Fds6680a чем заменить
Перейти к содержимому

Fds6680a чем заменить

Компьютерный форум

Здесь решают различные задачи сообща. Присоединяйтесь!

  • Список форумовВсе что нужно знать об этом форумеЗакрытые форумыРемонт ноутбуков
  • Поиск

(Решено) Ноутбук ASUS X502CA ,плата X402CA rev.2.1

(Решено) Ноутбук ASUS X502CA ,плата X402CA rev.2.1

Сообщение PANDA » 03 дек 2014, 13:26

DesignerMix Администратор
АдминистраторСообщения: 6996 Зарегистрирован: 25 апр 2014, 10:51 Откуда: Белгород Контактная информация:

Re: Ноутбук ASUS X502CA ,плата X402CA rev.2.1

Сообщение DesignerMix » 03 дек 2014, 15:19

Re: Ноутбук ASUS X502CA ,плата X402CA rev.2.1

Сообщение PANDA » 03 дек 2014, 17:01

Re: Ноутбук ASUS X502CA ,плата X402CA rev.2.1

Сообщение PANDA » 03 дек 2014, 19:34

DesignerMix Администратор
АдминистраторСообщения: 6996 Зарегистрирован: 25 апр 2014, 10:51 Откуда: Белгород Контактная информация:

Re: Ноутбук ASUS X502CA ,плата X402CA rev.2.1

Сообщение DesignerMix » 03 дек 2014, 19:51

Re: Ноутбук ASUS X502CA ,плата X402CA rev.2.1

Сообщение PANDA » 03 дек 2014, 20:20

Re: Ноутбук ASUS X502CA ,плата X402CA rev.2.1

Сообщение PANDA » 03 дек 2014, 20:26

DesignerMix Администратор
АдминистраторСообщения: 6996 Зарегистрирован: 25 апр 2014, 10:51 Откуда: Белгород Контактная информация:

Fds6680a чем заменить

General Description
This N-Channel Logic Level MOSFET is produced using Fairchild Semiconductor’s advanced Power Trench process that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

Features
• 12.5 A, 30 V RDS(ON) = 9.5 mΩ @ VGS = 10 V
RDS(ON) = 13 mΩ @ VGS = 4.5 V
• Ultra-low gate charge
• High performance trench technology for extremely
low RDS(ON)
• High power and current handling capability

Ремонт налобного фонаря

Поработав около года, мой налобный фонарь LED Headlight XM-L T6 стал включаться через раз, а то и вообще отключаться без команды. Вскоре перестал включаться совсем.

Первым делом я подумал, что отходит аккумулятор в батарейном отсеке.

Сам бокс рассчитан на литий-ионные аккумуляторы типоразмера 18650 с платой защиты. А я использовал аккумуляторы без защиты и заряжал их универсальной зарядкой Turnigy Accucell 6 (аналог IMAX B6).

Поэтому пришлось нарастить контакты каплей припоя. Как известно, припой сплав мягкий и со временем напайка на контакте могла поистереться, а соединение с аккумулятором нарушиться.

Напайка из припоя на контакте в аккумуляторном отсеке фонаря

Но, после проверки выяснилось, что причина неисправности кроется вовсе не в плохом контакте, а электронной начинке фонаря.

Налобный (наголовный) фонарь LED Headlight T6

Любой ремонт начинается с диагностики и разборки. Разбирается фонарь легко. Вынимаем литиевый аккумулятор из батарейного отсека. Далее выкручиваем четыре шурупа.

Батарейный отсек фонаря

Под поддоном для аккумуляторов смонтирована небольшая печатная плата.

Печатная плата налобного фонаря

На печатке всего десять элементов. Функцию управления выполняет миниатюрная микросхема в корпусе SOT-23-6 с маркировкой 819L 24 (U1). Как оказалось, это микросхема FM2819 — специализированный контроллер (не драйвер!) для светодиодов. Называть эту микросхему драйвером как-то язык не поворачивается.

Данная микросхема поддерживает четыре режима управления светодиодом, в том числе строб, от которого все хотят избавиться. Режимы переключаются циклически по команде с тактовой кнопки без фиксации.

Если бы мой фонарь не сломался, то о четвёртом режиме SOS, который активируется долгим нажатием кнопки (около 3 секунд), я бы и не узнал. Когда покупал, на странице продажи упоминалось только три режима.

Когда же стал изучать даташит на FM2819, то оказалось, что эта микросхема поддерживает четыре режима.

Микросхема 819L (24) на печатной плате

О микросхеме FM2819 я расскажу чуть позднее, а пока разберёмся, за что отвечают остальные элементы схемы.

Жёлтый керамический конденсатор запаян вместо родного, который отвалился, когда я разбирал корпус батарейного отсека. Судя по фото аналогичных фонарей ёмкость конденсатора, который установлен между выводом KEY и минусом "-" питания, может быть в довольно больших пределах. В моём был установлен чип-конденсатор на 10pF (100), а в других фонарях могут быть запаяны и на 10nF (103), и на 100nF (104), а то и вовсе отсутствовать.

Функцию силового ключа, который подаёт напряжение питания от литиевого аккумулятора на мощный светодиод, выполняет P-канальный MOSFET транзистор FDS9435A в корпусе SO-8. На фото видно, что на его корпусе указана сокращённая маркировка 9435A.

Плюс питания со стока транзистора FDS9435A подаётся на мощный светодиод не напрямую, а через три токоограничивающих резистора (R200 — 0,2 Ом; R500 — 0,5 Ом; 2R0 — 2 Ом). Они соединены параллельно. Их общее сопротивление меньше наименьшего сопротивления в цепи (т.е. меньше 0,2 Ом). Если посчитать, то оно равно 0,13 Ом.

О том, как соединять резисторы и рассчитывать их общее сопротивление я рассказывал тут.

Для подсветки тылового индикатора LED HEADLIGHT используется обычный SMD-светодиод красного цвета свечения. На плате обозначен, как LED. Он подсвечивает пластину из белого пластика.

Индикаторный светодиод налобного фонаря

Так как батарейный отсек находится с тыльной части головы, то в ночное время суток такой индикатор хорошо заметен.

Видимость дополнительного индикатора фонаря в темноте

Явно не помешает при велопрогулках и ходьбе вдоль дорожных трасс.

Тыльный индикатор налобного фонаря

Через резистор в 100 Ом плюсовой вывод красного SMD-светодиода подключается к стоку MOSFET-транзистора FDS9435A. Таким образом, при включении фонаря напряжение поступает и на основной светодиод Cree XM-L T6 XLamp, и на маломощный SMD-светодиод красного цвета свечения.

С основными детальками разобрались. Теперь расскажу, что же сломалось.

При нажатии на кнопку включения фонаря было видно, что красный SMD светодиод начинает светить, но очень тускло. Работа светодиода соответствовала штатным режимам работы фонаря (максимальная яркость, низкая яркость и стробоскоп). Стало ясно, что управляющая микросхема U1 (FM2819) скорее всего исправна.

Раз она штатно реагирует на нажатие кнопки, то, возможно, проблема кроется в самой нагрузке – мощном белом светодиоде. Отпаяв провода, идущие на светодиод Cree XM-L T6, и подключив его к самодельному блоку питания, я убедился в его исправности.

Далее решил замерить напряжение на самой плате, чтобы узнать, где потерялись драгоценные вольты от аккумулятора.

При замерах оказалось, что в режиме максимальной яркости, на стоке транзистора FDS9435A всего 1,2V. Естественно, этого напряжения не хватало для питания мощного светодиода Cree XM-L T6, а вот красному SMD-светодиоду его было достаточно, чтобы его кристалл начал тускло светиться.

Стало ясно, что неисправен транзистор FDS9435A, который задействован в схеме как электронный ключ.

В замену транзистору ничего подбирать не стал, а купил оригинальный P-канальный PowerTrench MOSFET FDS9435A фирмы Fairchild. Вот его внешний вид.

P-канальный MOSFET-транзистор FDS9435A

Как видим, на этом транзисторе присутствует полная маркировка и отличительный знак фирмы Fairchild (F), выпустившей данный транзистор.

Сравнив оригинальный транзистор с тем, что установлен на плате, мне в голову закралась мысль о том, что в фонаре установлена подделка или менее мощный транзистор. Возможно, даже брак. Всё-таки фонарь не успел отслужить и года, а силовой элемент уже "отбросил копыта".

Цоколёвка транзистора FDS9435A выглядит следующим образом.

Цоколёвка транзистора FDS9435A

Как видим, внутри корпуса SO-8 находится всего лишь один транзистор. Выводы 5, 6, 7, 8 объединены и являются выводом стока (Drain). Выводы 1, 2, 3 также соединены вместе и являются истоком (Source). 4-ый вывод – это затвор (Gate). Именно на него приходит сигнал с управляющей микросхемы FM2819 (U1).

В качестве замены транзистору FDS9435A можно использовать APM9435, AO9435, SI9435. Всё это аналоги.

Выпаиваем неисправный MOSFET

Выпаять транзистор можно как привычными методами, так и более экзотическими, например, сплавом Розе. Также можно применить метод грубой силы – подрезать ножом выводы, демонтировать корпус, а затем отпаять оставшиеся на плате выводы.

После замены транзистора FDS9435A налобный фонарь стал работать исправно.

Фонарь после ремонта

На этом рассказ о ремонте закончен. Но, не будь я любопытным радиомехаником, то так и оставил бы всё, как есть. Работает и ладно. Но мне не давали покоя некоторые моменты.

Так как изначально я не знал, что микросхема с маркировкой 819L (24) это FM2819, то вооружившись осциллографом, я решил посмотреть, какой сигнал подаёт микросхема на затвор транзистора при разных режимах работы. Интересно же.

При включении первого режима на затвор транзистора FDS9435A с микросхемы FM2819 подаётся -3,4. 3,8V, которое практически соответствует напряжению на аккумуляторе (3,75. 3,8V). Естественно, на затвор транзистора подаётся отрицательное напряжение, так как он P-канальный.

При этом транзистор полностью открывается и напряжение на светодиоде Cree XM-L T6 достигает 3,4. 3,5V.

В режиме минимального свечения (1/4 яркости) на транзистор FDS9435A с микросхемы U1 приходит около 0,97V. Это если проводить замеры рядовым мультиметром без наворотов.

На самом же деле в этом режиме на транзистор приходит сигнал ШИМ (широтно-импульсная модуляция). Подключив щупы осциллографа между "+" питания и выводом затвора транзистора FDS9435A, я увидел вот такую картину.

Картинка ШИМ-сигнала на экране осциллографа (время/деление — 0,5; V/деление — 0,5). Время развёртки — mS (миллисекунды).

Пауза между импульсами на экране осциллографа

Так как на затвор поступает отрицательное напряжение, то "картинка" на экране осциллографа переворачивается. То есть сейчас на фото в центре экрана показан не импульс, а пауза между ними!

Сама пауза длится около 2,25 миллисекунд (mS) (4,5 деления по 0,5mS). В этот момент транзистор закрыт.

Затем транзистор открывается на 0,75 mS. При этом на светодиод XM-L T6 поступает напряжение. Амплитуда каждого импульса составляет 3V. А, как мы помним, мультиметром я намерил всего лишь 0,97V. В этом нет ничего удивительного, так как мультиметром я мерил постоянное напряжение.

Вот этот момент на экране осциллографа. Переключатель время/деление установил на 0,1, чтобы лучше определить длительность импульса. Транзистор открыт. Не забываем про то, что на затвор приходит минус "-". Импульс перевёрнут.

Импульс на экране осциллографа

Теперь можно посчитать скважность импульсов (S).

S = (2,25mS + 0,75mS) / 0,75mS = 3mS / 0,75mS = 4. Где,

S — скважность (безразмерная величина);

Τ — период следования (миллисекунды, mS). В нашем случае период равен сумме включения (0,75 mS) и паузы (2,25 mS);

τ- длительность импульса (миллисекунды, mS). У нас это 0,75mS.

Также можно определить коэффициент заполнения (D), который в англоязычной среде называют Duty Cycle (часто встречается во всяких даташитах на электронные компоненты). Обычно он указывается в процентах %.

D = τ/Τ = 0,75/3 = 0,25 (25%). Таким образом, в режиме пониженной яркости светодиод включен лишь на четверть периода.

Когда делал подсчёты первый раз, то коэффициент заполнения у меня вышел 75%. Но потом, увидев в даташите на FM2819 строчку про режим 1/4 яркости, понял, что где-то облажался. Я просто перепутал паузу и длительность импульса местами, поскольку по привычке принял минус "-" на затворе за плюс "+". Поэтому и вышло всё наоборот.

В режиме "STROBE" мне не удалось посмотреть ШИМ сигнал, так как осциллограф аналоговый и довольно старый. Синхронизировать сигнал на экране и получить чёткое изображение импульсов мне не удалось, хотя было видно его наличие.

Типовая схема включения и цоколёвка микросхемы FM2819. Может, кому пригодится.

Типовая схема включения и цоколёвка микросхемы FM2819

Не давали мне покоя и некоторые моменты, связанные с работой светодиода. Со светодиодными фонарями я раньше, как-то не имел дела, а тут захотелось разобраться.

Когда я полистал даташит на светодиод Cree XM-L T6, который установлен в фонаре, то понял, что номинал токоограничительного резистора маловат (0,13 Ом). Да, и на плате одно посадочное место под резистор было свободно.

Когда шерстил по интернетам в поисках информации о микросхеме FM2819, то видел фото нескольких печатных плат аналогичных фонарей. На одних были запаяны четыре резистора по 1 Ому, а на некоторых вообще SMD-резистор с маркировкой "0" (перемычка), что, на мой взгляд, вообще является преступлением.

Светодиод – это нелинейный элемент, и, поэтому, последовательно с ним необходимо включать токоограничивающий резистор.

Если заглянуть в даташит на светодиоды серии Cree XLamp XM-L, то можно обнаружить, что их максимальное напряжение питания составляет 3,5V, а номинальное 2,9V. При этом ток через светодиод может достигать величины в 3А. Вот график из даташита.

ВАХ светодиода Cree XM-L T6

Номинальным током для таких светодиодов считается ток в 700 mA при напряжении в 2,9V.

Конкретно в моём фонаре ток через светодиод составил 1,2 A при напряжении на нём в 3,4. 3,5V, что явно многовато.

Чтобы уменьшить прямой ток через светодиод я запаял вместо прежних резисторов четыре новых номиналом в 2,4 Ом (типоразмер 1206). Получил общее сопротивление в 0,6 Ом (мощность рассеивания 0,125W * 4 = 0,5W).

SMD резисторы 2,4 Ом типоразмера 1206

После замены резисторов прямой ток через светодиод составил 800 mA при напряжении в 3,15V. Так светодиод будет работать при более мягком тепловом режиме, и, надеюсь, прослужит долго.

Ограничиваем прямой ток светодиода в фонаре

Поскольку резисторы типоразмера 1206 рассчитаны на мощность рассеивания в 1/8W (0,125 Вт), а в режиме максимальной яркости на четырёх токоограничивающих резисторах рассеивается мощность около 0,5Вт, то от них желательно отвести излишнее тепло.

Для этого зачистил от зелёного лака медный полигон рядом с резисторами и напаял на него каплю припоя. Такой приём частенько применяется на печатных платах бытовой электронной аппаратуры.

Вид печатной платы фонаря после доработки

После доработки электронной начинки фонаря покрыл печатную плату лаком PLASTIK-71 (электроизоляционный акриловый лак) для защиты от конденсата и влаги.

Покрываем плату лаком PLASTIK-71

При расчётах токоограничительного резистора я столкнулся с некоторыми тонкостями. За напряжение питания светодиода стоит принимать напряжение на стоке MOSFET транзистора. Дело в том, что на открытом канале MOSFET-транзистора теряется часть напряжения из-за сопротивления канала (R(ds)on).

Чем выше ток, тем большее напряжение "оседает" по пути Исток-Сток транзистора. У меня при токе в 1,2А оно составило 0,33V, а при 0,8А – 0,08V. Также часть напряжения падает на соединительных проводах, которые идут с клемм аккумулятора на плату (0,04V). Казалось бы, такая мелочь, а в сумме набегает 0,12V. Так как под нагрузкой напряжение на Li-ion аккумуляторе проседает до 3,67. 3,75V, то на стоке MOSFET’а уже 3,55. 3,63V.

Ещё 0,5. 0,52V гасит цепь из четырёх параллельных резисторов. В итоге на светодиод приходит напряжение в районе 3-ёх с небольшим вольт.

На момент написания этой статьи в продаже появилась обновлённая версия рассмотренного налобного фонаря. В нём уже встроена плата контроля заряда/разряда Li-ion аккумулятора, а также добавлен оптический датчик, который позволяет включать фонарь жестом ладони.

FDS6680A аналог PHK12NQ03LT и SI4174DY-T1-GE3

The FDS6680A is a 30V N-channel logic level PowerTrench® MOSFET has been specially tailored to minimize the on-state resistance and to maintain low gate charge for superior switching performance. Fairchild»s the latest medium voltage power MOSFET is optimized power switches combining small gate charge (QG), small reverse recovery charge (Qrr) and soft reverse recovery body diode, which contributes fast switching for synchronous rectification in AC/DC power supplies. It employs shielded-gate structure that provides charge balance. By utilizing this advanced technology, the FOM (figure of merit (QGxRDS(ON))) of these devices is 66% lower than that of previous generation. Soft body diode performance of new PowerTrench® MOSFET is able to eliminate snubber circuit or replace higher voltage rating — MOSFET need circuit because it can minimize the undesirable voltage spikes in synchronous rectification. This product is general usage and suitable for many different applications. . High performance trench technology for extremely low RDS (on) . High power and current handling capability . Ultra-low gate charge

SI4174DY-T1-GE3 Обзор

The SI4174DY-T1-GE3 is a 30VDS TrenchFET® N-channel enhancement-mode Power MOSFET suitable for high-side switch applications. . 100% Rg tested . 100% UIS tested . Halogen-free . -55 to 150°C Operating temperature range

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *