чтобы сделать выдержку времени реле независимой от питающего напряжения, магнитная цепь делается сильно насыщенной. В некоторых типах реле времени снижение напряжения на 50% не вызывает заметного изменения выдержки времени.

В схемах автоматики напряжение на питающую катушку реле времени может подаваться кратковременно. Для того чтобы выдержка времени при отпускании была стабильной, необходимо, чтобы длительность приложения напряжения к питающей катушке была достаточная для достижения потоком установившегося значения. Это время называется временем подготовки или зарядки реле. Если длительность приложения напряжения меньше времени подготовки, то выдержка времени уменьшается.

На выдержку времени реле большое влияние оказывает температура короткозамкнутой обмотки. В среднем можно считать, что изменение температуры на 10° С ведет к изменению времени выдержки на 4%. Зависимость выдержки времени от температуры является одним из основных недостатков этого реле.

Реле РЭВ811…РЭВ818 обеспечивают выдержку времени от 0,25 до 5,5 с. Изготавливаются с катушками на напряжение постоянного тока 12, 24, 48, 110 и 220 В.

Схемы включения реле времени

Схемы включения реле времениВремя срабатывания реле при подаче напряжения очень мало, так как м. д. с. трогания значительно меньше установившегося значения. Таким образом, возможности реле с электромагнитным замедлением при срабатывании очень ограничены. Если необходимо при замыкании управляющих контактов иметь большие выдержки времени, то целесообразно применить схему с промежуточным реле РП. Обмотка реле времени РВ находится под напряжением, все время питаясь через размыкающий контакт реле РП. .При подаче напряжения на обмотку РП последнее размыкает свой контакт и обесточивает реле РВ. Якорь РВ отпадает, создавая необходимую выдержку времени. Реле РВ в этой схеме должно обязательно иметь короткозамкнутый виток.

В некоторых схемах реле времени может не иметь короткозамкнутого витка. Роль этого витка играет сама намагничивающая обмотка, замкнутая накоротко. Обмотка РВ питается через резистор Rдоб Величина напряжения на РВ должна быть достаточной для достижения потока насыщения в замкнутом состоянии магнитной цепи. При замыкании управляющего контакта К обмотка реле закорачивается, обеспечивая медленный спад потока в магнитной цепи. Отсутствие короткозамкнутой обмотки позволяет все окно магнитной системы занять намагничивающей обмоткой и создать большой запас в м. д. с. При этом выдержка времени не уменьшается даже в том случае, когда питающее напряжение на обмотке составляет 0,5 Uн. Такая схема широко применяется в электроприводе. Реле включается параллельно ступени пускового резистора в цепи якоря. При закорачивании этой ступени обмотка реле времени замыкается и с выдержкой это реле производит включение контактора, шунтирующего следующую ступень пускового резистора.

Схемы включения реле времени с электромагнитным замедлением

Применение полупроводникового вентиля также позволяет использовать реле без короткозамкнутого витка. При включении питающей обмотки реле времени ток через вентиль практически равен нулю, так как он включен в непроводящем направлении. При отключении контакта К поток в магнитной цепи спадает, при этом на зажимах обмотки появляется э.д.с. с полярностью. При этом через вентиль протекает ток, определяемый этой э.д.с., активным сопротивлением обмотки и вентиля и индуктивностью обмотки.

Для того чтобы прямое сопротивление вентиля не приводило к уменьшению выдержки времени (растет активное сопротивление короткозамкнутой цепи), это сопротивление должно быть на один-два порядка ниже сопротивления намагничивающей обмотки реле.

При любых схемах питание намагничивающей обмотки реле должно производиться либо от источника постоянного тока, либо от источника переменного тока с применением мостовой схемы на полупроводниковых вентилях.

Реле времени с механическим замедлением

Реле времени с пневматическим замедлением и с анкерным механизмом. В таких реле электромагнит постоянного или переменного тока воздействует на контактную систему, связанную с замедляющим устройством в виде пневматического демпфера или в виде часового (анкерного) механизма. Выдержка времени меняется путем регулировки замедляющего устройства.

Большим преимуществом реле времени этого типа является возможность создания реле как на переменном, так и на постоянном токе. Работа реле практически не зависит от величины питающего напряжения, частоты питания, температуры.

Пневматическое реле времени РВП, применяется в схемах автоматического управления приводом металлорежущих станков и других механизмов. При срабатывании электромагнита 1освобождается колодка 2, которая под действием пружины 3 опускается вниз и воздействует на микропереключатель 4. Колодка 2 связана с диафрагмой 5. Скорость движения колодки определяется сечением отверстия, через которое засасывается воздух в верхнюю полость замедлителя. Выдержка времени регулируется иглой 6, меняющей сечение всасывающего отверстия.

Пневматическое реле времени РВПРеле времени с пневматическим замедлением позволяет очень легко регулировать выдержку времени.

Работа реле времени с замедлителем в виде анкерного механизма происходит в следующем порядке. При подаче напряжения на электромагнит якорь заводит пружину, под действием которой приводится в движение механизм реле. Контакты реле связаны с анкерным механизмом и приходят в движение лишь после того, как анкерный механизм отсчитает определенное время.

Реле времени РВП также имеет и нерегулируемые, мгновенные контакты, которые связаны с якорем электромагнита. Реле времени надежно работают при напряжении до 0,85 Uн.

Моторные реле времени

Для создания выдержки времени в 20—30 мин используются моторные реле времени.

Принцип действия моторного реле времени РВТ-1200

При срабатывании реле времени напряжение одновременно подается на электромагнит 1 и двигатель 2. При этом двигатель через муфту 3,4 и зубчатую передачу 8 вращает диски 5 с кулачками 6, воздействующими на контактную систему 7. Выдержка времени реле регулируется путем изменения начального положения диска 5.

Реле позволяет устанавливать различную выдержку времени в пяти совершенно независимых цепях. Выходные контакты реле времени имеют длительно допустимый ток 10 А.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Быстродействие электромагнитных реле

Выше были рассмотрены основные параметры, характеризующие быстродействие реле: время срабатывания tср и время отпускания tотп. Эти параметры определяются при анализе переходных процессов, происходящих при включении и отключении реле. Переходной процесс при включении реле можно рассматривать как известный из электротехники случай включения катушки индуктивности на постоянное напряжение, рисунок 18, а.

Рассмотрим график переходного процесса при включении реле постоянного тока, рисунок 1.8, б. В процессе движения якоря к сердечнику индуктивность L увеличивается (аналогично работе электромагнитного индуктивного датчика перемещения). Изменение индуктивности начинается с того момента времени, когда ток в обмотке достиг значения тока трогания (i = Iтр). Начинающееся увеличение индуктивности приводит к увеличению постоянной времени T = L/R. Следовательно, рост тока замедляется. Кроме того, быстрое возрастание магнитного потока вызывает увеличение противо-ЭДС, т.е. напряжения на индуктивности uL. Это приводит даже к уменьшению на некоторое время тока в цепи (см. сплошную кривую 2 на рисунке 1.8, б). Как только якорь притянется к сердечнику, индуктивность обмотки перестает увеличиваться, и ток снова возрастает по экспоненте, но с меньшей скоростью, чем на начальном участке, поскольку увеличилась постоянная времени.

Рисунок 1.8 Переходные процессы при включении и выключении реле постоянного тока

Время срабатывания реле tср определяется двумя составляющими, рисунок 1.8, б: временем трогания tтр и временем движения tдв, т.е. tср = tтр + tдв.

Время движения tдв зависит от механической инерционности электромагнитного механизма реле. Оно может быть определено на основании второго закона Ньютона a = F/m, где а – ускорение, m – масса. Для уменьшения времени движения необходимо стремиться к уменьшению массы якоря. Для данного типа реле можно считать величину tдв приблизительно постоянной. Поэтому основным фактором, влияющим на время срабатывания реле tср, является постоянная времени T.

Рассмотрим способы ускорения и замедления срабатывания электромагнитных реле.Время срабатывания и отпускания реле с помощью специальныхсхем можно изменять в некоторых пределах. Наиболее распространенные схемы представлены на рисунке 1.9. Последовательно с обмоткой реле включается добавочное активное сопротивление Rдоб, а напряжение питания повышается на величину ΔU, которая выбрана таким образом, чтобы установившееся значение тока осталось неизменным, т.е.

.

Теперь постоянная времени уменьшилась

,

и нарастание тока будет происходить по боле крутой экспоненте (кривая 2 на рисунке 1.9, б), чем без добавочного сопротивления (кривая 1 на рисунке1.9, б).

Еще большее ускорение срабатывания реле можно получить, подключив параллельно добавочному сопротивлению Rдоб конденсатор емкостью С, на рисунке 1.9, а это подключение показано пунктиром. При замыкании ключа К ток переходного процесса проходит через емкость в обход Rдоб. Ведь до замыкания ключа напряжение на конденсаторе было равно нулю, а скачком оно измениться не может. Поэтому в первый момент времени все повышенное напряжение приложено именно к катушке реле. В цепи появляется значительный ток, но он не опасен для обмотки, т.к. действует короткое время. По окончании переходного процесса ток уменьшается до установившегося значения, поскольку он проходит через Rдоб (через конденсатор постоянный ток не проходит). Емкость конденсатора выбирается из условия

Рисунок 1.9 Способы ускорения срабатывания реле постоянного тока

В ряде случаев возникает необходимость не ускорения, а замедления времени срабатывания реле. К схемным методам замедления времени срабатывания и отпускания относится метод шунтирования обмотки реле конденсатором, рисунок 1.10. При включении реле ток в обмотке будет нарастать медленнее за счет процесса зарядки конденсатора. Время срабатывания может быть увеличено примерно до 1 с по сравнению 50 мс при включении без конденсатора. При отключении реле, наоборот, конденсатор будет разряжаться на сопротивление Rдоб необходимо для ограничения тока, потребляемого от источника питания.

Рисунок 1.10 Схема для замедления времени срабатывания

Эффективным схемным методом замедления времени отпускания является включение параллельно обмотке реле диода (в непроводящем по отношению к напряжению питания направлении), рисунок 1.11. В этом случае ЭДС самоиндукции, возникающая в обмотке реле и удерживающий якорь некоторое время в притянутом положении. Включение диода используется и для защиты обмотки реле от пробоя под действием перенапряжений при отключении.

Рисунок 1.11 Схема включения реле с шунтирующим диодом

К конструктивным методам уменьшения временных параметров реле относятся уменьшение хода якоря, уменьшение вихревых токов за счет применения шихтованного магнитопровода. Следует также помнить, что реле постоянного тока являются более быстродействующими, чем реле переменного тока.

5.2. Способы замедления и ускорения работы реле

В процессе эксплуатации иногда возникает необходимость изме­нить временные параметры реле. Например, замедление на сраба­тывание реле используют для исключения критических состояний или для сохранения состояния реле или кратковременном исчезно­вении питающего напряжения. Применяют электрические (изменя­ют (т) реле), схемные (изменяют э(т) схемы включения реле), механиче­ские (изменяют время движения якоря) способы воздействия на временные параметры.

Электрический способ состоит в применении короткозамкнутого витка в виде медной гильзы (рис. 5.2, а), шайбы или медного кар­каса катушки, что дает замедление на притяжение и отпускание якоря реле. Этот эффект объясняется тем, что при изменении маг­нитного потока в момент срабатывания или обесточивания реле в медной гильзе индуцируются вихревые токи. Их магнитный поток препятствует изменению основного потока, в результате чего об­щий поток изменяется медленнее и соответственно реле работает медленнее.

Наличие медной гильзы увеличивает постоянную времени реле Тр = Тоб + тг, где тг = Lr/Rr Рассматривая гильзу как одновитко-вую обмотку и учитывая выражения (5.1) и (4.3), имеем:

Lr = w2 GB= moS/b. Чтобы определить сопротивление гильзы вих­ревому току Rr, рассмотрим элементарную трубку толщиной dx на расстоянии: от центра(рис.5.2,б). Для вихревого тока она является проводником длиной 2пx: и сечением ldx (заштрихованная область). Тогда

Полная проводимость гильзы

а постоянная времени

Из выражения (5.7)следует, что время замедления увеличивает­ся с возрастанием массы гильзы (длины / и толщины D/d), а также с уменьшением удельного сопротивления материала гильзы q (поэ­тому используют медь); время на отпускание якоря реле больше, чем на его притяжение. Последнее вытекает из того, что в выражении (5.7) все величины постоянные, кроме b. Поэтому тг= с/b, где c=const. Физически это объясняется различной магнитной прово­димостью при притянутом и отпущенном якоре: GBприт >GBотп. Поэтому магнитный поток вихревых токов при обесточивании реле больше, чем при его срабатывании. >>

Реле с медной гильзой, применя­емые на железнодорожном транспорте, называют медленнодейст­вующими. Они имеют в обозначении букву М (НМШМ, РЭЛ 1М). Время отпускания якоря таких реле возрастает в 5—10 раз, а время притяжения — в 2—4 раза.

В схеме (рис. 5.3), воздействующей на временные параметры реле, включение конденсатора С параллельно обмотке реле(рис. 5.3, а) дает замедление на притяжение и отпускание якоря. При сраба­тывании реле сначала заряжается конденсатор С. Когда напряжение ucконденсаторе достигнет значения Uпрреле притянет якорь. Во время обесточивания реле конденсатор С разряжается на обмот-

ку реле. Когда напряжение ис, на конденсаторе достигнет значения Uотп, реле отпускает якорь. Чем больше емкость конденсатора С тем больше замедление. Схему используют, когда необходимо пол­учить большое замедление на отпускание якоря (несколько секунд) При этом емкость конденсатора С= 1000%2000 мкФ. Недостаток данной схемы — большой зарядный ток конденсатора.

Включение резистора параллельно обмотке реле (рис. 5.3, б) дает замедление на притяжение и отпускание якоря. Замедление возникает из-за увеличения постоянной времени схемы по сравнению с тр:

Когда реле обесточивается, через резистор протекает экстраток размыкания, который удерживает некоторое время якорь реле притянутым. Чем меньше R, тем больше замедление. Недостаток схемы — уменьшение общего сопротивления нагрузки.

Схема (рис. 5.3, в) не имеет недостатков схем (см. рис. 5.3, а и б). Схема (рис. 5.3, г) по сравнению со схемой (см. рис. 5.3, б) дает замедление только на притяжение. Самой распространенной явля­ется схема (рис. 5.3, д), в которой замедление на отпускание якоря осуществляется вследствие протекания через диод экстратока раз­мыкания.

Схема (рис. 5.3, е)обеспечивает ускорение на притяжение якоря. На реле подается большее напряжение питания чем необходимое рабочее напряжение. Поэтому при срабатывании реле через него протекает ток перегрузки, в 2—4 раза больший, чем рабочий ток /р, что согласно выражению (5.4) уменьшает tnp. Длительную перегруз­ку исключают включением в цепь фронтового контакта реле А рези­стора R.

Изменять временные параметры реле можно, используя вторую обмотку реле (рис. 5.3, ж). Обмотки / и // включены согласно, причем Iwf > lwпp, a Iw.//< lwпp. Основной является обмотка /, а обмотка // нормально отключена монтажной перемычкой /7. Если эту пере­мычку установить, то в магнитной цепи реле постоянно действует магнитный поток Ф// < Фпр, что обеспечивает ускорение на притя­жение и замедление на отпускание якоря. При встречном включе­нии обмоток / и // (рис. 5.3, з) осуществляется замедление на притя­жение и ускорение на отпускание якоря.

Механические способы замедления используют для получения больших выдержек времени (до нескольких десятков секунд). При этом увеличивается время движения якоря вследствие присоедине­ния его к демпфирующему устройству, создающему тормозное уси­лие, пропорциональное скорости перемещения. Демпфирующие ус­тройства бывают механические (анкерные, часовые), гидравличе­ские и пневматические.

Способы изменения временных параметров реле.

Конструктивный. Для ускорения процесса срабатывания и отпускания:

1) Ослабить влияние вихревых токов в магнитопроводе (сталь с высоким удельным сопротивлением, как статор

2) Уменьшают по возможности массу якоря и его рабочий ход.

Для замедления процесса срабатывания и отпускания используют электромагнитное демпфирование. При срабатывании или отпускании основной магнитный поток, создаваемый обмоткой изменяется. При этом в короткозамкнутом (медной шайбе) возникает взаимоиндукция и течет ток, обратный магнитному потоку, направленный встречно основному, т.е. общий результат магнитного потока уменьшается, это эффективно при замедлении отпускания.

Схемные способы

Для замедления срабатывания нужно увеличить постоянную времени реле или уменьшить установившееся значение тока в обмотке. Для ускорения срабатывания нужно наоборот уменьшить постоянную времени и уменьшить ток.

t = L / R = R*C – постоянная времени

Для ускорения процесса последовательно с обмоткой включается сопротивление (нужно увеличить напряжение).

Параллельно дополнительному сопротивлению включают конденсатор.

Для замедления процесса увеличивают индуктивность (число витков катушки), напряжение при этом постоянно. Последовательно обмотке (встречно) включают диод или отключают полученную демпферную обмотку.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *