Как движутся частицы в электрическом поле
Перейти к содержимому

Как движутся частицы в электрическом поле

Движение заряженных частиц в электрических и магнитных полях

1. В данном вопросе мы ограничимся рассмотрением движения заряженной частицы в однородных постоянных полях.

В магнитном поле сила Лоренца будет иметь только одну магнитную составляющую

которая всегда перпендикулярна траектории движения и поэтому работы не совершает, а только искривляет траекторию, не изменяя величину скорости. Такого рода силы называются гироскопическими.

В общем случае скорость частицы составляет угол с вектором(рис. 3) и ее можно разложить на два вектора (параллельно и перпендикулярно вектору )

где , , а само движение частицы можно представить в виде наложения двух движений с этими скоростями.

Рассмотрим сначала движение частицы со скоростью , параллельной вектору магнитной индукции. В этом случае , и частица движется вдоль силовой линии магнитного поля.

Во втором движении со скоростью сила Лоренца не изменяется по величине и создает нормальное ускорение в плоскости, перпендикулярной вектору . Поэтому траектория такого движения пред-ставляет собой окружность радиуса r в этой плоскости. Условие движения по окружности, записанное на основе второго закона Ньютона,

позволяет найти радиус окружности и угловую скорость вращения частицы

которые называются циклотронным радиусом и циклотронной частотой.

Циклотронный радиус пропорционален импульсу частицы и обратно пропорционален величине ее заряда и магнитной индукции. Циклотронная частота обратно пропорциональна массе частицы и пропорциональна ее заряду и магнитной индукции.

Направления вращения частиц с положительным и отрицательным зарядом взаимно противоположны из-за различия в направлениях силы Лоренца (рис. 2). В векторной форме циклотронную частоту можно записать в виде формулы

Для положительно заряженной частицы направление угловой скорости противоположно направлению вектора , для отрицательно заряженной частицы – совпадает с вектором .

2. В общем случае, когда частица участвует во вращательном движении вокруг направления вектора и в поступательном параллельно силовой линии, результирующее движение частицы будет происходить по винтовой линии. Для положительно заряженных частиц винтовая линия соответствует левому винту, для отрицательно заряженных – правому (рис. 4). Если векторы и направлены противоположно друг другу, то наоборот.

Данное движение используется в системах, фокусирующих электронный пучок в электронно-лучевых трубках. Дело в том, что шаг винтовой линии, определяемый произведением и периода обращения ,

для электронов, вылетающих из электронной пушки под разными углами к оси пучка, не зависит от угла из-за его малости ().

Поэтому все электроны, вылетевшие из электронной пушки под небольшими, но разными углами соберутся в одной точке через период обращения. Шаг винтовой линии можно изменять, варьируя величину магнитной индукции, что позволяет осуществлять фокусировку электронного луча на экране электронно-лучевой трубки.

1) Сила, действующая на заряженную частицу со стороны магнитного поля, работы не совершает. Она вызывает вращательное движение частиц вокруг направления вектора магнитной индукции с угловой скоростью .

2) В общем случае заряженная частица движется по винтовой линии.

3. Магнитное поле двигающегося заряда

1. Пусть заряженная частица движется со скоростью относительно лабораторной системы отсчета K. В системе , которая движется вместе с частицей, магнитное поле отсутствует (), а электрическое поле описывается формулой

Это обычное электростатическое поле неподвижного точечного заряда.

В неподвижной системе отсчета , в соответствии с преобразованиями (5), (6), находим

Отсюда следует, что при медленных движениях заряженная частица создает в окружающем пространстве электрическое поле такое же, как неподвижная и магнитное с индукцией

При этом радиус-вектор проводится от заряда в точку наблюдения.

Проанализируем данное выражение. Величина вектора магнитной индукции

зависит обратно пропорционально квадрату расстояния от заряда до рассматриваемой точки поля, прямо пропорционально величине заряда и его скорости. Но пространственное распределение магнитной индукции вокруг заряда сложнее, чем для электрического поля.

В формулу магнитной индукции входит синус угла между направлениями скорости и радиус-вектора , проведенного от заряда в точку наблюдения (рис. 5).

Магнитная индукция обращается в нуль на линии, проходящей через заряд параллельно вектору скорости (), и максимальна в плоскости, проходящей через заряд перпендикулярно вектору ().

Направление вектора магнитной индукции перпендикулярно вектору скорости и радиус-вектору (рис. 5).

Если, сохраняя угол a и длину вектора, повернуть радиус-вектор вокруг вектора скорости, то его конец опишет окружность. В каждой точке этой окружности вектор будет направлен по касательной к ней. Следовательно, такая окружность будет являться линией вектора (силовой линией магнитного поля).

Опыт показывает, что для магнитного поля выполняется принцип суперпозиции полей

Магнитная индукция результирующего поля в некоторой точке равна векторной сумме магнитных индукций полей, создаваемых различными источниками в этой точке.

2. Рассмотрим теперь магнитное поле, создаваемое в произвольной точке бесконечно малым отрезком тонкого проводника длины , по которому идет ток силой I.

Величина называется элементом тока. Направление вектора совпадает с направлением тока. Так как сила тока по определению , где S является площадью поперечного сечения проводника, то элемент тока можно выразить через плотность тока , где является объемом выделенного участка проводника. Здесь учтено, что векторы и совпадают по направлению.

Все носители заряда, находящиеся в этом элементе тока, движутся упорядоченно со средней скоростью и создают в данной точке пространства одинаковую магнитную индукцию. Поэтому результирующую магнитную индукцию, создаваемую всеми носителями заряда в произвольной точке, можем получить, умножив число носителей в элементе тока , где n – концентрация носителей заряда в проводнике, на магнитную индукцию , создаваемую одним носителем в этой точке

Здесь плотность тока выражена через среднюю скорость упорядоченного движения носителей заряда. Радиус–вектор проводится от элемента тока в точку наблюдения.

Полученное выражение называется законом Био-Савара-Лапласа. Оно позволяет рассчитать магнитное поле любой системы проводников, используя принцип суперпозиции

Штрихованные переменные относятся к точке интегрирования.

Сравнение формул (8) и (9) показывает, что конфигурация и распределение в пространстве магнитных полей элемента тока и движущегося заряда идентичны (рис. 6). Величина вектора магнитной индукции, создаваемого элементом тока, пропорциональна величине элемента тока, синусу угла между направлением тока и направлением на точку наблюдения и обратно пропорциональна квадрату расстояния от источника до точки наблюдения

Элемент тока создает максимальную магнитную индукцию в плоскости, перпендикулярной элементу тока, и не создает на прямой, проходящей через элемент тока, параллельно вектору . Линии вектора напряженности – суть окружности вокруг этой прямой.

1) Магнитное поле движущегося заряда является следствием движения заряженной частицы и ее электрического поля.

2) Магнитное поле элемента тока и движущегося заряда имеют одинаковое распределение силовой характеристики в пространстве. Это обусловлено тем, что электрический ток представляет собой упорядоченное движение заряженных частиц.

3) Элемент тока и движущийся заряд создают максимальную магнитную индукцию в плоскости, перпендикулярной направлению движения зарядов. Силовые линии в обеих случаях представляют собой окружности, перпендикулярные касательной к траектории движения. Магнитное поле не создается на прямой, касательной к траектории движения зарядов.

4) Магнитная индукция обратно пропорциональна квадрату расстояния от заряда до точки наблюдения. Это обусловлено распределением в пространстве электрического поля заряженной частицы и преобразованием его в магнитное поле при движении.

Движение частиц в электрическом поле

Движение частиц рассматривается как движение их центра масс. Это означает, что вращение частиц, если требуется, следует учитывать отдельно. По второму закону Ньютона:

На частицу, находящуюся в воздушной среде и в электрическом поле, действуют следующие силы:

  • 1. Сила тяжести Fmg= mg, где g — вектор ускорения свободного падения.
  • 2. Сила действия электрического поля на заряженную частицу

3. Сила, обусловленная неравномерным распределением напряженности электрического поля.

Сферическая частица, находящаяся в электрическом поле, приобретает заряды поляризации qn (рис.2.6). Сила, действующая на сферу в неоднородном электрическом поле, равна

Оценки силы, обусловленной неравномерным распределением электрического поля, показывают, что она мала по сравнению с другими силами, действующими на частицу, и поэтому этой силой можно пренебречь, за исключением случаев, когда частица незаряжена, а неоднородность поля велика.

4. Сила сопротивления среды движению частицы Fc. Сила возникает в связи с тем, что движущееся тело вызывает появление в окружающем пространстве течение воздуха. Возбуждение течения требует некоторой затраты энергии, которая забирается у движущегося тела. Таким образом, тело тормозится.

Поляризация частицы в электрическом поле

Рисунок 2.6 — Поляризация частицы в электрическом поле

Силу сопротивления среды можно рассчитать, если известно распределение скорости течения воздуха, вызванного телом.

Распределение скорости воздуха вокруг движущегося тела рассчитывается из уравнения Навье-Стокса:

и уравнения неразрывности течения жидкости:

Здесь и — вектор скорости течения жидкости; ув — плотность среды; — коэффициент динамической вязкости среды (рВОзд = 1,85* 10 -5 кг/(м-с)); р — давление.

Даже в самом простом случае — для сферической частицы — решение уравнения движения удается получить только при упрощающих предположениях. Эти упрощения определяются величиной числа Рейнольдса, устанавливающего соотношение между силами инерции и вязкости:

где v = ц!ув — коэффициент кинематической вязкости воздуха; 1 — характерный размер течения (для течения жидкости в трубе — диаметр трубы; для частицы — диаметр частицы).

Для движущейся сферической частицы

где о — скорость частицы относительно газовой среды, v — коэффициент кинематической вязкости.

В технологических процессах обычно используют частицы размером не более 300 мкм. Скорости частиц обычно меньше 10 м/с и чаще всего составляют 1-г-З м/с. Наибольшие значения числа Рейнольдса достигают 100, обычно они лежат в диапазоне 0,1-5-10.

Упрощая уравнение , Стокс получил формулу для силы сопротивления сферы движению сферической частицы, справедливую при Re 2 , а — радиус).

В результате обобщения экспериментальных данных получена зависимость Сх = f (Re) ? которая представлена на рисунке 2.7.

Зависимость С от Re

Рисунок 2.7 — Зависимость Сх от Re

Наиболее удачной аппроксимацией этой зависимости является формула Клячко:

Из (2.27) и (2.28) следует, что сила сопротивления среды нелинейно зависит от скорости (рисунок 2.8)

Линейная аппроксимация зависимости силы сопротивления от числа Рейнольдса

Рисунок 2.8 — Линейная аппроксимация зависимости силы сопротивления от числа Рейнольдса

Для аналитических расчетов более удобно использовать линейную аппроксимацию от числа Рейнольдса

где kc, u=(Rev)/2a — коэффициенты линейной аппроксимации (рисунок

2.8)

ДВИЖЕНИЕ ЧАСТИЦЫ В ОДНОРОДНОМ ЭЛЕКТРИЧЕСКОМ ПОЛЕ При движении сферической частицы из состояния покоя под действием постоянных внешних сил при Re 0,5 можно воспользоваться линейной аппроксимацией силы сопротивления среды в виде (2.29). Тогда решение записывается по аналогии с решением уравнения (2.30). Более сложный для расчета случай имеет место, когда заряд частиц и напряженность поля в процессе движения изменяются. Аналитическое решение для этого случая отсутствует.

Более просто решается задача, если силами инерции при расчете можно пренебречь. Возможность такого упрощения определяется числом Стокса.

Число Стокса представляет собой отношение длины инерционного пробега частицы при скорости ох к характерному размеру 1 — расстоянию, на котором действующая на частицу внешняя сила претерпевает изменение, соизмеримое с ее средним значением:

Под характерной скоростью понимается скорость, определяемая действием внешних сил без учета сил инерции.

Таким образом, число Стокса определяет влияние сил инерции на движение частицы под действием переменной внешней силы. Если St« 1, то движение частицы можно считать безынерционным.

По аналогии с понятием подвижности ионов можно ввести понятие подвижности частицы:

здесь ъ = %= /4г/га •

Таким образом, подвижность частицы, обладающей зарядом q, представляет собой установившуюся скорость движения в поле единичной напряженности.

Для случая, когда частица приобретает заряд в поле коронного разряда, можно построить зависимость подвижности от размера частиц (рисунок 2.9).

Зависимость подвижности B от радиуса частиц 1 - Е = 1кВ/см; 2 - Е = 3 кВ/см

Рисунок 2.9 — Зависимость подвижности Bq от радиуса частиц 1 — Е = 1кВ/см; 2 — Е = 3 кВ/см

Подвижность имеет минимум при размере частиц 2а равном 0,3 -г- 0,5 мкм. Возрастание подвижности для частиц очень малого размера объясняется уменьшением силы сопротивления среды из-за того, что размер частиц становиться соизмеримым с длиной свободного пробега молекул воздуха (поправка Кенингема).

Возрастание подвижности для частиц 2а > 1мкм объясняется тем, что начинает работать механизм «ударной» зарядки и имеет место квадратичный характер зависимости заряда от размера частиц. Тогда в соответствии с (2.31) подвижность растет пропорционально размеру частиц.

Для расчета силы сопротивления среды движению частиц несферической формы используется замена на эллипсоид, эквивалентный частице по объему и соотношению осей. В литературе имеются данные по коэффициенту сопротивления для эллипсоидов.

При движении, начиная с переходного значения Re, частицы приобретают определенную ориентацию (за счет гидродинамического взаимодействия с окружающей средой). Ориентация такова, что частица при движении испытывает максимальное сопротивление. Например, на цилиндрическую удлиненную частицу при движении в воздушной среде в электрическом поле действуют два вращающих момента (рисунок 2.10).

Силы, действующие на частицу несферичной формы

Рисунок 2.10 — Силы, действующие на частицу несферичной формы

С одной стороны электрическое поле стремится развернуть поляризованную частицу таким образом, чтобы она расположилась своей большой осью вдоль силовых линий электрического поля (положение 1). С другой стороны гидродинамические силы сопротивления среды движению частицы — Мгд — стремится развернуть ее таким образом, чтобы лобовое сопротивление было максимальным из всех возможных положений частицы, то есть перпендикулярно направлению движения частицы под действием сил электрического поля. В результате может устанавливаться некоторая промежуточная ориентация частицы в электрическом поле, как показано на рисунок 2.10.

Как движутся частицы в электрическом поле

И электрическое и магнитное поля действуют на движущиеся в них заряженные частицы. Поэтому заряженная частица, влетающая в электрическое или магнитное поле, отклоняется от своего первоначального направления движения (изменяет траекторию), если только это направление не совпадает с направлением поля. В последнем случае электрическое поле только ускоряет (или замедляет) движущуюся частицу, а магнитное поле вообще не действует на нее, Рассмотрим практически наиболее важные случаи, когда заряженная частица влетает в однородное поле, созданное в вакууме имея направление, перпендикулярное полю.

1. Частица в электрическом поле. Пусть частица, имеющая заряд и массу влетает со скоростью в электрическое поле плоского конденсатора (рис. 235, а). Длина конденсатора

равна напряженность поля равна Предположим для определенности, что частица является электроном Тогда, смещаясь в электрическом поле вверх, она пролетит через конденсатор по криволинейной траектории и вылетит из него, отклонившись от первоначального направления на отрезок у. Рассматривая смещение у как проекцию перемещения на ось равномерно ускоренного движения частицы под действием силы поля

где напряженность электрического поля, а — ускорение, сообщаемое частице полем, время, в течение которого совершается смещение у. Так как, с другой стороны, есть время равномерного движения частицы вдоль оси конденсатора с постоянной скоростью то

Подставляя это значение ускорения в формулу (32), получим соотношение

представляющее собой уравнение параболы. Таким образом, заряженная частица движется в электрическом поле по параболе; величина отклонения частицы от первоначального направления обратно пропорциональна квадрату скорости частицы.

Отношение заряда частицы к ее массе называется удельным зарядом частицы.

2. Частица в магнитном поле. Пусть та же частица, которую мы рассматривали в предыдущем случае, влетает теперь в магнитное поле напряженностью (рис. 235, б). Силовые линии поля, изображенные точками, направлены перпендикулярно плоскости рисунка (на читателя). Движущаяся заряженная частица представляет собой электрический ток. Поэтому магнитное поле отклонит частицу вверх от ее первоначального направления движения (следует учесть, что направление движения электрона противоположно направлению тока). Согласно формуле Ампера (29), сила, отклоняющая частицу на любом участке траектории (участке тока) равна

где время, за которое заряд проходит по участку Поэтому

Учитывая, что получим

Сила называется лоренцевой силой. Направления и взаимно перпендикулярны. Направление лоренцевой силы можно определять по правилу левой руки, подразумевая при этом под направлением тока I направление скорости и учитывая, что для положительно заряженной частицы направления совпадают, а для отрицательно заряженной частицы эти направления противоположны.

Будучи перпендикулярна скорости лоренцева сила изменяет только направление скорости движения частицы, не изменяя величины этой скорости. Отсюда следуют два важных вывода:

1. Работа лоренцевой силы равна нулю, т. е. постоянное магнитное поле не совершает работы над движущейся в нем заряженной частицей (не изменяет кинетической энергии частицы).

Напомним, что в отличие от магнитного поля электрическое поле изменяет энергию и величину скорости движущейся частицы.

2. Траектория частицы является окружностью, на которой частицу удерживает лоренцева сила, играющая роль центростремительной силы. Радиус этой окружности определим, приравнивая между собой лоренцеву и центростремительную силы:

Таким образом, радиус окружности, по которой движется частица, пропорционален скорости частицы и обратно пропорционален напряженности магнитного поля.

На рис. 235, б видно, что отклонение у частицы от ее первоначального направления движения уменьшается с ростом радиуса Из этого можно заключить, учитывая формулу (35), что отклонение частицы в магнитном поле уменьшается при увеличении скорости частицы. При увеличении напряженности поля отклонение частицы увеличивается. Если бы в случае, изображенном на рис. 235, б, магнитное поле было более сильным или охватывало более обширную область, то частица не смогла бы вылететь из этого поля, а стала бы все время двигаться по окружности радиусом Период обращения частицы равен отношению длины окружности к скорости частицы

или, учитывая формулу (35),

Следовательно, период обращения частицы в магнитном пом не зависит от ее скорости.

Если в пространстве, где движется заряженная частица, создать магнитное поле, направленное под углом а к ее скорости то дальнейшее движение частицы представит собой геометрическую сумму двух одновременных движений: вращения по окружности со скоростью в плоскости, перпендикулярной силовым линиям, и перемещения вдоль поля со скоростью (рис. 236, а). Очевидно, что результирующая траектория частицы окажется винтовой линией, навивающейся на силовые линии поля. Это свойство магнитного поля используется в некоторых приборах для предотвращения рассеивания потока заряженных частиц. Особый интерес в этом отношении представляет магнитное поле тороида (см. § 98, рис. 226). Оно является своеобразной ловушкой для движущихся заряженных частиц: «навиваясь» на силовые линии, частица будет сколь угодно долго двигаться в таком поле, не покидая его (рис. 236, б). Отметим, что магнитное поле тороида предполагается использовать в качестве «сосуда» для хранения плазмы в термоядерном реакторе будущего (о проблеме управляемой термоядерной реакции будет сказано в § 144).

Влиянием магнитного поля Земли объясняется преимущественное возникновение полярных сияний в высоких широтах. Заряженные частицы, летящие к Земле из космоса, попадают в магнитное поле Земли и перемещаются вдоль силовых линий поля, «навиваясь» на них. Конфигурация магнитного поля Земли такова (рис. 237), что частицы приближаются к Земле преимущественно в полярных областях, вызывая тлеющий разряд в свободной атмосфере (см. § 93).

С помощью рассмотренных закономерностей движения заряженных частиц в электрическом и магнитном полях можно экспериментально определять удельный заряд и массу этих частиц. Именно таким путем были впервые определены удельный заряд и масса электрона. Принцип определения состоит в следующем. Поток электронов (например, катодные лучи) направляют в электрическое и магнитное поля, ориентированные так, что они отклоняют этот поток в противоположных направлениях. При этом подбирают такие значения напряженностей чтобы отклонения, вызванные силами электрического и магнитного полей, полностью взаимно компенсировались и электроны летели прямолинейно. Тогда, приравнивая между собой выражения электрической (32) и лоренцевой (34) сил, получим

По формуле (37) можно рассчитывать скорость электронов, поскольку значения и известны.

После того как достигнута полная компенсация отклонений, электрическое поле выключают. В оставшемся магнитном поле электроны начинают двигаться по окружности, радиус которой, согласно формуле (35), равен

Значение можно рассчитать по величине отклонения у электрона в магнитном поле и по ширине х области, охваченной этим полем (см. рис. 235, б). В самом деле, из рисунка видно, что Следовательно,

Из соотношений (37) и (38) получается после простых преобразований формула для вычисления удельного заряда электрона:

Так как то масса электрона оказывается равной

Подобным же образом можно определять удельный заряд и массу любых частиц.

Подчеркнем, что приведенное значение массы электрона соответствует массе покоя. Точные измерения, полученные описанным методом, показали, что при больших скоростях движения (сравниваемых со скоростью света) масса электрона заметно возрастает с увеличением скорости (см. § 20).

Электрическое поле

Электродинамика – раздел физики, изучающий свойства и взаимодействия электрических зарядов, осуществляемые посредством электромагнитного поля.

Электростатикой называется раздел электродинамики, в котором рассматриваются свойства и взаимодействия неподвижных электрически заряженных тел или частиц.

Электромагнитное взаимодействие – это взаимодействие между электрически заряженными частицами или макротелами.

Точечный заряд – заряженное тело, размер которого мал по сравнению с расстоянием, на котором оценивается его действие.

Электризация тел

Электризация – процесс сообщения телу электрического заряда, т. е. нарушение его электрической нейтральности. Процесс электризации представляет собой перенесение с одного тела на другое электронов или ионов. В результате электризации тело получает возможность участвовать в электромагнитном взаимодействии.

  • трением, – например, электризация эбонитовой палочки при трении о мех. При тесном соприкосновении двух тел часть электронов переходит с одного тела на другое; в результате этого на поверхности у одного из тел создается недостаток электронов и тело получает положительный заряд, а у другого – избыток, и тело заряжается отрицательно. Величины зарядов тел одинаковы;
  • через влияние (электростатическая индукция) – тело остается электрически нейтральным, электрические заряды внутри него перераспределяются так, что разные части тела приобретают разные по знаку заряды;
  • при соприкосновении заряженного и незаряженного тела – заряд при этом распределяется между этими телами пропорционально их размерам. Если размеры тел одинаковы, то заряд распределяется между ними поровну;
  • при ударе;
  • под действием излучения – под действием света с поверхности проводника могут вырываться электроны, при этом проводник приобретает положительный заряд.

Взаимодействие зарядов. Два вида зарядов

Электрический заряд – скалярная физическая величина, характеризующая способность тела участвовать в электромагнитных взаимодействиях.

Обозначение – ​ \( q \) ​, единица измерения в СИ – кулон (Кл).

Существуют два вида электрических зарядов: положительный и отрицательный. Наименьший отрицательный заряд имеет электрон (–1,6·10 -19 Кл), наименьший положительный заряд (1,6·10 -19 Кл) – протон. Минимальный заряд, который может быть сообщен телу, равен заряду электрона (элементарный заряд). Если тело имеет избыточные (лишние) электроны, то тело заряжено отрицательно, если у тела недостаток электронов, то тело заряжено положительно.

Величина заряда тела будет равна

где ​ \( N \) ​ — число избыточных или недостающих электронов;
​ \( e \) ​ — элементарный заряд, равный 1,6·10 -19 Кл.

Важно!
Частица может не иметь заряда, но заряд без частицы не существует.

Электрические заряды взаимодействуют:

  • заряды одного знака отталкиваются:

  • заряды противоположных знаков притягиваются:

Прибор для обнаружения электрического заряда называется электроскоп. Основная часть прибора – металлический стержень, на котором закреплены два листочка металлической фольги, помещенные в стеклянный сосуд. При соприкосновении заряженного тела со стержнем электроскопа заряды распределяются между листочками фольги. Так как заряд листочков одинаков по знаку, они отталкиваются.

Для измерения зарядов можно использовать и электрометр. Основные части его – металлический стержень и стрелка, которая может вращаться вокруг горизонтальной оси. Стержень со стрелкой закреплен в пластмассовой втулке и помещен в металлический корпус, закрытый стеклянными крышками. При соприкосновении заряженного тела со стержнем стержень и стрелка получают электрические заряды одного знака. Стрелка поворачивается на некоторый угол.

Закон сохранения электрического заряда

Систему называют замкнутой (электрически изолированной), если в ней не происходит обмена зарядами с окружающей средой.

В любой замкнутой (электрически изолированной) системе сумма электрических зарядов остается постоянной при любых взаимодействиях внутри нее.

Полный электрический заряд ​ \( (q) \) ​ системы равен алгебраической сумме ее положительных и отрицательных зарядов ​ \( (q_1, q_2 … q_N) \) ​:

Важно!
В природе не возникают и не исчезают заряды одного знака: положительный и отрицательный заряды могут взаимно нейтрализовать друг друга, если они равны по модулю.

Закон Кулона

Закон Кулона был открыт экспериментально: в опытах с использованием крутильных весов измерялись силы взаимодействия заряженных шаров.

Закон Кулона формулируется так:
сила взаимодействия ​ \( F \) ​ двух точечных неподвижных электрических зарядов в вакууме прямо пропорциональна их модулям ​ \( q_1 \) ​ и \( q_2 \) и обратно пропорциональна квадрату расстояния между ними ​ \( r \) ​:

где ​ \( k=\frac=9\cdot10^9 \) ​ (Н·м 2 )/Кл 2 – коэффициент пропорциональности,
​ \( \varepsilon_0=8.85\cdot10^ \) ​ Кл 2 /(Н·м 2 ) – электрическая постоянная.

Коэффициент ​ \( k \) ​ численно равен силе, с которой два точечных заряда величиной 1 Кл каждый взаимодействуют в вакууме на расстоянии 1 м.

Сила Кулона направлена вдоль прямой, соединяющей взаимодействующие заряды. Заряды взаимодействуют друг с другом с силами, равными по величине и противоположными по направлению.

Значение силы Кулона зависит от среды, в которой они находятся. В этом случае формула закона:

где ​ \( \varepsilon \) ​ – диэлектрическая проницаемость среды.

Закон Кулона применим к взаимодействию

  • неподвижных точечных зарядов;
  • равномерно заряженных тел сферической формы.

В этом случае ​ \( r \) ​ – расстояние между центрами сферических поверхностей.

Важно!
Если заряженное тело протяженное, то его необходимо разбить на точечные заряды, рассчитать силы их попарного взаимодействия и найти равнодействующую этих сил (принцип суперпозиции).

Действие электрического поля на электрические заряды

Электрическое поле – это особая форма материи, существующая вокруг электрически заряженных тел.

Впервые понятие электрического поля было введено Фарадеем. Он объяснял взаимодействие зарядов следующим образом: каждый заряд создает вокруг себя электрическое поле, которое с некоторой силой действует на другой заряд.

Свойства электрического поля заключаются в том, что оно:

  • материально;
  • создается зарядом;
  • обнаруживается по действию на заряд;
  • непрерывно распределено в пространстве;
  • ослабевает с увеличением расстояния от заряда.

Действие заряженного тела на окружающие тела проявляется в виде сил притяжения и отталкивания, стремящихся поворачивать и перемещать эти тела по отношению к заряженному телу.

Силу, с которой электрическое поле действует на заряд, можно рассчитать по формуле:

где ​ \( \vec \) ​ – напряженность электрического поля, ​ \( q \) ​ – заряд.

Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов механики с учетом закона Кулона и вытекающих из него следствий.

Алгоритм решения задач о точечных зарядах и системах, сводящихся к ним:

  • сделать рисунок; указать силы, действующие на точечный заряд, помещенный в электрическое поле;
  • записать для заряда условие равновесия или основное уравнение динамики материальной точки;
  • выразить силы электрического взаимодействия через заряды и поля и подставить эти выражения в исходное уравнение;
  • если при взаимодействии заряженных тел между ними происходит перераспределение зарядов, к составленному уравнению добавить уравнение закона сохранения зарядов;
  • записать математически все вспомогательные условия;
  • решить полученную систему уравнений относительно неизвестной величины;
  • проверить решение

Напряженность электрического поля

Напряженность электрического поля ​ \( \vec \) ​ – векторная физическая величина, равная отношению силы ​ \( F \) ​, действующей на пробный точечный заряд, к величине этого заряда ​ \( q \) ​:

Обозначение – \( \vec \) , единица измерения в СИ – Н/Кл или В/м.

Напряженность поля точечного заряда в вакууме вычисляется по формуле:

где \( k=\frac=9\cdot10^9 \) (Н·м 2 )/Кл 2 ,
​ \( q_0 \) ​ – заряд, создающий поле,
​ \( r \) ​ – расстояние от заряда, создающего поле, до данной точки.

Напряженность поля точечного заряда в среде вычисляется по формуле:

где ​ \( \varepsilon \) ​ – диэлектрическая проницаемость среды.

Важно!
Напряженность электрического поля не зависит от величины пробного заряда, она определяется величиной заряда, создающего поле.

Направление вектора напряженности в данной точке совпадает с направлением силы, с которой поле действует на положительный пробный заряд, помещенный в эту точку.

Линией напряженности электрического поля называется линия, касательная к которой в каждой точке направлена вдоль вектора напряженности ​ \( \vec \) ​.

Линии напряженности электростатического поля начинаются на положительных электрических зарядах и заканчиваются на отрицательных электрических зарядах или уходят в бесконечность от положительного заряда и приходят из бесконечности к отрицательному заряду.

Распределение линий напряженности вокруг положительного и отрицательного точечных зарядов показано на рисунке.

Определяя направление вектора ​ \( \vec \) ​ в различных точках пространства, можно представить картину распределения линий напряженности электрического поля.

Поле, в котором напряженность одинакова по модулю и направлению в любой точке, называется однородным электрическим полем. Однородным можно считать электрическое поле между двумя разноименно заряженными металлическими пластинами. Линии напряженности в однородном электрическом поле параллельны друг другу.

Принцип суперпозиции электрических полей

Каждый электрический заряд создает в пространстве электрическое поле независимо от наличия других электрических зарядов.

Принцип суперпозиции электрических полей: напряженность электрического поля системы ​ \( N \) ​ зарядов равна векторной сумме напряженностей полей, создаваемых каждым из них в отдельности:

Электрические поля от разных источников существуют в одной точке пространства и действуют на заряд независимо друг от друга.

Потенциальность электростатического поля

Электрическое поле с напряженностью ​ \( \vec \) ​ при перемещении заряда ​ \( q \) ​ совершает работу. Работа ​ \( A \) ​ электростатического поля вычисляется по формуле:

где ​ \( d \) ​ – расстояние, на которое перемещается заряд,
​ \( \alpha \) ​ – угол между векторами напряженности электрического поля и перемещения заряда.

Важно!
Эта формула применима для нахождения работы только в однородном электростатическом поле.

Работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только начальным и конечным положением заряда.

Потенциальным называется поле, работа сил которого по перемещению заряда по замкнутой траектории равна нулю.

Важно!
Работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю. Электростатическое поле является потенциальным.

Работа электростатического поля по перемещению заряда равна изменению потенциальной энергии, взятому с противоположным знаком. В электродинамике энергию принято обозначать буквой ​ \( W \) ​, так как буквой ​ \( E \) ​ обозначают напряженность поля:

Потенциальная энергия заряда ​ \( q \) ​, помещенного в электростатическое поле, пропорциональна величине этого заряда. Потенциальная энергия взаимодействия зарядов вычисляется относительно нулевого уровня (аналогично потенциальной энергии поля силы тяжести). Выбор нулевого уровня потенциальной энергии определяется исходя из соображений удобства при решении задачи.

Потенциал электрического поля. Разность потенциалов

Потенциал – скалярная физическая величина, равная отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда.

Обозначение – ​ \( \varphi \) ​, единица измерения в СИ – вольт (В).

Потенциал \( \varphi \) является энергетической характеристикой электростатического поля.

Разность потенциалов численно равна работе, которую совершает электрическая сила при перемещении единичного положительного заряда между двумя точками поля:

Обозначение – ​ \( \Delta\varphi \) ​, единица измерения в СИ – вольт (В).

Иногда разность потенциалов обозначают буквой ​ \( U \) ​ и называют напряжением.

Важно!
Разность потенциалов \( \Delta\varphi=\varphi_1-\varphi_2 \) , а не изменение потенциала \( \Delta\varphi=\varphi_2-\varphi_1 \) . Тогда работа электростатического поля равна:

Важно!
Эта формула позволяет вычислить работу электростатических сил в любом поле.

В электростатике часто вычисляют потенциал относительно бесконечно удаленной точки. В этом случае потенциал поля в данной точке равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность.

Потенциал поля точечного заряда ​ \( q \) ​ в точке, удаленной от него на расстояние ​ \( r \) ​, вычисляется по формуле:

Для наглядного представления электрического поля используют эквипотенциальные поверхности.

Важно!
Внутри проводящего шара потенциал всех точек внутри шара равен потенциалу поверхности шара и вычисляется по формуле потенциала точечного заряда (​ \( r =R \) ​, где ​ \( R \) ​ – радиус шара). Напряженность поля внутри шара равна нулю.

Эквипотенциальной поверхностью, или поверхностью равного потенциала, называется поверхность, во всех точках которой потенциал имеет одинаковое значение.

Свойства эквипотенциальных поверхностей

  • Вектор напряженности перпендикулярен эквипотенциальным поверхностям и направлен в сторону убывания потенциала.
  • Работа по перемещению заряда по эквипотенциальной поверхности равна нулю.

В случае однородного поля эквипотенциальные поверхности представляют собой систему параллельных плоскостей. Для точечного заряда эквипотенциальные поверхности представляют собой концентрические окружности.

Разность потенциалов и напряженность связаны формулой:

Из принципа суперпозиции полей следует принцип суперпозиции потенциалов:

Потенциал результирующего поля равен сумме потенциалов полей отдельных зарядов.

Важно!
Потенциалы складываются алгебраически, а напряженности – по правилу сложения векторов.

Решение задач о точечных зарядах и системах, сводящихся к ним, основано на применении законов сохранения, теоремы об изменении кинетической энергии заряда с учетом работы электростатических сил.

Алгоритм решения таких задач:

  • установить характер и особенности электростатических взаимодействий объектов системы;
  • ввести характеристики (силовые и энергетические) этих взаимодействий, сделать рисунок;
  • записать законы сохранения и движения для объектов;
  • выразить энергию электростатического взаимодействия через заряды, потенциалы, напряженности;
  • составить систему уравнений и решить ее относительно искомой величины;
  • проверить решение.

Проводники в электрическом поле

Проводниками называют вещества, в которых может происходить упорядоченное перемещение электрических зарядов, т. е. протекать электрический ток.

Проводниками являются металлы, водные растворы солей, кислот, ионизованные газы. В проводниках есть свободные электрические заряды. В металлах валентные электроны взаимодействующих друг с другом атомов становятся свободными.

Если металлический проводник поместить в электрическое поле, то под его действием свободные электроны проводника начнут перемещаться в направлении, противоположном направлению напряженности поля. В результате на одной поверхности проводника появится избыточный отрицательный заряд, а на противоположной – избыточный положительный заряд.

Эти заряды создают внутри проводника внутреннее электрическое поле, вектор напряженности которого направлен противоположно вектору напряженности внешнего поля. Под действием внешнего электростатического поля электроны проводимости в металлическом проводнике перераспределяются так, что напряженность результирующего поля в любой точке внутри проводника равна нулю. Электрические заряды расположены на поверхности проводника.

Важно!
Если внутри проводника есть полость, то напряженность в ней будет равна нулю независимо от того, какое поле имеется вне проводника и как заряжен проводник. Внутренняя полость в проводнике экранирована (защищена) от внешних электростатических полей. На этом основана электростатическая защита.

Явление перераспределения зарядов во внешнем электростатическом поле называется электростатической индукцией.

Заряды, разделенные электростатическим полем, взаимно компенсируют друг друга, если проводник удалить из поля. Если такой проводник разрезать, не вынося из поля, то его части будут иметь заряды разных знаков.

Важно!
Во всех точках поверхности проводника вектор напряженности направлен перпендикулярно к его поверхности. Поверхность проводника является эквипотенциальной (потенциалы всех точек поверхности проводника равны).

Диэлектрики в электрическом поле

Диэлектриками называют вещества, не проводящие электрический ток. Диэлектриками являются стекло, фарфор, резина, дистиллированная вода, газы.

В диэлектриках нет свободных зарядов, все заряды связаны. В молекуле диэлектрика суммарный отрицательный заряд электронов равен положительному заряду ядра. Различают полярные и неполярные диэлектрики.

В молекулах полярных диэлектриков ядра и электроны расположены так, что центры масс положительных и отрицательных зарядов не совпадают и находятся на некотором расстоянии друг от друга. То есть молекулы представляют собой диполи независимо от наличия внешнего электрического поля. В отсутствие внешнего электрического поля из-за теплового движения молекул диполи расположены хаотично, поэтому суммарная напряженность поля всех диполей диэлектрика равна нулю.

Если в отсутствие внешнего электрического поля центры масс положительных и отрицательных зарядов в молекуле диэлектрика совпадают, то он называется неполярным. Пример такого диэлектрика – молекула водорода. Если такой диэлектрик поместить во внешнее электрическое поле, то направления векторов сил, действующих на положительные и отрицательные заряды, будут противоположными. В результате молекула деформируется и превращается в диполь. При внесении диэлектрика в электрическое поле происходит его поляризация.

Поляризация диэлектрика – процесс смещения в противоположные стороны разноименных связанных зарядов, входящих в состав атомов и молекул вещества в электрическом поле.

Если диэлектрик неполярный, то в его молекулах происходит смещение положительных и отрицательных зарядов. На поверхности диэлектрика появятся поверхностные связанные заряды. Связанными эти заряды называют потому, что они не могут свободно перемещаться отдельно друг от друга.

Внутри диэлектрика суммарный заряд равен нулю, а на поверхностях заряды не скомпенсированы и создают внутри диэлектрика поле, вектор напряженности которого направлен противоположно вектору напряженности внешнего поля. Это значит, что внутри диэлектрика поле имеет меньшую напряженность, чем в вакууме.

Физическая величина, равная отношению модуля напряженности электрического поля в вакууме к модулю напряженности электрического поля в однородном диэлектрике, называется диэлектрической проницаемостью вещества:

В полярном диэлектрике во внешнем электрическом поле происходит поворот диполей, и они выстраиваются вдоль линий напряженности.

Если внесенный в электрическое поле диэлектрик разрезать, то его части будут электрически нейтральны.

Электрическая емкость. Конденсатор

Электрическая емкость (электроемкость) – скалярная физическая величина, характеризующая способность уединенного проводника удерживать электрический заряд.

Обозначение – ​ \( C \) ​, единица измерения в СИ – фарад (Ф).

Уединенный проводник – это проводник, удаленный от других проводников и заряженных тел.

Фарад – электроемкость такого уединенного проводника, потенциал которого изменяется на 1 В при сообщении ему заряда 1 Кл:

Формула для вычисления электроемкости:

где ​ \( q \) ​ – заряд проводника, ​ \( \varphi \) ​ – его потенциал.

Электроемкость зависит от его линейных размеров и геометрической формы. Электроемкость не зависит от материала проводника и его агрегатного состояния. Электроемкость проводника прямо пропорциональна диэлектрической проницаемости среды, в которой он находится.

Конденсатор – это система из двух проводников, разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников.

Проводники называют обкладками конденсатора. Заряды обкладок конденсатора равны по величине и противоположны по знаку заряда. Электрическое поле сосредоточено между обкладками конденсатора. Конденсаторы используют для накопления электрических зарядов.

Электроемкость конденсатора рассчитывается по формуле:

где ​ \( q \) ​ – модуль заряда одной из обкладок,
​ \( U \) ​ – разность потенциалов между обкладками.

Электроемкость конденсатора зависит от линейных размеров и геометрической формы и расстояния между проводниками. Электроемкость конденсатора прямо пропорциональна диэлектрической проницаемости вещества между проводниками.

Плоский конденсатор представляет две параллельные пластины площадью ​ \( S \) ​, находящиеся на расстоянии ​ \( d \) ​ друг от друга.

Электроемкость плоского конденсатора:

где ​ \( \varepsilon \) ​ – диэлектрическая проницаемость вещества между обкладками,
\( \varepsilon_0 \) – электрическая постоянная.

На электрической схеме конденсатор обозначается:

  • по типу диэлектрика – воздушный, бумажный и т. д.;
  • по форме – плоский, цилиндрический, сферический;
  • по электроемкости – постоянной и переменной емкости.

Конденсаторы можно соединять между собой.

Параллельное соединение конденсаторов

При параллельном соединении конденсаторы соединяются одноименно заряженными обкладками. Напряжения конденсаторов равны:

Последовательное соединение конденсаторов

При последовательном соединении конденсаторов соединяют их разноименно заряженные обкладки.

Заряды конденсаторов при таком соединении равны:

Величина, обратная общей емкости:

При таком соединении общая емкость всегда меньше емкостей отдельных конденсаторов.

Важно!
Если конденсатор подключен к источнику тока, то разность потенциалов между его обкладками не изменяется при изменении электроемкости и равна напряжению источника. Если конденсатор заряжен до некоторой разности потенциалов и отключен от источника тока, то его заряд не изменяется при изменении электроемкости.

Применение конденсаторов
Конденсаторы используются в радиоэлектронных приборах как накопители заряда, для сглаживания пульсаций в выпрямителях переменного тока.

Энергия электрического поля конденсатора

Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор.

Электрическая энергия конденсатора сосредоточена в пространстве между обкладками конденсатора, то есть в электрическом поле, поэтому ее называют энергией электрического поля. Формулы для вычисления энергии электрического поля:

Так как напряженность электрического поля прямо пропорциональна напряжению, то энергия электрического поля конденсатора пропорциональна квадрату напряженности.

Плотность энергии электрического поля:

где ​ \( V \) ​ – объем пространства между обкладками конденсатора.

Плотность энергии не зависит от параметров конденсатора, а определяется только напряженностью электрического поля.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *