Выбор блока питания, трансформаторный или импульсный
В статье пойдет речь о выборе сетевого блока питания (который подключается к сети переменного тока 230В или 400В).
Под блоком питания понимается как обособленное устройство (адаптер), так и часть устройства. В качестве трансформаторного блока питания понимается блок питания на базе низкочастотного трансформатора. Под импульсным понимается блок питания со схемой формирования высокочастотных импульсов и высокочастотным трансформатором (дросселем в случае с flayback).
Итак Вы проектируете устройство или же оно у Вас уже имеется и его нужно запитать от сети т.е. нужен БП. Какой БП выбрать: трансформаторный или импульсный ? Однозначного ответа тут не может быть, у каждого типа блоков питания есть свои преимущества, недостатки и особенности, о них мы и поговорим в этой статье.
Сравнение и выбор блока питания будем выполнять по следующим основным критериям:
— развязка с сетью;
— пульсации и помехи;
— стабильность выходного напряжения.
Развязка с сетью
Предполагается, что выбираемый блок питания обеспечивает гальваническую развязку с сетью. Какой же из двух видов блоков питания обеспечит максимальную развязку ?
На первый взгляд выбор очевиден — трансформаторный блок питания так как импульсный имеет в своем составе Y конденсатор (или даже несколько) между входом и выходом.
Теоретически трансформаторный блок питания действительно обеспечивает полную развязку с сетью, но на практике это не всегда так, особенно для тороидальных трансформаторов.
При изготовлении тороидальных трансформаторов вторичная обмотка наматывается поверх первичной и между ними образуется паразитный конденсатор. При этом к паразитному конденсатору приложено переменное напряжение сети.
К сожалению значение межобмоточной емкости трансформаторов производители никак не нормируют.и узнать его можно только фактическим измерением «на месте». Общая тенденция такая, что чем выше мощность (размер) трансформатора, тем выше межобмоточная емкость. Кроме размера трансформатора, на значение межобмоточной емкости влияет качество изоляции.
Для примера на фото ниже приведены результаты измерения межобмоточной емкости различных тороидальных трансформаторов. Емкость измерялась RLC метром Е7-22 при частоте 120 Гц.
У Ш образных трансформаторов, обычно, первичная и вторичные обмотки разделены на отдельные секции, поэтому значение межобмоточной емкости значительно меньше.
Вернемся к импульсным блокам питания. Типовое значение емкости Y конденсатора между входом и выходом 2,2 нФ. Часто можно встретить более высокое значение вплоть до 4,7 нФ, реже меньшее значение 1 нФ.
Таким образом блок питания на мощном тороидальном трансформаторе между входом и выходом может иметь емкость соизмеримую или даже большую, чем в качественном импульсном блоке питания. При этом наличие емкости в импульсном блоке питания известно, а вот о такой особенности тороидального трансформатора обычно нигде не указывается.
Чем же «вредна» эта самая емкость ?
Прежде всего паразитным потенциалом на выходе относительно земли. Этот потенциал может составлять десятки вольт, и при касании выхода блока питания (или запитанного им устройства) заземленным паяльником или просто рукой, приводить к выходу устройства из строя.
В импульсных источниках питания для снижения потенциала на выходе относительно земли и дополнительного снижения помех устанавливают конденсаторы между выходом и заземлением. Рекомендуемая суммарная емкость конденсаторов не более 20 нФ.
Поскольку указанные конденсаторы устанавливаются не во все импульсные блоки питания, а величина межобмоточной емкости для тороидальных трансформаторов не нормируется, то при их использовании рекомендуется проверять наличие паразитного потенциала на выходе. Для этого можно использовать мультиметр в режиме измерения переменного напряжения и при включенном блоке питания один щуп взять в руку (или соединить с заземлением) второй соединить с выходом блока питания.
Другое негативное влияние межобмоточной емкости — проникновении сетевых помех. При этом импульсные блоки питания оказываются в более выигрышном положении т.к. у них в большинстве случаев устанавливается входной фильтр. Этот фильтр препятствует проникновению помех в сеть от импульсного блока питания и наоборот.
Итог. При выборе блока питания, если Вам требуется максимальная развязка с сетью, то лучше использовать трансформаторный блок питания с Ш сердечником и разделенными обмотками. При этом нужно учитывать, что Ш трансформатор имеет большее поле рассеяния и может наводить помеху 50 Гц. В некоторых особо чувствительных приборах устанавливаются последовательно два тороидальных трансформатора, чем обеспечивается высокая развязка и малая помеха 50 Гц.
Пульсации и помехи
Понятия пульсации и помехи достаточно близкие и могут иметь различное толкование. В данной статье под пульсациями понимаются колебания напряжения/тока вызванные естественными процессами. Под помехами понимаются колебания(выбросы) напряжения/тока вызванные различными «паразитными» явлениями. Например: колебания напряжения на выходе источника питания после выпрямителя и LC фильтра — пульсации. Всплески напряжения, вызываемые коммутацией ключей — помехи. Еще пример: колебания напряжения на выходе трансформаторного блока питания после выпрямителя и фильтра с частотой 100Гц — пульсации, наводимые полем рассеяния колебания напряжения в схеме — помехи. Грубо говоря помеха это неестественное (мешающее) колебание напряжения.
Может быть такая классификация не совсем научная и правильная, но она позволяет упростить изложение материала.
Для начала разберемся с пульсациями.
В случае с трансформаторным блоком питания пульсации выходного напряжения обычно выше, чем у импульсного (стабилизированного) блока питания. Это связанно с низкой частотой импульсов напряжения на выходе выпрямителя трансформаторного блока питания. Однако низкочастотные пульсации трансформаторного блока питания эффективно подавляются аналоговыми схемами (операционные усилители, линейные стабилизаторы и др.). Частота пульсаций импульсного блока питания составляет десятки и даже сотни килогерц. Степень подавления таких высокочастотных пульсаций по питанию аналоговых схем значительно меньше и они могут «проникать» на их выход. Например в схеме входного тракта АЦП на операционном усилителе пульсации по питанию могут накладываться на полезный сигнал. Для подавления высокочастотных пульсаций по цепям питания операционных усилителей часто используются RC фильтры: резистор сопротивлением 10-100 Ом и керамический конденсатор емкостью 0,1-10 мкФ. Если требуется уменьшить пульсации импульсного блока питания в силовой цепи, то используются дополнительные LC фильтры.
С помехами дело обстоит гораздо хуже.
Если величина пульсаций более менее поддается анализу на этапе проектирования, то оценить величину помех сложно.
В случае с трансформаторным блоком питания помехи создаются полем рассеяния трансформатора, у тороидальных трансформаторов оно меньше у Ш образных больше. Особенно «страдают» от этих помех аналоговые схемы, обрабатывающие низкоуровневые сигналы (прецизионные мультметры, усилители звуковой частоты, радио аппаратура). Для подавления помех от низкочастотного трансформатора используются экранирующие оболочки (кожухи) из стали или жести.
В импульсных блоках питания основные помехи создаются при переключении транзисторов и восстановлении диодов. Подавление этих помех очень обширная и достаточно скучная тема. Гораздо полезнее будет рассмотреть топологии (типы) импульсных блоков питания по формированию помех.
Обратно-ходовые (flyback) импульсные блоки питания с точки зрения помех самый неудачный выбор. Эти импульсные блоки питания среди прочих наиболее подвержены возникновению мощных импульсных помех. К проектированию и выбору таких блоков питания нужно подходить более тщательно, особенно если его мощность составляет десятки ватт .
Полумостовые (half-bridge) и мостовые (full-brige) импульсные блоки питания с точки зрения помех наиболее удачный выбор. Блоки питания данной топологии обычно имеют меньший уровень помех. Частным случаем полумостовых и мостовых импульсных блоков питания являются резонансные схемы в которых коммутация транзисторов осуществляется при нулевом напряжении или токе, из-за чего возникающие помехи минимальны.
Прочие топологии импульсных блоков питания занимают промежуточное место между обратно-ходовыми и полумостовыми (мостовыми) схемами.
Не стоит воспринимать эту классификацию буквально, величина помех сильно зависит от реализации и при неудачном исполнении резонансная схема может «фонить» сильнее качественно спроектированного и изготовленного flayback.
Итог. При выборе блока питания следует учитывать, что помех от импульсных блоков питания больше чем от трансформаторных, но помехи импульсных блоков более высокой частоты (обычно это десятки мегагерц) и малой продолжительности. Если помеху от трансформаторного блока можно услышать в прямом смысле, то помехи от импульсных блоков питания можно увидеть разве, что осциллографом. Это не значит, что помехи импульсных блоков питания можно игнорировать, сильный их уровень способен нарушить работу цифровых схем и создать помехи в радиоэфире. Но нужно учитывать, что во многих случаях незначительный уровень помех качественно спроектированного импульсного блока питания не оказывает существенного влияния на работу устройства ( и соседних устройств).
Стабильность выходного напряжения
Выбор блока питания мы осуществляем для определенного устройства и у него есть диапазон входных напряжений при котором оно будет корректно работать.
Напряжение на выходе трансформаторного блока питания может изменяться в значительном диапазоне. Изменение напряжения вызывают как изменение напряжения питающей сети, так и изменение нагрузки. Особенно сильная зависимость выходного напряжения от нагрузки у маломощных трансформаторов.
Рассмотрим пример трансформаторного блока на трансформаторе ТП-121-4.
Исходные данные:
— номинальное выходное напряжение трансформатора на холостом ходу 16,4В;
— номинальное выходное напряжение трансформатора под нагрузкой 11,2В.
— отклонение напряжения сети +-10% (ГОСТ 29322-2014).
Максимальное напряжение на выходе блока питания будет на холостом ходу при максимальном напряжение сети. Считаем Uвых = 16,4*1,1*1,4 = 25,3В.
Минимальное напряжение на выходе блока питания будет при максимальной нагрузке и минимальном напряжении сети. Считаем Uвых = 11,2*0,9*1,4=14,1В. Фактически под нагрузкой напряжение будет еще ниже из-за падения напряжения на диодах и из-за того, что фактически амплитуда импульсов тока в обмотках будет выше номинальных значений (емкость выпрямителя заряжается короткими импульсами) и следовательно падение напряжения на обмотках будет выше расчетных.
Расчет показывает, что на выходе трансформаторного блока питания напряжение значительно изменяется в зависимости от нагрузки и сетевого напряжения, в рассмотренном примере почти в два раза. Если требуется получить более стабильное (фиксированное) напряжение, то необходимо использовать дополнительные стабилизаторы напряжения. При использовании линейных стабилизаторов из-за большого разброса входного напряжения возникают существенные тепловые потери. При использовании импульсных понижающих step-down преобразователей потери значительно ниже, но габариты и стоимость увеличиваются, кроме того добавляется необходимость дополнительной фильтрации ВЧ пульсаций для чувствительных аналоговых схем.
Напряжение на выходе импульсного блока питания стабилизировано (если это стабилизированный блок питания, а не «электронный трансформатор» на IR2153), при изменении нагрузки или напряжения сети выходное напряжение изменяется незначительно. Если у блока несколько выходов, то контур стабилизации замыкается по наиболее мощному и тогда остальные (дополнительные) каналы являются условно стабилизированными. Напряжение на дополнительных выходах изменяется в зависимости от нагрузки, но изменения эти не так значительны как у трансформаторного блока, обычно колебания напряжения не превышают +-0,5В и если эти колебания критичны, то может быть установлен дополнительный стабилизатор, причем номинальное напряжение может быть подобрано так, чтобы тепловые потери были незначительными.
Итог. Напряжение на выходе трансформаторного блока питания значительно изменяется в зависимости от напряжения сети и нагрузки, особенно у маломощных блоков. У импульсных блоков питания напряжение на выходе для основного канала (по которому замкнут контур стабилизации) стабилизировано, а изменение напряжения в дополнительных каналах незначительно. Это позволяет сократить общее число стабилизаторов в схеме, а в некоторых случаях и вовсе отказаться от них.
Заключение
При выборе блока питания рекомендуется руководствоваться следующими правилами.
Трансформаторные блоки питания выгодно использовать для питания маломощных устройств требующих хорошей гальванической развязки с сетью, минимальных пульсаций и помех. При использовании трансформаторных блоков питания следует учитывать значительное изменение выходного напряжения при изменении напряжения сети и нагрузки. Ш образный трансформатор обеспечивает большую гальваническую развязку с сетью в сравнении с тороидальным, но имеет большее поле рассеяния и в чувствительных схемах может потребовать экранирования.
Импульсные блоки питания следует выбирать тщательно, отдавая предпочтение качественным и проверенным моделям. В большинстве случаев помехи от качественно спроектированных и изготовленных импульсных блоков питания не оказывают существенного влияния на устройства. При питании аналоговых схем высокочастотные пульсации импульсных блоков питания могут проникать на их выход, в этих случая применяют дополнительные RC или LC фильтры. При выборе мощного импульсного блока питания (более 100Вт) предпочтение стоит отдавать полумостовым и мостовым топологиям.
В целом из статьи следует вывод, что импульсные блоки питания в большинстве случаев лучше трансформаторных. При современном уровне техники так оно и есть, если импульсный блок питания качественный. Но для разовых или малосерийных устройств, с точки зрения затрат на разработку, трансформаторный блок питания при всех его недостатках может оказаться выгоднее, особенно в связке с понижающим step-down стабилизатором.
Отличия импульсного блока питания от обычного
Отличия импульсного блока питания от обычного между трансформаторным и импульсными, а также их достоинства и недостатки. Например трансформаторный блок питания, в составе которого имеется трансформатор выполняющий функцию понижения сетевого напряжения до заданного, такая конструкция называется понижающим трансформатором.
Отличия импульсного блока питания от обычного
Блоки питания работающие в импульсном режиме являются импульсным преобразователем или инвертором. В импульсных источниках питания переменное напряжение на входе вначале выпрямляется, а затем происходит формирование импульсов необходимой частоты. У такого ИП в отличии от обыкновенного силового трансформатора при одинаковой мощности намного меньше потерь и незначительные габаритные размеры полученные в следствии высокочастотного преобразования.
Трансформаторные блоки питания
Самым распространенным блоком питания считается конструкция, в составе которого имеется понижающий трансформатор, его определенная обязанность — понижать входное напряжение. Его первичная обмотка намотана с учетом работы с сетевым напряжением. Кроме понижающего трансформатора в таком БП установлен еще выпрямитель собранный на диодах, как правило применяется две пары выпрямительных диодов (диодный мост) и конденсаторах фильтра.
Такое устройство служит для преобразования однонаправленного пульсирующего переменного напряжение в постоянное. Не редко применяются и другие конструктивно выполненные устройства, например, выполняющий в выпрямителях функцию удвоения напряжения. Кроме сглаживающих пульсации фильтров, там же могут быть элементы фильтра помех высокой частоты и всплесков, схема защиты от короткого замыкания, полупроводниковые приборы для стабилизации напряжения и тока.
Схема простейшего трансформаторного БП c двухполупериодным выпрямителем
Достоинства трансформаторных блоков питания
● Простота в конструировании
● Высокая надежность
● Доступность составляющих компонентов
● Отсутствие паразитных радио-волновых помех (Отличия блоков питания от импульсных блоков питания, которые создают помехи в виде напряжений и токов синусоидальной формы, которые во много раз выше частоты электросети)
● Имеющиеся недостатки трансформаторных блоков питания
● Солидный вес и размеры, особенно высокомощные
● Для изготовления требуется много железа
● Компромиссное решение относительно уменьшения КПД и высокой стабильностью напряжения на выходе: для получения стабильного напряжения необходим стабилизатор, с применением которого появляются дополнительные потери.
Импульсные блоки питания
Отличия импульсного блока питания от обычного — импульсные источники питания это инверторное устройство и является составляющей частью аппаратов бесперебойного электрического питания. В импульсных блоках переменное напряжение на входе вначале выпрямляется, а потом формирует импульсы определенной частоты. Преобразованное выходное постоянное напряжение имеет импульсы прямоугольной формы высокой частоты поступающее на трансформатор или сразу на выходной фильтр нижних частот.
В импульсных блоках питания часто используются небольшие по размерам трансформаторы — это вызвано тем, что при возрастании частоты увеличивается эффективность работы устройства, тем самым становятся меньше требования к размерам магнитопровода, необходимого для отдачи равнозначной мощности. В основном такой магнитопровод изготавливается из ферромагнитных материалов служащих проводниками магнитного потока. Отличия источников питания в частности от сердечника трансформатора низкой частоты, для изготовления которых применяется электротехническая сталь.
Отличия импульсного блока питания от обычного — происходящая в импульсных источниках питания стабилизация напряжения возникает за счет цепи отрицательной обратной связи. ООС дает возможность обеспечивать выходное напряжение на достаточно устойчивом уровне не взирая на периодические скачки входящего напряжения и значение сопротивления нагрузки.
Отрицательную обратную связь также можно создать иными способами. Относительно импульсных источников питания имеющих гальваническую развязку от электрической сети, наиболее применяемый в таких случаях способ — это образование связи с помощью выходной обмотки трансформатора либо воспользоваться оптроном.
С учетом значения величины сигнала отрицательной обратной связи, которое зависит от напряжения на выходе, меняется скважность импульсных сигналов на выходном выводе ШИМ-контроллера. Если можно обойтись без гальванической развязки то, в таком случае, применяется обычный делитель напряжения собранный на постоянных резисторах. В конечном итоге, источник питания обеспечивает выходное напряжение стабильного характера.
Принципиальная схема простейшего однотактного импульсного БП
Достоинства импульсных блоков питания
● Если сравнивать относительно выходной мощности линейный стабилизатор и импульсный, то последний имеет некоторые достоинства:
● Относительно небольшой вес, получившийся в следствии того, что с увеличением частоты можно применять трансформаторы малых габаритов имея аналогичную выдаваемую выходную мощность.
● Большой вес линейного стабилизатора получается за счет использования массивных силовых трансформаторов, а также тяжелых теплоотводов силовых компонентов.
● Высокий КПД, который составляет около 98% полученный в следствии того, что штатные потери происходящие в импульсных стабилизирующих устройствах зависят от переходных процессов на стадии переключения ключа.
● Поскольку больший отрезок времени ключи находятся в стабильном либо включенном или выключенном состоянии, то соответственно и энергетические потери ничтожны;
● Относительно небольшая стоимость, образовавшаяся в следствии выпуска большого количества необходимых электронных элементов, в частности появление на рынке электронных товаров высокомощных транзисторных ключей. ● Помимо всего этого необходимо заметить существенно малую стоимость импульсных трансформаторов при аналогичной отдаваемой в нагрузку мощности.
● Имеющиеся в подавляющем большинстве блоках питания установленных схем защиты от всевозможных нештатных ситуаций, таких как защита от короткого замыкания или если не подключена нагрузка на выходе устройства.
Чем отличается блок питания для светодиодных ламп и электронный трансформатор для галогенных ламп
При замене галогеновых ламп на 12В в точечных светильниках светодиодными часто возникает вопрос: «нужно ли менять источник питания?».
Из письма с вопросом одного из постоянных посетителей сайта: « Можно ли заменить галогенные лампы на нормальные светодиоды? Я снимаю квартиру, где основное освещение состоит из примерно 30-40 галогенных ламп по 10 Вт каждая, питаемых от 12 В. Лампочки практически дают мало света, а электричество, безусловно, потребляют больше, чем светодиоды. Не говоря уже о том, что эти галогенные лампочки умирают, как мухи, и их нужно довольно часто менять. И еще они шумят. Можно ли эти лампочки заменить на светодиодные не заменяя всю люстру? »
В данном случае просто заменить старые 12-вольтовые галогенные лампы на светодиодные не получится. Нужно разобраться с источником питания.
Для галогенок чаще всего использовали электронные трансформаторы с выходным напряжением 12 вольт, а для светодиодных ламп продаются специальные блоки питания (БП) с выходным напряжением также 12 вольт. В чем же их различие и взаимозаменяемы ли они? Давайте разбираться!
Из этой статьи вы узнаете:
Что такое электронный трансформатор,
Как устроен и работает электронный трансформатор,
Как устроен и работает блок питания для светодиодных ламп 12В ,
В чем отличия блоков питания для LED-лент и ламп от электронных трансформаторов для галогенных ламп.
Что такое электронный трансформатор?
Электронным трансформатором называют схему импульсного источника питания на основе трансформатора и высокочастотного генератора на полупроводниковых ключах. Они питаются от сети 220В переменного тока, а на их выходе переменное напряжение с действующим значением порядка 12В.
Структурная схема устройства изображена на рисунке ниже.
Здесь мы видим, что питание 220В сначала поступает на выпрямитель, после чего выпрямленное пульсирующее с частотой 100Гц напряжение поступает на узел силовых ключей и генератора, рассмотрим пример типовой принципиальной электрической схемы электронного трансформатора.
Здесь изображена типичная автогенераторная двухтактная схема. Её особенностью является то, что для работы ключей в режиме коммутации (переключений) на высокой частоте им не требуется ШИМ-контроллеров или других специализированных ИМС. Говоря простыми словами работа автогенератора заключается в переключении транзистора в результате напряжений, наводимых на обмотках импульсного трансформатора и положительной обратной связи.
Что мы видим на схеме? Первое что бросается в глаза – отсутствие диодного моста на выходе, а значит, что выходное напряжение переменное, а также отсутствие цепей, предназначенных для стабилизации выходного напряжения. Вы можете подробнее ознакомится с принципом их работы посмотрев видео:
Подобная схема лежит и в основе большинства зарядных устройств для мобильных телефонов, ЭПРА для питания люминесцентных ламп, в том числе в энергосберегающих или компактных люминесцентных лампах в некоторых вариациях и некоторыми доработками.
Рассмотрим выходные осциллограммы.
Здесь видно, что переменное напряжение амплитуда которого пульсирует от нуля до + и – 17Вольт. Такие изменения амплитуды с течением времени – повторяют пульсации выпрямленного сетевого(100Гц). Получается интересная ситуация – есть высокочастотное выходное напряжение, изменяющееся с частотой в десятки тысяч герц, при этом его амплитуда изменяется от 0 до 17 вольт с частотой в 100 Гц или выпрямленные 50 Гц. Если растянуть ось времени и рассмотреть форму на уровне периодов, то картинка примет следующий вид.
Здесь видно, что сигнал по форме далёк от синусоиды, а скорее прямоугольник с небольшим уклоном в сторону заднего фронта.
Блоки питания для светодиодных ламп 12В
Их часто называют блоками питания для светодиодных лент, фактически для подключения и лент и ламп нужен любой источник постоянного стабилизированного напряжения 12В с минимальными пульсациями. На практике в современном мире используются импульсные источники питания, рассмотрим типовую схему.
Или другой вариант:
Что общего у этих двух, казалось бы, разных схем? Они построены на интегральном ШИМ-контроллера который управляет силовыми ключами – транзисторами, они могут быть и полевыми, и биполярными. Кроме того, в выходном каскаде схемы вы видите выпрямитель и конденсаторы для сглаживания пульсаций (фильтр). Всё это значит, что на выходе мы получаем стабилизированный DC источник питания. Величина его пульсаций будет зависеть от нагрузки и ёмкости фильтрующих конденсаторов.
Её также можно реализовать на автогенераторной схеме, подобной электронному трансформатору, добавив цепи обратной связи для стабилизации выходного напряжения. В результате получится схема наподобие такой.
Аналогичная конструкция используется в упомянутых выше зарядных для мобильны телефонов здесь за стабилизацию отвечает цепочка обратной связи на 11 вольтовом стабилитроне VD9 и транзисторной оптопаре U1.
Принцип работы подобных ИИП мы рассматривали в статье ранее — Схемотехника блоков питания светодиодных лент.
5 особенностей и отличий БП для LED-лент и ламп от электронных трансформаторов для галогенных ламп
Итак, подведем итоги и ответим на вопрос: «почему нельзя питать светодиодные лампы от электронного трансформатора?». Для этого мы перечислим основные особенности этих источников питания и требования для работы светодиодных изделий.
1. Для включения светодиодных лент и ламп на 12В нужно постоянное напряжение. Так как у светодиодов нелинейная вольтамперная характеристика – они очень чувствительны к отклонениям напряжения питания от номинального, и при его превышении быстро выйдут из строя.
2. Электронные трансформаторы выдают пульсирующее переменное высокочастотное напряжение. Величина всплесков и пиков может достигать и 40 вольт в некоторых случаях. Это может привести к выходу из строя светодиодов или драйверов, встроенных в LED-лампу, а также к их нестабильной работе.
3. У электронных трансформаторов есть такая характеристика как минимальная нагрузка (смотрите рисунок ниже). Это значит, что, если подключить нагрузку меньше указанной на блоке питания он может либо не запуститься, либо выдавать большие пульсации, а также отключаться или другим образом отклоняться от нормального режима работы. Это критично, поскольку галогенные лампы потребляют в разы большую мощность, чем светодиодные, поэтому электронный трансформатор может проявлять себя подобным образом.
Мощность указана от 20 до 105 Вт, что говорит об ограничении по минимальной подключаемой мощности.
4. У блоков питания для ламп на 12В выходное напряжение и постоянное, и стабилизированное при этом.
5. Для питания галогеновых ламп не разницы в роде тока (постоянный или переменный), которым её будут питать. Важно действующее значение напряжения на ней. Поэтому они подойдут под оба варианта источников питания.
Заключение
Нельзя использовать электронный трансформатор для питания светодиодных изделий. Подбирайте блок питания с постоянным стабилизированным выходным напряжением. В противном случае ваши светильники и лампы могут выйти из строя. Также будьте внимательны – сейчас популярны светильники, предназначенные для питания источником постоянного тока – драйвером, это отдельный вид устройств! Об этом читайте здесь — В чем отличие блока питания от драйвера для светодиодов
Драйвер и импульсный блок питания. Отличия, принцип работы. Что лучше выбрать?
В линейном блоке питания основное преобразование происходит при помощи трансформатора. Его первичная обмотка рассчитана под сетевое напряжение, вторичная обычно понижающая. В случае классического трансформатора переменного тока, предложенного П. Яблочковым, он преобразует синусоиду входного напряжения в такое же синусоидальное напряжение на выходе вторичной обмотки.
Следующий блок — выпрямитель, на котором синусоида сглаживается, превращается в пульсирующее напряжение. Этот блок выполнен на основе выпрямительных диодов. Диод может стоять один, может быть установлен диодный мост (мостовая схема). Разница между ними — в частоте импульсов, которые получаем на выходе. Дальше стоит стабилизатор и фильтр, придающие выходному напряжению нужный уровень и форму. На выходе имеем постоянное напряжение.
Самый простой линейный блок питания с двухполупериодным выпрямителем без стабилизации
Основной недостаток линейных источников питания — большие габариты. Они зависят от размеров трансформатора — чем выше требуется мощность, тем больше размеры блока питания. Нужен еще стабилизатор, который корректирует выходное напряжение, а это еще увеличивает габариты, снижает КПД. Зато это устройство не грозит помехами работающему рядом оборудованию.
Устройство импульсного блока питания и его принцип работы
В импульсном блоке питания преобразование сложнее. На входе стоит сетевой фильтр, задача которого не допустить в сеть высокочастотные колебания, вырабатываемые этим устройством. Они могут повлиять на работу рядом расположенных приборов. Сетевой фильтр в дешевых моделях стоит не всегда, и в этом зачастую кроется проблема с нестабильной работой каких-то устройств, которые мы часто списываем на «падение напряжения в сети».
Далее стоит сглаживающий фильтр, который выпрямляет синусоиду. Полученное на его выходе пилообразное напряжение подается на инвертор, преобразуется в импульсы, имеющие положительную и отрицательную полярность
Их параметры (частота и скважность) задаются при помощи блока управления. Частота обычно выбирается высокой — от 10 кГц до 50 кГц
Именно наличие этой ступени преобразования — генерации импульсов — и дало название этому типу преобразователей.
Блок-схема ИИП с формами напряжения в ключевых точках
Высокочастотные импульсы поступают на трансформатор, который является гальванической развязкой от сети. Трансформаторы эти небольшие, так как с возрастанием частоты сердечники нужны все меньше. Причем сердечник может быть набран из ферромагнитных пластин (в линейных БП должен быть из более дорогой электромагнитной стали).
На выходном выпрямителе биполярные импульсы превращаются в положительные, а выходной фильтр на их основе формирует постоянное напряжение. Основное достоинство ИБП в том, что существует обратная связь, которая позволяет регулировать работу устройства таким образом, чтобы напряжение на выходе было близко к идеалу. Это дает возможность получать стабильные параметры на выходе, независимо от того, что имеем на входе.
Достоинства и недостатки импульсных блоков питания
Для новичков не сразу становится понятным, почему лучше использовать импульсные выпрямители, а не линейные. Дело не только в габаритах и материалоемкости. Дело в более стабильных параметрах, которые выдают импульсные устройства. Качество напряжения на выходе не зависит от качества сетевого напряжения. Для наших сетей это актуально. Но не только это. Такое свойство позволяет использовать импульсный блок питания в сети разных стран. Ведь параметры сетевого напряжения в России, Англии и в некоторых странах Европы отличаются. Не кардинально, но отличается напряжение, частота. А зарядки работают в любой из них — практично и удобно.
Размер тоже имеет значение
Кроме того импульсники имеют высокий КПД — до 98%, что не может не радовать. Потери минимальны, в то время как в трансформаторных много энергии уходит на непродуктивный нагрев. Также ИБП меньше стоят, но при этом надежны. При небольших размерах позволяют получить широкий диапазон мощностей.
Но импульсный блок питания имеет серьезные недостатки. Первый — они создают высокочастотные помехи. Это заставляет ставить на входе сетевые фильтры. И даже они не всегда справляются с задачей. Именно поэтому некоторые устройства, особо требовательные к качеству электропитания, работают только от линейных БП. Второй недостаток — импульсный блок питания имеет ограничение по минимальной нагрузке. Если подключенное устройство обладает мощностью ниже этого предела, схема просто не будет работать.
Блок питания с силовым трансформатором
Силовые трансформаторы для ИБП бывают двух типов: с косой и без косы. Оба типа могут использоваться для установки в импульсные блоки питания.
Трансформатор с косой состоит из трех обмоток, первичная цепь — 1 обмотка, состоящая из двух полуобмоток по 20-ть витков и вторичная цепь — состоит тоже из 2-х полуобмоток, которые соединяются в косе. Каждая полуобмотка состоит из семи витков, последовательно соединенных между собой по электросхеме, каждый виток равен 1 Вольт. Последовательное соединение между собой обмоток увеличивает мощность.
Применение силовых трансформаторов для блока питания импульсного типа обусловлено рядом преимуществ:
- последовательное соединение обмоток трансформатора обеспечивает стабильность напряжения в блоке;
- простота сборки и доступность элементов;
- возможность повысить мощность силы тока за счет количества обмоток;
- малое энергопотребление.
У силовых трансформаторов есть такие недостатки:
- при ненадежной изоляции соединений на косе возможно короткое замыкание;
- индукция электромагнитного поля может создавать помехи.
Стандарты и сертификаты
При покупке БП, в первую очередь необходимо посмотреть на наличие сертификатов и на соответствие его современным международным стандартам. На блоках питания чаще всего можно встретить указание следующих стандартов:
Также есть компьютерные стандарты форм-фактора АТХ, в котором определены размеры, конструкция и многие другое параметры блока питания, включая допустимые отклонения напряжений при нагрузке. Сегодня существуют несколько версий стандарта АТХ:
- ATX 1.3 Standard
- ATX 2.0 Standard
- ATX 2.2 Standard
- ATX 2.3 Standard
Отличие версий стандартов АТХ в основном касается введения новых разъемов и новых требованиям к линиям питания блока питания.
Что представляют собой импульсные блоки питания (ИБП)?
В последнее время импульсные блоки питания становятся все более распространенными. При этом их популярность оказывается полностью оправданной. Среди преимуществ ИБП нужно отметить:
- Доступность комплектации, благодаря чему при необходимости можно провести ремонтные мероприятия.
- Высокий уровень надежности исполнения техники.
- Оптимальная функциональность, благодаря чему можно использовать оборудование во многих сферах, вне зависимости от существующих требований к параметрам блока питания.
В большинстве случаев ИБП обладают высоким уровнем функциональности, причем предполагается соблюдение общих принципов. Несмотря на это, присутствует возможность выбрать подходящую модель оборудования, ориентируясь на ее технические параметры.
Достоинства и недостатки
Импульсный преобразователь имеет следующие достоинства:
- Высокий показатель коэффициента стабилизации позволяет обеспечить условия питания, которые не будут вредить чувствительной электронике.
- Рассматриваемые конструкции обладают высоким показателем КПД. Современные варианты исполнения имеют этот показатель на уровне 98%. Это связано с тем, что потери снижены до минимума, о чем говорит малый нагрев блока.
- Большой диапазон входного напряжения – одно из качеств, из-за которого распространилась подобная конструкция. При этом, КПД не зависит от входных показателей тока. Именно невосприимчивость к показателю напряжения тока позволяет продлить срок службы электроники, так как в отечественной сети электроснабжения прыжки показателя напряжения частое явление.
- Частота входящего тока оказывает влияние на работу только входных элементов конструкции.
- Малые габариты и вес, также обуславливают популярность из-за распространения портативного и переносного оборудования. Ведь при использовании линейного блока вес и габариты увеличиваются в несколько раз.
- Организация дистанционного управления.
- Меньшая стоимость.
Есть и недостатки:
- Наличие импульсных помех.
- Необходимость включения в цепь компенсаторов коэффициента мощности.
- Сложность самостоятельного регулирования.
- Меньшая надежность из-за усложнения цепи.
- Тяжелые последствия при выходе одного или нескольких элементов цепи.
При самостоятельном создании подобной конструкции, следует учитывать то, что допущенные ошибки могут привести к выходу из строя электропотребителя. Поэтому нужно предусмотреть наличие защиты в системе.
Преимущества импульсных блоков питания над обычными.
- Компактные габариты.
- Уменьшенный вес.
- Высокий КПД.
- Доступная цена.
- Высокий уровень функциональности.
- Наличие специальной защиты.
Нужно отметить, что к недостаткам можно относить помехи, ведь ИБП работают на основе преобразования высокочастотных импульсов, а также ограничения по мощности. Несмотря на это, современные технологии активно развиваются и постепенно недостатки устраняются.
Электроника и техникаКомментировать
Алгоритм работы ИБП
Принцип действия ИБП прост: напряжение на входе выпрямляется и преобразуется в электронные высокочастотные импульсы. На выходе электроцепь формирует сигнал ООС, которым осуществляется регулировка импульсов.
Преимущества использования импульсного БП очевидны:
- небольшие размеры и вес;
- малое энергопотребление;
- простота в сборке;
- низкие энергопотери;
- высокий КПД;
- наличие защиты;
- низкая цена на комплектующие.
К минусам применения ИБП относят наличие электромагнитных помех ввиду их работы на импульсах высокой частоты.
В персональных стационарных компьютерах, как правило, применяют ИБП с силовым трансформатором. Для работы силовой прибор использует свойства и принципы электромагнитной индукции. Это дает возможность передавать ток без существенных потерь на большие расстояния.
Принцип работы ИБП
Основной функцией любого ИП, в том числе и импульсного БП является стабилизация напряжения в электросетях. ИБП — это прибор для выпрямления сетевого напряжения с последующим формированием электрического высокочастотного импульса.
Обратите внимание!
Аналоговый БП трансформаторного типа, для изменения напряжения в сети использует трансформатор, который питается от электросетей в 220В. ТБП предназначен для понижения напряжения в сети.
ТБП сейчас практически не используются в электро-устройствах ввиду непрактичности и больших габаритов.
Отличия импульсного БП от аналогового представлены в таблице сравнительной характеристики:
Наименование | ИБП | ТБП |
Конструктивные особенности | Компактные размеры, как правило размещен внутри электроустройства | Внешний источник питания, большие габариты и вес |
Принцип действия | Выпрямляет первично поступающее напряжения путем преобразования в электрический импульс определенной частоты | Понижает напряжение на входе, может преобразовывать пульсирующее напряжение одного направления в постоянное |
КПД | Около 98%, в процессе преобразования напряжения потери энергии минимальны | До 80%, довольно серьезные энергопотери в связи с большим потреблением электроэнергии для работы |
Потери электричества при работе | Небольшие | Высокие |
Наличие защиты | Есть в большинстве существующих моделей | В большинстве моделей отсутствует |
Цена | Низкая, ввиду массового распространения и доступности комплектующих | Высокая. Большинство моделей устарели и сняты с производства, поэтому есть дефицит запчастей |
Из таблицы видно, что преимущества импульсного блока питания перед трансформаторным очевидны.
Запуск и настройка инвертора
После травления плат начните сборку элементов, начиная от самых маленьких до самых больших. Необходимо припаять все компоненты, кроме дросселя L5. После завершения сборки и проверки платы установите потенциометр PR1 в крайнее левое положение и подключите сетевое напряжение к разъему INPUT 220 В. На конденсаторе C1 должно присутствовать напряжение 18 В. Если напряжение останавливается примерно на уровне 14 В, это означает проблему управления трансформатором или силовыми транзисторами, то есть короткое замыкание в цепи управления. Владельцы осциллографа могут проверить напряжение на транзисторных затворах. Если контроллер работает правильно, проверьте правильность переключения MOSFET.
После включения питания 12 В и источника питания контроллера на линии +/- 35 В должно появиться +/- 2 В. Такое дело означает, что транзисторы контролируются должным образом, поочередно. Если лампочка на блоке питания 12 В была включена и на выходе не было напряжения, это означало бы, что оба силовых транзистора открываются одновременно. В этом случае управляющий трансформатор должен быть отсоединен, а провода одной из вторичных обмоток трансформатора должны быть поменяны. Далее припаять трансформатор назад и повторить попытку с источником питания 12 В и лампой. Если тест пройдет успешно и получим на выходе +/- 2 В, можно отключить источник питания лампы и припаять индуктивность L5. С этого момента инвертор должен работать от сети 220 В через лампу на 60 Вт. После подключения к сети лампочка должна кратковременно мигнуть и немедленно полностью отключиться. На выходе должно появиться +/- 35 и +/- 12 В (или другое напряжение в зависимости от соотношения оборотов трансформатора).
Загрузить их небольшой мощностью (например от электронной нагрузки) для тестирования и лампочка на входе начнет немного светиться. После этого теста нужно переключить инвертор непосредственно на сеть, а на линию +/- 35 В подключить нагрузку с сопротивлением около 20 Ом для проверки мощности. PR1 следует отрегулировать так, чтоб инвертор не отключается после зарядки нагревателя. Когда инвертор начнет нагреваться, вы можете проверить падение напряжения на линии +/- 35 В и рассчитать выходную мощность. Для проверки силовой мощности инвертора достаточно 5-10-минутного теста. За это время все компоненты инвертора смогут нагреться до их номинальной температуры. Стоит измерить температуру радиатора MOSFET, она не должна превышать 60C при температуре окружающей среды 25C. Наконец, необходимо нагрузить инвертор усилителем и установить потенциометр PR1 как можно больше влево, но чтобы инвертор не выключался.
Импульсный блок питания или линейный. История вопроса
Наверно ни для кого не секрет, что большинство специалистов, радиолюбителей и просто технически грамотных покупателей источников питания с опаской относятся к импульсным блокам питания, отдавая предпочтение линейным.
Читать также: Металл который плавится при комнатной температуре
Причина проста и понятна. Репутация импульсных блоков питания серьезно подорвана еще в 80-х годах, во времена массовых отказов отечественных цветных телевизоров, низкокачественной импортной видеотехники, оснащенных первыми импульсными блоками питания.
Что мы имеем на сегодняшний день? Практически во всех современных телевизорах, видеоаппаратуре, бытовой технике, компьютерах используются импульсные блоки питания. Все меньше и меньше сфер применения линейных (аналоговых, параметрических) источников. Линейный источник электропитания сегодня в бытовой аппаратуре практически не найдёшь. А стереотип остался. И это не консерватизм, несмотря на бурный прогресс электроники, преодоление стереотипов происходит очень медленно.
Давайте попробуем объективно посмотреть на сегодняшнее положение и попробуем изменить мнение специалистов. Рассмотрим «стереотипные» и присущие импульсным блокам питания недостатки: сложность, ненадёжность, помехи.
Импульсный блок питания. Стереотип «сложность»
Да, импульсные блоки питания сложные, точнее сказать сложнее аналоговых, но намного проще компьютера или телевизора. Вам не нужно разбираться в их схемотехнике, так же как и в схемотехнике цветного телевизора. Оставьте это профессионалам. Для профессионалов там нет ничего сложного.
Импульсный блок питания. Стереотип «ненадёжность»
Элементная база импульсного блока питания не стоит на месте. Современная комплектация, применяемая в импульсных блоках питания, позволяет сегодня с уверенностью сказать: ненадёжность – это миф. В основном надежность импульсного блока питания, как и любого другого оборудования, зависит от качества применяемой элементной базы. Чем дороже импульсный блок питания, тем дороже элементная база в нем. Высокая интеграция позволяет реализовать большое количество встроенных защит, которые порой недоступны в линейных источниках.
Импульсный блок питания. Стереотип «помехи»
В схемотехнике импульсных блоков питания заложено формирование мощных импульсов и затухающих колебаний в обмотках трансформатора. Эти коммутационные процессы предопределяют широкий спектр паразитного излучения. Поэтому корпус и соединительные провода источника могут стать антенной для излучения радиопомех. Но если конструкция импульсного блока питания тщательно проработана, о помехах можно забыть. Кроме этого, благодаря современным технологиям импульсные блоки питания позволяют существенно сгладить пульсации сетевого напряжения.
Принцип работы импульсного блока питания
Напряжение 220 В выпрямляется мостом с диодами D26-D29. Входные конденсаторы C18 и C19 заряжаются до общего напряжения 320 В, а поскольку инвертор работает в полумостовой системе, они делят их на половину, что дает 160 В на конденсатор. Это напряжение дополнительно уравновешивается резисторами R16 и R17. Благодаря этому разделению можно подключить трансформатор Т1 к одному каналу. Тогда потенциал между конденсаторами обрабатывается как масса, один конец первичной обмотки подключен к +160 В, другой к -160 В. Напряжение переключения первичной обмотки трансформатора Т1 осуществляется с помощью переменного транзистора N-MOSFET Q8 и Q9.
Конденсатор C10 и первичная обмотка трансформатора тока T3 расположены последовательно с первичной обмоткой. Конденсатор связи не нужен для функционирования схемы, но он играет очень важную роль — защищает от несбалансированного потребления энергии от входных конденсаторов и, следовательно, перед зарядкой одного из них до более чем 200 В. Трансформатор тока Т3, также расположенный последовательно с первичной обмоткой, действует как защита от короткого замыкания. Трансформатор тока обеспечивает гальваническую развязку и позволяет измерять величину тока, уменьшенную до точности ее передачи. Его задача — информировать контроллер о величине тока, протекающего через первичную обмотку T1.
Силовые МОП-транзисторы не могут управляться напрямую от контроллера из-за изменения потенциала верхнего транзисторного источника. Транзисторы управляются с помощью специального трансформатора Т2. Это обычный импульсный трансформатор, работающий в двухтактном режиме, открывающий силовые транзисторы. Управляющий трансформатор Т2 имеет на входе набор элементов управления напряжением на обмотках, которые помимо генерирования напряжения, продиктованного контроллером, защищают от возникновения размагничивающего напряжения сердечника. Неконтролируемое напряжение размагничивания удерживало бы транзистор открытым. Элементами, непосредственно ответственными за устранение напряжения размагничивания, являются диоды D7 и D9, а также транзисторы Q3 и Q5. Во время простоя, когда оба МОП-транзистора закрыты, ток протекает через D7 и Q5 (или D9 и Q3) и поддерживает напряжение размагничивания около 1,4 В. Это напряжение безопасно и не может открыть силовой транзистор.
Осциллограмма напряжения на входах MOSFET:
На осциллограмме можно четко видеть момент, когда сердечник перестает размагничиваться диодами D7 и D8 (D6 и D9) и начинает намагничиваться в противоположном направлении транзисторами Q3 и Q4 (Q2 и Q5). В фазе размагничивания сердечника напряжение на затворе Т2 достигает 18 В, а на фазе намагничивания оно падает примерно до 14 В. Почему не использован один из драйверов типа IR? Прежде всего управляющий трансформатор более надежный, более предсказуемый. IR-драйверы очень капризны и подвержены ошибкам.
На вторичной обмотке основного трансформатора Т1 генерируется переменное напряжение, поэтому необходимо его выпрямить. Роль выпрямителя играют выпрямительные фаст диоды, генерирующие симметричное напряжение. Выходные дроссели расположены за диодами — их присутствие влияет на эффективность инвертора, подавляя всплески заряжающие выходные конденсаторы при включении одного из силовых транзисторов. Далее выходные конденсаторы с резисторами предварительной нагрузки, которые препятствуют подъёма напряжения до слишком высоких значений.
Отличия импульсного блока питания от обычного
Отличия импульсного блока питания от обычного между трансформаторным и импульсными, а также их достоинства и недостатки. Например трансформаторный блок питания, в составе которого имеется трансформатор выполняющий функцию понижения сетевого напряжения до заданного, такая конструкция называется понижающим трансформатором.
Блоки питания работающие в импульсном режиме являются импульсным преобразователем или инвертором. В импульсных источниках питания переменное напряжение на входе вначале выпрямляется, а затем происходит формирование импульсов необходимой частоты. У такого ИП в отличии от обыкновенного силового трансформатора при одинаковой мощности намного меньше потерь и незначительные габаритные размеры полученные в следствии высокочастотного преобразования.
Камрад, рассмотри датагорские рекомендации
Внимание! 800 рублей для новичков на Aliexpress Регистрируйтесь по нашей ссылке. Если вы впервые на Aliexpress — получите 800.00₽ купонами на свой первый заказ… Цифровой осциллограф DSO138
Цифровой осциллограф DSO138. Кит для сборки
Функциональный генератор. Кит для сборки
Настраиваемый держатель для удобной пайки печатных плат
Константин (riswel) Россия, г. Калининград Список всех статей
C детства — музыка и электро/радио-техника. Перепаял множество схем самых различных по разным поводам и просто, — для интереса, — и своих, и чужих. За 18 лет работы в Северо-Западном Телекоме изготовил много различных стендов для проверки различного ремонтируемого оборудования. Сконструировал несколько, различных по функционалу и элементной базе, цифровых измерителей длительности импульсов. Более 30-ти рацпредложений по модернизации узлов различного профильного оборудования, в т.ч. — электропитающего. С давних пор все больше занимаюсь силовой автоматикой и электроникой.Почему я здесь? Да потому, что здесь все — такие же, как я. Здесь много для меня интересного, поскольку я не силен в аудио-технике, а хотелось бы иметь больший опыт именно в этом направлении.
БЕСТРАНСФОРМАТОРНОЕ ПИТАНИЕ СХЕМ
Понадобился мне блок питания для самодельной мини-дрели, сделанной из моторчика на 17 Вольт. Пересмотрел много схем различных БП, но во всех использовался трансформатор, которого у меня нету, а покупать как-то неохота. Тогда решил поступить проще и собрать бестрансформаторный блок питания на данное напряжение — 17 Вольт. Схема довольно простая, на такой готовый блок питания нужно подавать 220 вольт переменного напряжения, короче питать схему от розетки, а на выходе мы получаем 17 вольт постоянного напряжения. Обычно источники питания такого типа применяют во всяких небольших бытовых вещах, например в фонарике с аккумулятором, в качестве зарядного, где нужен небольшой ток, до 150 mA или в электробритвах.
Принципиальная схема бестрансформаторного блока питания
Итак, детали для схемы. Вот так выглядят высоковольтные металлопленочные конденсаторы (те что красные), и слева от них электролитический конденсатор на 100 мкФ.
Вместо микросхемы
78l08 можно использовать такие стабилизаторы напряжения, как КР1157ЕН5А (78l08) или КР1157ЕН5А (7905).
Если отсутствует выпрямительный диод 1N4007, то его можно заменить на 1N5399 или 1N5408, которые рассчитаны на более высокий ток. Серый кружок на диоде обозначает его катод.
Резистор R1 взял на 5W, а R2 — на 2W, для страховки, хотя оба можно было применять и на 0,5 Вт.
Стабилитрон BZV85C24 (1N4749), рассчитан на мощность 1,5 W, и на напряжение до 24 вольт, заменить его можно отечественным 2С524А.
Этот бестрансформаторный БП собрал без регулировки выходного напряжения, но если вы хотите организовать такую функцию, то просто подключите к выводу 2 микросхемы 78L08 переменный резистор примерно на 1 кОм, а второй его вывод — к минусу схемы.
Плата к схеме бестрансформаторного блока питания конечно есть, формат лэй, скачать можно тут. Думаю вы поняли, что диоды без пометки — это 1n4007.
Готовую конструкцию нужно обязательно поместить в пластиковый корпус, из-за того что включенная в сеть схема находиться под напряжением 220 вольт и прикасаться к ней ни в коем случае нельзя!
На этих фото вы можете видеть напряжение на входе, то есть напряжение в розетке, и сколько вольт мы получаем на выходе БП.
Видео работы схемы бестрансформаторного БП
Большим плюсом этой схемы можно считать очень скромные размеры готового устройства, ведь благодаря отсутствию трансформатора этот БП можно сделать маленьким, и относительно недорогая стоимость деталей для схемы.
Минусом схемы можно считать то, что есть опасность случайно дотронуться к работающему источнику и получить удар током. Автор статьи — egoruch72.
Как работает импульсный блок питания
Принцип работы импульсного блока питания в корне отличается от действия обычного, трансформаторного блока питания. Изначально напряжение в 220 В проходит через диодный мост, после чего прямой ток поступает в инвертор, т.е. преобразователь напряжения в токи высокой частоты. Это действие может выполняться либо посредством гальванического отделения питающей сети от входной цепи, либо без такового.
Если гальваническая развязка присутствует, то высокочастотный ток подвергается ей при помощи трансформатора. Причем, чем выше будет частота импульсов, тем эффективнее будет работать трансформатор.
Схемы включения каскадов силовых ключей
Само действие такого БП основывается на применении трех элементов, которые содержит схема импульсного блока. Они четко взаимодействуют между собой в процессе работы. Элементы эти следующие:
- контроллер широтно-импульсного модулятора;
- транзисторный блок, который может быть включены по одной из схем — мостовой, полумостовой или же по схеме со средней точкой;
- импульсный трансформатор, у которого имеется первичная и вторичная обмотки, смонтированные на магнитопроводе.
При условии отсутствия гальванической развязки высокочастотного трансформатора тока в схеме нет, а сигнал подается сразу на фильтры НЧ. По сути, все схемы импульсных источников питания идентичны.
Далее попробуем более детально разобрать, как работает каждый из этих трех элементов.
Контроллер широтно-импульсной модуляции
Наверное, не нужно объяснять, что контроллер — это управляющее чем-либо устройство. Если разбирать именно ШИМ в импульсном блоке, то тут закладывается задача создания токов с одной частотой, но с различной длительностью включения. Логической единицей выступает, естественно, сам импульс, ну а нулем — его отсутствие.
Импульсы обусловлены одинаковым периодом колебания, т.е. амплитуда их величин равна. А вот работой электронной схемы позволяет управлять именно отношение продолжительности к самому периоду.
Для того чтобы проще было понять изложенное, можно обратиться к схематическому изображению.
Импульсы, создаваемые ШИМ
Принимая во внимание, что частота тока в сети 220 В равна 50 Гц, можно себе представить, насколько сложна работа, выполняемая контроллером и модулятором ШИМ. Обычно на его выходе образуется ток, с частотой порядка 30-60 кГц
Вообще, широтно-импульсная модуляция в наше время применяется во многих устройствах. И самый яркий тому пример — инверторные сварочные аппараты, где как раз при помощи ШИМ удалось снизить габариты и массу устройства в десятки раз по сравнению с обычными трансформаторными агрегатами.
Транзисторный блок, или каскад силовых ключей
Мощные полевые или IGBT-транзисторы образуют каскад, который также может управляться и менее мощными элементами либо интегральными драйверами. Собраны эти транзисторы могут быть в одну из трех схем: мостовую, полумостовую либо со средней точкой.
Вот, собственно, и все, что можно сказать о силовых ключах импульсного блока питания.
Импульсник, или блок без гальваники
Импульсник, т.е. высокочастотный трансформатор, может быть собран на основе ферритового или альсиферового кольца, на котором и размещены первичная и вторичная обмотки. Они могут выдавать высокочастотный ток с импульсом до 100 кГц. Их работу дополняют различные фильтрующие элементы и диоды.
Если же гальваническая развязка в подобном БП отсутствует, то сигнал напрямую будет поступать на низкочастотный фильтр без какой-либо трансформации. Наглядно это показано на схематическом изображении.
Импульсный блок питания без гальванической развязки
Импульсные блоки питания
Импульсные блоки питания имеют сложную конструкцию и являются устройствами инверторного типа. Их ключевое отличие от обычных заключается в том, что входное напряжение подаётся сразу на выпрямитель. Затем оно формирует импульсы определённой частоты. За это отвечает отдельная подсистема управления, так что импульсные БП являются полноценными цифровыми устройствами.
Поскольку импульсные БП отличаются конструкционной и принципиальной сложностью, рассматривать схему их работы в рамках этой статьи не целесообразно. и
- Ток из сети поступает на сетевой фильтр, минимизирующий входящие и исходящие искажения;
- Преобразователь трансформирует синусоиду переменного тока в импульсный постоянный ток;
- Инвертор, контролируемый через модуль управления, формирует из импульсного постоянного тока прямоугольные высокочастотные сигналы;
- Ток поступает на импульсный трансформатор, который подаёт напряжение на различные элементы самого БП, а также на нагрузку;
- После этого ток поступает на выходной выпрямитель, а затем сглаживается на выходном фильтре.
Такая система обеспечивает не только высокий коэффициент полезного действия, но и малые размеры устройства. Причём чем выше частота импульсов – тем компактнее БП за счёт уменьшения габаритов трансформатора.
Ключевые достоинства импульсных блоков питания:
- Высокий КПД, составляющий, как правило, около 98%. Небольшие потери создаются их-за переходных процессов, возникающих при переключении ключа. Но они слишком незначительны, чтобы брать их в расчёт;
- Компактные размеры и малый вес. Это достигается за счёт того, что импульсным БП не требуется массивный трансформатор.
Ключевые недостатки импульсных блоков питания:
- Конструкционная сложность. Собрать такое устройство в домашних условиях без знаний в области электроники или электротехники практически невозможно;
- Заметный нагрев при работе. Поэтому высокомощные импульсные БП оснащаются дополнительными системами охлаждения, которые приводят к увеличению размера и массы устройства;
- Наличие высокочастотных помех. Как следствие, для использования в чувствительной аппаратуре такие блоки питания оснащаются фильтром помех, но и он не даёт 100% защиты от такого «мусорного сигнала»;
- Мощность нагрузки должна входить в номинальный диапазон. При превышении или понижении её будут наблюдаться изменения выходного напряжения. Как правило, производители предусматривают это явление и устанавливают защиту от подобных нештатных ситуаций.
Компактные размеры и высокое значение КПД помогли импульсным БП распространиться максимально широко. Сегодня они применяются в зарядных устройствах мобильной электроники, компьютерной и бытовой техники, а также в системах электронного балласта осветительных приборов.
Схема генератора импульсов регулируемой ширины
Биполярные симметричные импульсы регулируемой ширины позволяет получить генератор импульсов по схеме на рис.1. Устройство может быть использовано в схемах авторегулирования выходной мощности импульсных источников питания
На микросхеме DD1 (К561ЛЕ5/К561 ЛАТ) собран генератор прямоугольных импульсов со скважностью, равной 2
Симметрии генерируемых импульсов добиваются регулировкой резистора R1. Рабочую частоту генератора (44 кГц) при необходимости можно изменить подбором емкости конденсатора С1.
Рис. 1. Схема формирователя биполярных симметричных импульсов регулируемой длительности.
На элементах DA1.1, DA1.3 (К561КТЗ) собраны компараторы напряжения; на DA1.2, DA1.4 — выходные ключи. На входы компараторов-ключей DA1.1, DA1.3 в противофазе через формирующие RC-диодные цепочки (R3, С2, VD2 и R6, СЗ, VD5) подаются прямоугольные импульсы.
Заряд конденсаторов С2, СЗ происходит по экспоненциальному закону через R3 и R5, соответственно; разряд — практически мгновенно через диоды VD2 и VD5. Когда напряжение на конденсаторе С2 или СЗ достигнет порога срабатывания компараторов-ключей DA1.1 или DA1.3, соответственно, происходит их включение, и резисторы R9 и R10, а также управляющие входы ключей DA1.2 и DA1.4 подключаются к положительному полюсу источника питания.Поскольку включение ключей производится в противофазе, такое переключение происходит строго поочередно, с паузой между импульсами, что исключает возможность протекания сквозного тока через ключи DA1.2 и DA1.4 и управляемые ими транзисторы преобразователя, если генератор двухполярных импульсов используется в схеме импульсного источника питания.
Плавное регулирование ширины импульсов осуществляется одновременной подачей стартового (начального) напряжения на входы компараторов (конденсаторы С2, СЗ) с потенциометра R5 через диодно-ре-зистивные цепочки VD3, R7 и VD4, R8. Предельный уровень управляющего напряжения (максимальную ширину выходных импульсов) устанавливают подбором резистора R4.Сопротивление нагрузки можно подключить по мостовой схеме — между точкой соединения элементов DA1.2, DA1.4 и конденсаторами Са, Сb. Импульсы с генератора можно подать и на транзисторный усилитель мощности.При использовании генератора двухполярных импульсов в схеме импульсного источника питания в состав резистивного делителя R4, R5 следует включить регулирующий элемент — полевой транзистор, фотодиод оптрона и т.д., позволяющий при уменьшении/увеличении тока нагрузки автоматически регулировать ширину генерируемого импульса, управляя тем самым выходной мощностью преобразователя.В качестве примера практической реализации импульсных источников питания приведем описания и схемы некоторых из них.
ВИДЫ И ТИПЫ БЛОКОВ ПИТАНИЯ
В первую очередь классификация источников питания осуществляется по принципу действия. Основных вариантов здесь два:
- трансформаторный (линейный);
- импульсный (инверторный).
Трансформаторный блок
состоит из понижающего трансформатора и выпрямителя, преобразующего переменный ток в постоянный. Далее устанавливается фильтр (конденсатор), сглаживающий пульсации и прочие элементы (стабилизатор выходных параметров, защита от коротких замыканий, фильтр высокочастотных (ВЧ) помех).
Преимущества трансформаторного блока питания:
- высокая надежность;
- ремонтопригодность;
- простота конструкции;
- минимальный уровень помех или их отсутствие;
- низкая цена.
Недостатки — большой вес, крупные габариты и небольшой КПД.
Импульсный блок питания
— инверторная система, в которой происходит преобразование переменного напряжения в постоянное, после чего генерируются высокочастотные импульсы, которые проходят ряд дальнейших преобразований (подробнее здесь). В устройстве с гальванической развязкой импульсы передаются к трансформатору, а при отсутствии таковой — напрямую к НЧ фильтру на выходе устройства.
Благодаря формированию ВЧ сигналов, в импульсных блоках питания применяются малогабаритные трансформаторы, что позволяет уменьшить размеры и вес устройства. Для стабилизации напряжения используется отрицательная обратная связь, благодаря которой на выходе поддерживается постоянный уровень напряжения, не зависящий от величины нагрузки.
Достоинства импульсного блока питания:
- компактность;
- небольшой вес;
- доступная цена и высокий КПД (до 98%).
Кроме того, следует отметить наличие дополнительных защит, обеспечивающих безопасность применения устройства. В таких БП часто предусмотрена защита от короткого замыкания (КЗ) и выхода из строя при отсутствии нагрузки.
Минусы — работа большей составляющей схемы без гальванической развязки, что усложняет ремонт. Кроме того, устройство является источником помех высокой частоты и имеет ограничение на нижний предел нагрузки. Если мощность последней меньше допустимо параметра, агрегат не запустится.
Инвертор — популярное среди автовладельцев устройство, способное преобразовывать постоянное U 12/24 Вольта в переменное 220 Вольт. Инверторные БП питаются от автомобильного аккумулятора U. Применяя устройств, стоит учесть, что оно подходит для электроприемников, не требующих идеальной синусоидальной формы сигнала. Кроме того, стоит учитывать мощность подключаемых приборов.
- небольшие габариты и вес;
- наличие защиты от скачков напряжения;
- простота и удобство применения.
Недостатки — относительно высокая стоимость, а также небольшая надежность микропроцессорной управляющей платы.
Стабилизированные блоки питания
— устройства, дополненные, как уже говорилось, стабилизатором, обеспечивающим постоянство напряжения на выходе устройства.
Бесперебойный (резервный) блок питания
— источник, который включается в работу при кратковременном отключении электросети.
Некоторые из них имеют дополнительную защиту (например, от помех в сети). Такие блоки питания используются в системах с повышенными требованиями к надежности электроснабжения, например, видеонаблюдения или сигнализации.
Бесперебойные источники бывают резервными и интерактивными. Особенность вторых в наличии на входе стабилизатора напряжения, обеспечивающего ступенчатую регулировку.
Импульсный трансформатор: принцип действия и функциональные особенности
Трансформатор представляет собой достаточно сложное техническое устройство, основной функцией которого служит преобразование определенных свойств и качеств электрической энергии, таких, как напряжение или крутящий момент. Также современный трансформатор способен превращать переменный ток в постоянный и наоборот.
Среди огромного разнообразия используемых в настоящее времяприборов особо следует выделить их импульсные разновидности.
Импульсный трансформатор широко используется в системах связи, ВТ, устройствах автоматики, для внесения изменений амплитуды импульсов, а также их полярности. Главное условие для успешной работы данного вида прибора состоит в том, что искажение сигнала, который передается с его помощью, должно быть минимальным.
Импульсный трансформатор основывается в своей деятельности на следующем принципе: в то время как на его вход поступают прямоугольные импульсы определенного напряжения, в первичной обмотке постепенно появляется электрический ток, сила которого постепенно начинает увеличиваться. Это, в свою очередь, повлечет за собой изменение магнитного поля и появление электродвижущей силы во вторичной обмотке. В этом случае искажения сигнала практически не происходит, а возможные потери тока настолько малы, что ими можно пренебречь.
Что касается отрицательной части импульса, появление которой неизбежно в то время, как импульсный трансформатор выходит на проектную мощность, то его влияние можно свести к минимуму, установив простой диод во вторичную обмотку. Тем самым и здесь импульс станет максимально близким к прямоугольному.
Импульсный трансформатор отличается от других разновидностей данной технической системы тем, что работает исключительно в ненасыщенном режиме. Его магнитопровод изготавливается из специального сплава, который в обязательном порядке обладает значительной пропускной способностью магнитного поля.
Помимо импульсных, в современной энергетической и электронной промышленности используют следующие основные виды трансформаторов:
- Деятельность ни одного современного радиоприбора невозможна без силовых трансформаторов. Их деятельность многогранна: с одной стороны, они необходимы для того, чтобы приемники можно было запитывать от обычной сети с переменным током, а с другой, для того, чтобы повышать или понижать напряжение той или иной частоты в усилителях. С этой функцией связана и важная конструктивная особенность силовых трансформаторов – вместо стальных сердечников здесь используют вставки из магнетита или карбонильного железа.
- Еще одной разновидностью прибора, применяемого преимущественно в современных системах слежения и бортовых компьютерах самолетов, является вращающийся трансформатор. Его принцип действия заключается в том, что угол поворота рамки преобразуется в напряжение электрического тока. Внешне вращающийся трансформатор представляет собой небольшую электрическую машину, работающую исключительно от переменного тока. Кроме того, в зависимости от того, где эти трансформаторы применяются, они могут быть как двухполюсными, так и многополюсными.
- В зависимости от того, какой ток поступает на первичную обмотку, выделяют трансформаторы переменного и постоянного тока. Основной вид первого типа – автотрансформатор, который состоит исключительно из одной катушки, которая непосредственно включается в электрическую цепь. Данный вид приборов предназначен исключительно для понижения напряжения и только для очень маленьких токов. Трансформатор постоянного тока – это более сложный прибор, состоящий из динамомашины и двигателя. В этом случае первичный ток вырабатывается двигатель, а вторичный – динамомашиной, которая приводится в движение тем же электродвигателем. Нередко встречается ситуация, когда трансформатор постоянного тока представляет собой двигатель и динамомомашину, соединенные между собой одним металлическим каркасом. Делается это для экономии материала, а также для повышение качества работы прибора.
А какие достоинства импульсного блока питания?
Импульсный блок питания. Высокий КПД
Высокий КПД (до 98%) импульсного блока питания связан с особенностью схемотехники. Основные потери в аналоговом источнике это сетевой трансформатор и аналоговый стабилизатор (регулятор). В импульсном блоке питания нет ни того ни другого. Вместо сетевого трансформатора используется высокочастотный, а вместо стабилизатора — ключевой элемент. Поскольку основную часть времени ключевые элементы либо включены, либо выключены, потери энергии в импульсном блоке питания минимальны. КПД аналогового источника может быть порядка 50 %, то есть половина его энергии (и ваших денег) уходит на нагрев окружающего воздуха, проще говоря, улетают на ветер.
Читать также: Как обжать коннектор rj 45 без обжимки
Импульсный блок питания. Небольшой вес
Импульсный блок питания имеет меньший вес за счет того, что с повышением частоты можно использовать трансформаторы меньших размеров при той же передаваемой мощности. Масса импульсного блока питания в разы меньше аналогового.
Импульсный блок питания. Меньшая стоимость
Спрос рождает предложение. Благодаря массовому выпуску унифицированной элементной базы и разработке ключевых транзисторов высокой мощности сегодня мы имеем низкие цены силовой базы импульсных блоков питания. Чем больше выходная мощность, тем дешевле стоит источник по сравнению со стоимостью аналогичного линейного источника. Кроме того, главные компоненты аналогового источника (медь, железо трансформатора, радиаторы из алюминия) постоянно дорожают.
Импульсный блок питания. Надёжность
Вы не ослышались, надежность. На сегодняшний момент импульсные блоки питания надёжнее линейных за счет наличия в современных блоках питаниях встроенных цепей защиты от различных непредвиденных ситуаций, например, от короткого замыкания, перегрузки, скачков напряжения, переполюсовки выходных цепей. Высокий КПД обуславливает меньшие теплопотери, что в свою очередь обуславливает меньший перегрев элементной базы импульсного блока питания, что так же является показателем надёжности.
Импульсный блок питания. Требования к сетевому напряжению
Что творится в отечественных электросетях, вы наверно знаете не понаслышке. 220 Вольт в розетке скорее редкость, чем норма. А импульсные блоки питания допускают широчайший диапазон питающего напряжения, недостижимого для линейного. Типовой нижний порог сетевого напряжения для импульсного блока питания — 90…110 В, любой аналоговый источник при таком напряжении в лучшем случае «сорвется в пульсации» или просто отключится.
Итак, импульсный или линейный? Выбор в любом случае за вами, мы лишь хотели помочь вам объективно взглянуть на импульсные блоки питания и сделать правильный выбор. Только не забывайте, что качественный источник – это источник сделанный профессионально, на базе качественных комплектующих. А качество это всегда цена. Бесплатный сыр только в мышеловке. Впрочем последняя фраза в равной мере относится к любому источнику, и к импульсному и к аналоговому.
⇡#Линейный и импульсный источники питания
Начнем с основ. Блок питания в компьютере выполняет три функции. Во-первых, переменный ток из бытовой сети электропитания нужно преобразовать в постоянный. Второй задачей БП является понижение напряжения 110-230 В, избыточного для компьютерной электроники, до стандартных значений, требуемых конвертерами питания отдельных компонентов ПК, – 12 В, 5 В и 3,3 В (а также отрицательные напряжения, о которых расскажем чуть позже). Наконец, БП играет роль стабилизатора напряжений.
Есть два основных типа источников питания, которые выполняют перечисленные функции, – линейный и импульсный. В основе простейшего линейного БП лежит трансформатор, на котором напряжение переменного тока понижается до требуемого значения, и затем ток выпрямляется диодным мостом.
Однако от БП требуется еще и стабилизация выходного напряжения, что обусловлено как нестабильностью напряжения в бытовой сети, так и падением напряжения в ответ на увеличение тока в нагрузке.
Чтобы компенсировать падение напряжения, в линейном БП параметры трансформатора рассчитываются так, чтобы обеспечить избыточную мощность. Тогда при высоком токе в нагрузке будет наблюдаться требуемый вольтаж. Однако и повышенное напряжение, которое возникнет без каких-либо средств компенсации при низком токе в полезной нагрузке, тоже неприемлемо. Избыточное напряжение устраняется за счет включения в цепь неполезной нагрузки. В простейшем случае таковой является резистор или транзистор, подключенный через стабилитрон (Zener diode). В более продвинутом – транзистор управляется микросхемой с компаратором. Как бы то ни было, избыточная мощность просто рассеивается в виде тепла, что отрицательно сказывается на КПД устройства.
Пример линейного источника питания со стабилизатором. Избыточная мощность рассеивается на транзисторе Q1
В схеме импульсного БП возникает еще одна переменная, от которой зависит напряжение на выходе, в дополнение к двум уже имеющимся: напряжению на входе и сопротивлению нагрузки. Последовательно с нагрузкой стоит ключ (которым в интересующем нас случае является транзистор), управляемый микроконтроллером в режиме широтно-импульсной модуляции (ШИМ)
Чем выше длительность открытых состояний транзистора по отношению к их периоду (этот параметр называется duty cycle, в русскоязычной терминологии используется обратная величина – скважность), тем выше напряжение на выходе. Из-за наличия ключа импульсный БП также называется Switched-Mode Power Supply (SMPS)
Через закрытый транзистор ток не идет, а сопротивление открытого транзистора в идеале пренебрежимо мало. В действительности открытый транзистор обладает сопротивлением и рассеивает какую-то часть мощности в виде тепла. Кроме того, переход между состояниями транзистора не идеально дискретный. И все же КПД импульсного источника тока может превышать 90%, в то время как КПД линейного БП со стабилизатором в лучшем случае достигает 50%.
Простейшая схема импульсного преобразователя AC/DC с трансформатором
Другое преимущество импульсных источников питания состоит в радикальном уменьшении габаритов и массы трансформатора по сравнению с линейными БП такой же мощности. Известно, что чем выше частота переменного тока в первичной обмотке трансформатора, тем меньше необходимый размер сердечника и число витков обмотки. Поэтому ключевой транзистор в цепи размещают не после, а до трансформатора и, помимо стабилизации напряжения используют для получения переменного тока высокой частоты (для компьютерных БП это от 30 до 100 кГц и выше, а как правило – около 60 кГц). Трансформатор, работающий на частоте электросети 50-60 Гц, для мощности, требуемой стандартным компьютером, был бы в десятки раз массивнее.
Линейные БП сегодня применяются главным образом в случае маломощных устройств, когда относительно сложная электроника, необходимая для импульсного источника питания, составляет более чувствительную статью расходов в сравнении с трансформатором. Это, к примеру, блоки питания на 9 В, которые используются для гитарных педалей эффектов, а когда-то – для игровых приставок и пр. А вот зарядники для смартфонов уже сплошь импульсные – тут расходы оправданны. Благодаря существенно меньшей амплитуде пульсаций напряжения на выходе линейные БП также применяются в тех областях, где это качество востребованно.
Что выбрать — импульсный источник или трансформатор?
Импульсные источники питания плохо переносят мощную нагрузку с импульсным потреблением тока. Поэтому системы построенные на мощных ШД (PL86 и выше с драйверами PLD880, PLD86), а также сервосистемы необходимо питать от трансформаторного источника с большой фильтрующей емкостью. А ШД типа PL57 (применяются драйверы PLD330, PLD545, PLC330, PLC545) можно питать от импульсных источников типа S-350-27/48. Рекомендуется использовать дампер — устройство, которое замыкает обратную ЭДС от ШД на резистивную нагрузку, гасит его и предотвращает протекание токов обратной ЭДС в источник питания (импульсный источник может сгореть от обратной ЭДС от ШД). Рекомендуется устанавливать дополнительные фильтрующие ёмкости, эта емкость способна кратковременно отдать ток в нужный момент и не допустить перегрузки источника.
От правильного выбора источника питания зависит насколько правильно и оптимально будет работать драйвер и управляться шаговый двигатель. Поэтому стоит уделить особое внимание разводке питающих шин и выбору источника. Основное правило — шина питания должна быть достаточно толстая и 1 шина питания питает 1 устройство, соединение всех шин питания происходит только в одной точке — на клеммах блока питания (разводка шин звездой). Запрещается последовательно подключать несколько устройств к одной шине питания. Выбор максимального напряжения питания драйвера зависит от применяемого ШД и желаемой максимальной скорости его вращения. Расчет оптимального напряжения питания для данного ШД производится по формуле U=32*√(индуктивность фазы ШД в мГн). Более высокое напряжение питания, с одной стороны, увеличивает максимальную частоту вращения ШД, с другой стороны, приводит к повышенному нагреву ШД, шуму при работе и влияет на стабильность работы драйвера. Поэтому без необходимости не стоит использовать высокие напряжения питания и рекомендуется по возможности использовать невысокие значения напряжений. Выбор максимального тока источника основывается на следующих рассуждениях — если, например, на ШД указан ток обмотки 4А, то от источника питания драйвер с таким ЩД будет потреблять не больше 2А (и даже меньше) при небольших скоростях вращения. При увеличении частоты вращения потребляемый ток может упасть до 0.5А. Связано это с импульсным регулированием тока в обмотках ШИМ — потребление тока идет только в момент открытия транзисторов и средний ток меньше импульсного. Поэтому ток источника питания нужно выбирать с расчетом 50…70% от заявленного тока обмотки ШД.
Выбор типа источника питания — стабилизированный (импульсный) или не стабилизированный (трансформаторный с диодным выпрямителем) — зависит от конечного пользователя и ряда преимуществ/недостатков каждого типа:
- Стабилизированный (импульсный) источник — имеет небольшие габариты и вес, среднюю цену, прост в использовании и является современным стандартным решением. Обычно имеет защиту от КЗ. Поскольку драйвер управляет ШД при помощи ШИМ, потребление тока от источника носит импульсный характер. Поэтому при использовании этого типа источника следует выбирать источник с запасом 30% по току, от расчетного значения потребляемого тока системой. Также можно подключить дополнительный электролитический конденсатор по питанию для уменьшения влияния импульсных нагрузок.
- Не стабилизированный (трансформаторный с диодным выпрямителем) — Проще собрать в домашних условиях, лучше переносит импульсные перегрузки по току. Однако он занимает больше места, имеет больший вес и требует дополнительной электронной обвязки для защиты от КЗ по выходу.
Провода питания драйвера необходимо переплетать для уменьшения влияния помех. При подключении нескольких драйверов к одному источнику питания необходимо производить подключение «звездой» — т.е. от каждого драйвера вести свой провод питания и подключать его к клеммам источника.
Самостоятельная и качественная пайка
- Предметы первой необходимости при ремонте это паяльник, канифоль и «отсос». Отсос – механический (или электрический) прибор, который применяется во время выпаивания элементов и служит для предотвращения перегрева во время пайки. Принцип его работы заключается в резком втягивании в себя расплавленного олова, которое при сильном нагреве может вывести радиоэлемент из строя. Особенно это касается интегральных микросхем, которые очень чувствительны к таким температурным скачкам. Отсосы бывают механические и электрические. Хорошо и правильно подобранный по мощности паяльник в сочетании с отсосом являются отличным тандемом для качественной пайки.
- Для выпаивания и обратной установки необходимых радиоэлементов можно пользоваться не только паяльником и отсосом, но и термовоздушной паяльной станцией. Её несложно соорудить и самому. Обычный вентилятор можно использовать в качестве нагнетателя, а спираль буде нагревающим элементом. Схема на тиристоре будет оптимальным вариантом для регулировки температуры. Такая станция ещё удобна и для прогрева всех подозрительных и некачественных паек, которые могут стать причиной появления микротрещин, и как результат – плохого контакта.
Правильная и качественная пайка является одним из основополагающих навыков, которым должен овладеть любой начинающий радиолюбитель. От этого зависит конечный результат всего ремонта и срок дальнейшей эксплуатации отремонтированного прибора.
Бестрансформаторные Схемы Питания
Без трансформаторная Концепция Электропитания
Без трансформаторная концепция работает с использованием высоковольтного конденсатора для снижения переменного тока сети до требуемого более низкого уровня, необходимого для подключенной электронной схемы или нагрузки. Спецификация этого конденсатора выбрана с запасом. Пример конденсатора, который обычно используется в схемах без трансформаторного питания, показан ниже:
Этот конденсатор соединен последовательно с одним из входных сигналов переменного напряжения АС. Когда сетевой переменный ток входит в этот конденсатор, в зависимости от величины конденсатора, реактивное сопротивление конденсатора вступает в действие и ограничивает переменный ток сети от превышения заданного уровня, указанным значением конденсатора.
Однако, хотя ток ограничен, напряжение не ограниченно, поэтому, при измерении выпрямленного выхода без трансформаторного источника питания, обнаруживаем, что напряжение равно пиковому значению сети переменного тока , это около 310 В.
Но поскольку ток достаточно понижен конденсатором, это высокое пиковое напряжение стабилизируется с помощью стабилитрона на выходе мостового выпрямителя.
Мощность стабилитрона должна быть выбрана в соответствии с допустимым уровнем тока конденсатора.
Преимущества использования без трансформаторной схемы питания
Дешевизна и при этом эффективность схемы для маломощных устройств. Без трансформаторная схема питания, описанная здесь, очень эффективно заменяет обычный трансформатор для устройств, мощностью тока ниже 100 мА.
Здесь высоковольтный металлизированный конденсатор использован на входном сигнале для понижения тока сети Схема показанная выше может быть использована как источник электропитания DC 12 В для большинства электронных схем. Однако, обсудив преимущества вышеописанной конструкции, стоит остановиться на нескольких серьезных недостатках, которые может включать в себя данная концепция.
Недостатки без трансформаторной схемы питания
Во-первых, цепь неспособна произвести сильнотоковые выходы, что не критично для большинства конструкций. Другим недостатком, который, безусловно, требует некоторого рассмотрения, является то, что концепция не изолирует цепь от опасных потенциалов сети переменного тока.
Этот недостаток может иметь серьезные последствия для конструкций связанных с металлическими шкафами, но не будет иметь значения для блоков, которые имеют все покрыты в непроводящем корпусе.
И последнее, но не менее важное: вышеупомянутая схема позволяет скачкам напряжения проникать через нее, что может привести к серьезному повреждению цепи питания и самой схемы питания.
Однако в предложенной простой без трансформаторной схеме питания этот недостаток был разумно устранен путем введения различных типов стабилизирующих ступеней после мостового выпрямителя.
Этот конденсатор основывает мгновенные высоковольтные пульсации, таким образом эффективно защищая связанную электронику с ним.
Как схема работает 1. Когда сетевой вход сети переменного тока включен, конденсатор C1 блокирует вход сетевого тока и ограничивает его до более низкого уровня, определенного значением реактивного сопротивления C1. Здесь можно примерно предположить, что он составляет около 50 мА. 2. Однако напряжение тока не ограничено, и поэтому 220V может находиться на входном сигнале позволяя достигнуть последующий этап выпрямителя тока . 3. Выпрямитель тока моста выпрямляет 220V к более высокому DC 310V, к пиковому преобразованию формы волны AC. 4. DC 310V быстро уменьшен к низкоуровневому DC стабилитроном, который шунтирует его к значение согласно номинала стабилитрона. Если используется 12V стабилитрон, то и на выходе будет 12 вольт. 5. C2 окончательно фильтрует DC 12V с пульсациями, в относительно чистый DC 12V.
Цепь драйвера показанная ниже управляет лентой менее 100 светодиодов (при входном сигнале 220В), каждый светодиод рассчитан на 20мА, 3.3 В 5мм:
Здесь входной конденсатор 0.33 uF / 400V выдает около 17 ма, что примерно правильно для выбранной светодиодной ленты. Если драйвер использовать для большего числа подобных светодиодных лент 60/70 параллельно, то просто значение конденсатора пропорционально увеличить для поддержания оптимального освещения светодиодов.
Поэтому для 2 лент включенных в параллель требуемое значение будет 0.68 uF/400V, для 3 лент заменить на 1uF / 400V. Аналогично для 4 лент должно быть обновлено до 1.33 uF / 400V, и так далее.
Важно: хотя не показан ограничивающий резистор в схеме, было бы неплохо включить резистор 33 Ом 2 Вт последовательно с каждой светодиодной лентой, для дополнительной безопасности. Можно вставить в любом месте последовательно с отдельными лентами.
ПРЕДУПРЕЖДЕНИЕ: ВСЕ ЦЕПИ, УПОМЯНУТЫЕ В ЭТОЙ СТАТЬЕ, НЕ ИЗОЛИРОВАНЫ ОТ СЕТИ ПЕРЕМЕННОГО ТОКА, ПОЭТОМУ ВСЕ СЕКЦИИ ЦЕПИ ЧРЕЗВЫЧАЙНО ОПАСНЫ ДЛЯ ПРИКОСНОВЕНИЯ ПРИ ПОДКЛЮЧЕНИИ К СЕТИ ПЕРЕМЕННОГО ТОКА.
Источник (Source)
Как переделать трансформатор в БП или зарядное устройство своими руками
Использовать обычный трансформатор в качестве блока питания нельзя, так как на его выходе получается переменное напряжение высоких частот. Кроме того, большинство подобных приборов не может функционировать без минимальных нагрузок, и им нужна доработка. Ниже рассказано, как сделать зарядное устройство из электронного трансформатора своими руками. При этом его не нужно разбирать, достаточно подключить к нему небольшую плату.
Вам это будет интересно Монтаж электросчетчика
В основе платы лежит диод Шоттки, а также фильтрующий конденсатор. Также для запуска блока питания необходимо подключать к его выходу лампочку. Подбор диода выполняется по имеющимся параметрам выходного напряжения и максимального тока.
Важно! Максимальное обратное напряжение диода должно быть в несколько раз выше, чем напряжение выхода электрического трансформатора.
Такая схема прекрасно работает и выдает уже постоянный и сглаженный ток. При желании можно установить более дорогое фильтрующее устройство и несколько конденсаторов. При регулярном пользовании таким БП следует установить его на радиатор.
Модернизация трансформаторного устройства