Для чего в линиях электропередачи используют повышающие трансформаторы
Перейти к содержимому

Для чего в линиях электропередачи используют повышающие трансформаторы

Для чего в линиях электропередачи используют повышающие трансформаторы?

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Для чего в линиях электропередачи используют повышающие трансформаторы?

Аватар

Как известно, электроэнергию вырабатывают на электростанциях и передают потребителям на большие расстояния с помощью линий электропередачи (ЛЭП). Но при передаче электрической энергии по проводам часть энергии тратится на нагревание проводов линий электропередачи.

Очевидно, чтобы уменьшить потери тепловой энергии в проводах, нужно либо уменьшать силу тока, либо уменьшать сопротивление.

Для уменьшения силы тока при сохранении мощности (P = IU) повышают напряжение, т. е. ток трансформируют. Для этого на территории электростанции устанавливают повышающие трансформаторы.

Какой трансформатор называют повышающим

повышающий трансформатор

Повышающий трансформатор это обычный трансформатор (см. назначение и принцип действия трансформатора) который повышает значение напряжения электрического тока. На первичной обмотке оно ниже, а на вторичной выше. Тем самым на выходе прибора напряжение выше и за счет определенного числа витков обмотки и сечения имеет нужное значение.

Принцип работы повышающего трансформатора заключается в величине К (коэффициент трансформации).

При К>1 трансформатор является понижающим, а при К<1 — повышающим трансформатором.

U1/U2 ≈ E1/E2 = N1/N2 = К

где: U1, U2 — напряжение на первичной и вторичной обмотке; E1, E2-мгновенные значения ЭДС; N1, N2 — количество витков первичной и вторичной обмотки

повышающий трансформатор

повышающий трансформатор схема

Применение повышающих трансформаторов

Приборы устанавливаются в электрических линиях и источниках питания потребительских точек. В соответствии с законом Джоуля — Ленца при увеличении силы тока выделяется тепло, которое нагревает провод. Для транслирования энергии на большие линейные расстояния увеличивают напряжение, а токи уменьшают. При поступлении к потребителю мощность снижают, поскольку в целях безопасности пришлось бы использовать массивную изоляцию.

В начале цепочки устанавливают повышающий трансформатор, а в точке приема понижают показатели. Такие комбинации на протяжении ЛЭП используют многократно, добиваясь выгодных условий транспортировки электричества и создавая приемлемые значения для потребителя.

Из-за присутствия в сети трех фаз для трансформации энергии используют трехфазные агрегаты. Иногда применяют группу, в которой устройства объединены в модель звезды, при этому них общий проводящий стержень.

Хоть коэффициент полезного действия у агрегатов большой мощности достигает почти стопроцентного значения, всё равно выделяется много тепла. Типичный трансформатор электрической станции 1 гВт выдает несколько мегаватт. Чтобы снизить это явление, разработана охладительная система в виде бака с негорючей жидкостью или трансформаторным маслом и сильным устройством для воздушной раздачи тепла. Охлаждение чаще водяное, сухой принцип используют при небольшой мощности.

Повышающий тороидальный трансформатор

Как вы понимаете, говоря «тороидальный трансформатор», подразумевают обычно сетевой однофазный трансформатор, силовой или измерительный, повышающий или понижающий, у которого тороидальный сердечник оснащен двумя или несколькими обмотками.

Работает тороидальный трансформатор принципиально так же как и трансформаторы с другими формами сердечников: он понижает или повышает напряжение, повышает или понижает ток — преобразует электроэнергию. Но тороидальный трансформатор отличается при той же передаваемой мощности меньшими размерами и меньшим весом, то есть лучшими экономическими показателями.

Главная особенность тороидального трансформатора — небольшой общий объем устройства, доходящий до половины в сравнении с другими типами магнитопроводов.

Шихтованный сердечник вдвое больше по объему чем тороидальный ленточный сердечник при той же габаритной мощности.

Поэтому тороидальные трансформаторы удобнее устанавливать и подключать, и уже не так важно, идет ли речь о внутреннем или о наружном монтаже.

Любой специалист скажет, что тороидальная форма сердечника является идеальной для трансформатора по нескольким причинам:

  • во-первых, экономия материалов на производстве,
  • во-вторых, обмотки равномерно заполняют весь сердечник, распределяясь по всей его поверхности, не оставляя неиспользованных мест,
  • в-третьих, поскольку обмотки имеют меньшую длину, КПД тороидальных трансформаторов получается выше в силу меньшего сопротивления провода обмоток.

Охлаждение обмоток — еще один важный фактор.

Обмотки эффективно охлаждаются будучи расположены в форме тороида, следовательно плотность тока может быть более высокой.

Потери в железе при этом минимальны и ток намагничивания сильно меньше. В итоге тепловая нагрузочная способность тороидального трансформатора оказывается очень высокой.

Экономия электроэнергии — еще один плюс в пользу тороидального трансформатора.

Примерно на 30% больше энергии сохраняется при полной нагрузке, и примерно 80% на холостом ходу, в сравнении с шихтованными магнитопроводами иных форм. Показатель рассеяния у тороидальных трансформаторов в 5 раз меньше чем у броневых и стержневых трансформаторов, поэтому их можно безопасно использовать с чувствительным электронным оборудованием.

При мощности тороидального трансформатора до киловатта, он настолько легок и компактен, что для монтажа достаточно применить прижимную металлическую шайбу и болт. Потребителю всего то и нужно выбрать подходящий трансформатор по току нагрузки и по первичному и вторичному напряжениям. При изготовлении трансформатора на заводе рассчитывают площадь сечения сердечника, площадь окна, диаметры проводов обмоток, — и выбирают оптимальные габариты магнитопровода с учетом допустимой индукции в нем.

Для чего около электростанций устанавливают повышающий напряжение трансформатор?

Любой проводник имеет свое сопротивление и поэтому в ЛЭП неизбежно возникают тепловые потери на нагрев проводника. Величина нагрева пропорциональна квадрату тока в цепи, по этому повышая напряжение до сотен киловольт, мы, согласно закону Ома понижаем ток, а значит и снижает тепловые потери и размер проводников ЛЭП, экономия материалов и стоимости.

Что делает повышающий трансформатор?

Повышающие трансформаторы представляют собой силовые конструкции, предназначенные для монтажа в электрических бытовых и производственных цепях. Установка меняет напряжение в сторону повышения. Как работает повышающий тип трансформаторов, где используются такие установки, нужно рассмотреть подробнее.

Функционирование

Чтобы понять, что такое трансформаторы повышающие напряжение, нужно вникнуть в принцип работы. Оборудование изготавливается для электростанций, схемы конструкции которых относятся к проходной категории.

Повышающий трансформатор

Повышающий трансформатор на электростанциях используется для обеспечения населенных пунктов, прочих объектов током с определенными техническими показателями. Без преобразователя высокое напряжение по пути своего следования постепенно снижается. Конечный потребитель получал бы недостаточное количество электроэнергии. На конечной в цепи электростанции благодаря этой установке, принимают электричество соответствующего значения. Потребитель получает напряжение в сети до 220 В. Промышленные сети обеспечиваются до 380 В.

Схема передачи электроэнергии на большие расстояния

Схема, показывающая работу трансформатора в линии, включает в себя несколько элементов. Генератор на электростанции производит электричество 12 кВ. Оно поступает по проводам к повышающим подстанциям. Здесь устанавливается трансформаторный аппарат, призванный повышать показатель в линии до 400 кВ.

От подстанции электричество поступает в высоковольтную линию. Далее энергия попадает на понижающую подстанцию. Здесь она снижается до 12кВ.

Передача электроэнергии

Трансформаторами с обратным принципом действия ток направляется в низковольтную линию передач. В конце устанавливается еще один понижающий агрегат. От него электричество с показателем 220 В поступает в дома, квартиры и т. д.

Принцип устройства

Рассматривая, как работает трансформатор повышающий напряжение, нужно вникнуть в основные принципы действия конструкции. Основой работы трансформатора является механизм электромагнитной индукции. Металлический сердечник находится в изоляционной среде. В схему включено две катушки. Количество обмоток неодинаковое. Повысить показатель способны катушки, в первом контуре которых больше витков, чем во втором.

Напряжение переменного типа поступает на первый контур. Например, это ток в сети 110 (100) В. Появляется магнитное поле. Его сила увеличивается при правильном соотношении обмоток в сердечнике. Когда электричество проходит по второй обмотке в повышающем трансформаторе появляется ток с определенным показателем. Например, обеспечивается показатель характеристики сети 220 В.

При этом частота остается прежней. Для поступления постоянного тока в линию электроснабжения в цепь монтируется преобразователь. Этот прибор может быть в оборудовании повышающего типа. Прибор способен работать не только для изменения напряжения, но и частоты. Определенное оборудование питается постоянным током.

Разновидности

К категории повышающих разновидностей техники относится ряд устройств, отличающихся конструкцией, назначением, техническими характеристиками:

  1. Автотрансформатор. Обладает одной совмещенной обмоткой.
  2. Силовой. Наиболее распространенная разновидность среди приборов, которые повышают показатель напряжения.
  3. Антирезонансный. Обладает закрытой конструкцией. Из-за особого принципа функционирования имеют компактные габариты.
  4. Заземляемый. Обмотки соединяются звездой или зигзагом.
  5. Пик-трансформаторы. Отделяют постоянный и переменный ток.
  6. Бытовые. Повышение характеристик электричества при функционировании трансформатора производится в небольшом диапазоне. Помогают устранить помехи в бытовой сети, защитить технику от перепадов, пониженного и повышенного электричества.

Представленные конструкции отличаются мощностью и техническими характеристиками.

Другие виды

В соответствии с рабочими характеристиками представленное оборудование различается еще по нескольким признакам. По количеству контуров бывают однофазные (бытовые) и трехфазные (промышленные) конструкции.

В качестве охладительной системы применяются разные субстанции. Различают масляные и сухие разновидности. В первом случае оборудование стоит дешевле. Масло является пожароопасным веществом. При их использовании предусматривается качественная защита от аварии. Сухие агрегаты заполнены негорючим веществом. Они стоят дороже, но требования по их установке лояльные.

Сухой трансформатор

Циркуляция охладителя в системе может быть принудительным или естественным. Существуют конструкции, в которых эти методы комбинируются. Многообразие видов позволяет каждому подобрать оптимальный тип устройства.

Маркировка

Производителями разработана специальная маркировка представленного оборудования. Это позволяет потребителям и проверяющим легко определить разновидность оборудования.

трансформатор расшифровка масляных

В общем виде обозначение выглядит так — ТМ/Н – Х, где:

  • Т – обозначение типа прибора;
  • М – мощность агрегата, заданная производителем, кВА;
  • Н – класс напряжения со стороны обмотки высокого напряжения (ВН);
  • Х – климатическая характеристика, определяющая особенности размещения в соответствии с ГОСТ 15150.

Маркировка может включать в себя и другие характеристики. Табличка с указаниями параметров прибора устанавливается на его корпус. При установке оборудования информация с маркировкой должна находиться в доступном для визуального осмотра месте. Подробнее о маркировке трансформаторов читайте здесь.

Ремонт и обслуживание

Трансформатором называется сложное оборудование. Периодически потребуется проводить его обслуживание и ремонт. Доверить эту работу рекомендуется профессионалам. Только человек с соответствующей подготовкой имеет право проводить подобные работы.

При повышенной скорости нагрева, наличии шума, требуется произвести перемотку контуров трансформатора. Эту процедуру сможет выполнить неквалифицированный специалист, обладающий минимальным уровнем знаний в области работы электротехники.

Ремонт силовых трансформаторов

Прибор имеет магнитопривод. Он является общим для катушек. Первый контур ответственен за понижение, а второй – за повышение электричества в сети. Осмотр трансформатора производится по определенной технологии.

Проверка

Сначала проводится визуальный осмотр блока. Если при работе наблюдается перегрев, на поверхности появляются деформации, неровности, вздутие изоляции. Если осмотр не выявил отклонений, нужно найти вход и выход прибора. Первый из них подведен к первой катушке. Здесь появляется магнитное поле в момент подачи электричества. Вывод подведен ко вторичной обмотке.

Выходной сигнал фильтруется. Этот показатель нужно замерять. Снимаются разборные части конструкции корпуса. Требуется получить доступ к микросхемам. Это позволит замерять напряжение мультиметром. При этом потребуется учесть номинальные показатели. Если результат замеров окажется меньше 80 % от заданного производителем значения, цепь первичной не функционирует правильно.

Обслуживание трансформаторов

Первую катушку отсоединяют от прибора. На нее больше не поступает электричество. Затем проверяется вторичный контур. При отсутствии фильтрации используется питание от измерительного прибора. При отсутствии нормального напряжения в системе, аппаратура требует ремонта.

После проверки в случае исправности составляющих элементов, конструкция собирается обратном порядке. При необходимости проводится ремонт агрегата.

Интересное видео: Как работает трансформатор?

Рассмотрев особенности, принцип работы повышающих трансформаторов, можно оценить их важность в линиях электропередач. Применение подобного оборудования повышает качество электричества в бытовых, промышленных сетях. Его устанавливают повсеместно. Представленные разновидности установок сегодня пользуются высоким спросом.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *