Разбираемся в физике частиц: 7) частицы – это кванты
Вот мы, наконец, и добрались до нашей цели: понять, что на самом деле представляют собой те штуки, что мы зовём «частицами», а именно – электроны, фотоны, кварки, глюоны и нейтрино. Всё, это, конечно же относится к современной науке. Стоит помнить, что в науке нет никаких гарантий того, что текущее понимание не будет в дальнейшем углублено.
Предыдущая статья описывала, что такое поля – объекты, обладающие значением в любой точке пространства и в любой момент времени (функции от пространства и времени), удовлетворяющие уравнению движения, и физически осмысленные в плане того, что они способны переносить энергию из одного места в другое и влиять на физические процессы Вселенной.
Мы узнали, что большинство знакомых нам полей описывают свойство среды, такой, как высота верёвки или давление в газе. Но также мы узнали, что в эйнштейновской теории относительности существует особый класс полей, релятивистские поля, не требующие среды. Или, по крайней мере, если у них и есть среда, она весьма необычная. Ничто в уравнениях поля не требует наличия какой-то среды и не говорит о том, какое свойство этой среды описывают релятивистские поля.
Так что пока мы будем рассматривать релятивистские поля как элементарные физические объекты вселенной, а не как определённые свойства неизвестной среды. Будет ли среди физиков поддерживаться такая точка зрения и дальше – покажет время.
Мы рассматривали два класса релятивистских полей, и теперь мы изучим их чуть подробнее. Они удовлетворяют либо уравнению движения Класса 0, где cw = c (где c – универсальный предел скорости, часто называемый «скоростью света»).
Или уравнениям движения Класса 1, где cw=c
В предыдущей статье показано, что μ – минимальная частота волны в таких полях. В этой статье мы будем обозначать её νmin.
Почему универсальный предел скорости часто называют скоростью света? Волны с уравнением класса 0 перемещаются со скоростью cw. Свет (общий термин, обозначающий электромагнитные волны любой частоты), перемещаясь через пустое пространство, удовлетворяет релятивистскому уравнению класса 0, поэтому волны света (и волны любых релятивистских полей, удовлетворяющих релятивистскому уравнению класса 0) перемещаются со скоростью c.
Более того, в той же статье мы видели, что если у поля класса 1 есть волна с амплитудой А, частотой ν, длиной волны λ и равновесным состоянием Z0, то уравнение движения требует, чтобы частота и длина волны были связаны с величиной μ = νmin, появляющейся в уравнениях, формулой
Это пифагорова формула – её можно при желании представить в виде треугольника, как на рис. 1. Минимальная частота любой волны равна νmin, а присвоение ν = νmin (и, следовательно, при λ → ∞), соответствует сжатию треугольника до вертикальной линии (рис. 1, внизу). Также можно получить схожее соотношение класса 0, сделав μ = νmin нулевым. Потом можно извлечь квадратный корень, и получить
Это уже треугольник, сжатый до горизонтальной линии (рис. 1, справа). В этом случае минимальная частота равна нулю. Поле может колебаться как угодно медленно.
Рис. 1
На А никаких ограничений нет. Но это оттого, что мы игнорируем квантовую механику. Пришло время изучить релятивистские квантовые поля.
Релятивистские квантовые поля
Реальный мир – квантово-механический, поэтому амплитуда А не может быть любой. Она принимает дискретные значения, пропорциональные квадратному корню из n, неотрицательного целого числа, обозначающего количество квантов колебаний в волне. Хранящаяся в волне энергия равна
Где h – постоянная Планка, обязательно появляющаяся там, где квантовая механика имеет значение. Иначе говоря, энергия, связанная с каждым квантом колебаний, зависит только от частоты колебаний волны, и равна
Это соотношение впервые было предложено, конкретно для волн света, Эйнштейном в 1905 году, в его объяснении фотоэлектрического эффекта.
Но вспомним наше пифагорово соотношение частоты и длины волны. Если мы умножим его на h 2 , мы получим, что для кванта поля класса 1
Выглядит знакомо. Мы уже знаем, что любой объект в эйнштейновской теории относительности должен удовлетворять уравнению, описывающему его энергию, импульс и массу:
Ещё одно пифагорово соотношение. Минимальная энергия объекта равна mc 2 , что напоминает утверждение о минимальной частоте, которой может обладать волна класса 1, νmin. У нас может возникнуть искушение предположить, что, вероятно, для кванта релятивистского поля
Первое уравнение впервые появилось в работе Луи Де Бройля в 1924 году – почти через 20 лет после Эйнштейна. Почему это заняло так много времени? Я не знаю.
Рис. 2
Имеет ли это смысл? Как мы отмечали, в релятивистские поля класса 0 входят и электрические поля, а их волны – это электромагнитные волны, то есть, свет. Версия формулы (*), которую мы получаем для квантов класса 0, такая же, как для полей класса 1, у которых μ = νmin приравнивается к нулю – то есть, m = 0. Извлечём квадратный корень, и получим
Или Эйнштейновское уравнение для безмассовых частиц. А кванты электромагнитных волн (включая все виды света: видимый, ультрафиолет, инфракрасный, радиоволны, гамма-излучение, и т.п., отличающиеся только частотой, и, следовательно, энергией квантов) и правда будут безмассовыми частицами – как только мы применим указанную выше пару уравнений (**) и (***). Это фотоны.
Из уравнения (***) мы, наконец, можем подсчитать массу частицы. Каждая обладающая массой частица – это квант поля класса 1. Минимальная частота таких волн равна νmin. Минимальная энергия одного кванта такой волны равна h, помноженной на частоту. А масса частицы – просто минимальная энергия, делённая на c 2 .
Если мы хотим понять, откуда берётся масса частицы, нам нужно понять, что определяет νmin, и почему вообще существует минимальная частота. Для таких частиц, как электроны и кварки, это полностью неясно, но известно, что в этом важную роль играет поле Хиггса.
Заключим: частицы природы – это кванты релятивистских квантовых полей. Безмассовые частицы – это кванты волн полей, удовлетворяющих уравнению класса 0. Обладающие массой соответствуют полям уравнения класса 1. Всяких деталей существует множество, но этот факт – одно из основных фундаментальных свойств нашего мира.
Действительно ли эти кванты ведут себя как частицы?
Мы представляем себе частицы, как частички пыли или песчинки. Кванты в этом смысле частицами не являются – это волны, у которых для определённой частоты есть минимальные энергия и амплитуда. Но они ведут себя так похоже на частицы, что нас можно простить за использование слова «частица» в их описании. Посмотрим, почему так.
Если поднять волну в воде, и позволить ей пройти через камни, лежащие неглубоко под поверхностью, часть волны перейдёт линию камней, а часть отразится, как показано на рис. 3. То, какая именно часть волны перейдёт линию, зависит от формы камней, их близости к поверхности, и т.п. Но суть в том, что часть волны передаётся через камни, а часть отразится. Часть энергии волны пойдёт в том же направлении, часть пойдёт в обратном.
Но если вы отправите один фотон в сторону отражающего стекла, этот фотон либо пройдёт сквозь него, либо отразится (рис. 4). Точнее сказать, если вы измерите поведение фотона, то узнаете, отразился он или передался. Если не измерите – невозможно будет сказать, что произошло. Добро пожаловать в болото квантовой механики. Фотон – это квант. Его энергию нельзя поделить на часть, которая прошла через стекло, и часть, которая отразилась – потому что тогда с каждой стороны будет меньше одного кванта, что запрещено. (Мелкий шрифт: стекло не меняет частоту фотона, поэтому энергию нельзя разделить между двумя или более квантами меньших частот). Так что фотон, хотя это и волна, ведёт себя как частица в этом случае. Он либо отражается от стекла, либо нет. Отражается он, или нет – этого квантовая механика не предсказывает. Она даёт только вероятность отражения. Но она предсказывает, что, что бы там ни произошло, фотон будет путешествовать как единое целое и сохранять свою идентичность.
А что будет с двумя фотонами? Это зависит. К примеру, если фотоны испущены в разное время из разных мест, то наблюдатель увидит два кванта, разделённых в пространстве, и, вероятно, двигающихся в разных направлениях (рис. 5). У них могут быть и разные частоты.
Рис. 5: независимые кванты
В особом случае, когда два фотона испускаются совместно и идеально синхронно (как в лазерах), они ведут себя, как показано на рис. 6. Если мы отправим комбинацию из двух фотонов на стекло, то сможет случиться не две, а три вещи. Либо оба фотона пройдут через стекло, либо оба отразятся, либо один пройдёт, а другой отразится. От стекла отразятся 0, 1 или 2 фотона – других вариантов нет. В этом смысле кванты света опять ведут себя, как частицы, как маленькие мячики – если бросить два мяча в решётку, в которой есть отверстия, то от решётки смогут отразиться 0, 1 или 2 мяча, и через отверстия пройдут 0, 1 или 2 мяча. Не существует возможности, в которой от решётки отразится 1,538 мяча.
Но это фотоны, которые, не имея массы, обязаны двигаться со скоростью света и E = p c. Что насчёт частиц с массой, вроде электронов? Электроны – это кванты электрического поля, и, как и фотоны, их можно испускать, поглощать, отражать или передавать как единое целое. У них есть определённые энергия и импульс, , где me — это масса электрона. Отличие электронов от фотонов в том, что они движутся медленнее света, поэтому могут и покоиться. Зарисовка такого события (в квантовой механике из-за принципа неопределённости ничто не может быть по-настоящему статичным) стационарного электрона дана на рис. 7. Это волна минимальной частоты, полученной присвоением длине волны очень большого, практически бесконечного, значения. Поэтому пространственная форма волны на рис. не демонстрирует никаких извилин – она просто колеблется во времени.
Так что, да, на самом деле кванты ведут себя очень похоже на частицы, и потому называть электроны, кварки, нейтрино, фотоны, глюоны, W-частицы и частицы Хиггса «частицами» не будет катастрофическим обманом. Но слово «квант» подходит для этого лучше – потому что это именно кванты.
Чем фермионы и бозоны отличаются друг от друга
• Все элементарные частицы делятся на фермионы и бозоны.
• Фермионы (включая электроны, кварки и нейтрино) удовлетворяют принципу запрета Паули – два фермиона одного типа не могут делать одно и то же.
• Бозоны (включая фотоны, W и Z частицы, глюоны, гравитоны и частицы Хиггса) другие: два или более бозонов одного типа могут делать одно и то же.
Именно поэтому из фотонов можно делать лазеры – поскольку они бозоны, они могут находиться в одинаковом состоянии и порождать мощный луч одного света. Но лазер нельзя сделать из электронов, являющихся фермионами.
Как проявляет себя это различие на языке математики? Оказывается, что приводимые мною формулы подходят для бозонов, а для фермионов их нужно изменить – слегка, но с большими последствиями. Для бозонов у нас будет:
Что означает, что энергия каждого кванта равна h ν. Это подразумевает, что кванты-бозоны могут делать одно и то же; когда n больше 1, у бозонного поля волна будет состоять из нескольких квантов, колеблющихся и движущихся совместно. Но для фермионов:
Энергия одного кванта всё ещё равна h ν, так что всё обсуждение частиц и их энергий, импульса и масс остаётся в силе. Но количество квантов у электронной волны может равняться только 0 или 1. Десять электронов, в отличие от десяти фотонов, нельзя организовать в одну волну большей амплитуды. Поэтому не существует фермионных волн, состоящих из большого количества фермионов, колеблющихся и движущихся совместно.
Могут ли странные квантовые объекты объяснить наше существование?
Каждый из нас хочет знать кто мы, откуда и куда движемся. Ответы на эти вопросы предлагают самые разные люди, от философов до священников и физиков-теоретиков, но именно последние обладают наибольшими знаниями о Вселенной. До начала ХХ века, однако, никто и предположить не мог, что элементарных частиц окажется так много, что из них можно составить целый «зоопарк». Лишь в 1925 году на смену старой квантовой теории пришла квантовая механика, которая основывается на волновых уравнениях и принципе неопределенности, а ее положения значительно отличаются от положений механики классической. Всего за несколько десятилетий было обнаружено множество элементарных частиц, а их взаимодействие друг с другом легло в основу Стандартной модели. Запуск Большого адронного коллайдера (БАК) и последующее обнаружение «частицы Бога» – по-научному Бозон Хиггса – стало лишь началом в понимании нашего сложного мира. Каждый год ученые открывают новые частицы, параллельно пытаясь ответить на вопрос о том, почему мы существуем.
Q-balls – странные квантовые объекты, способные вызывать гравитационные волны
Частица за частицей
Одной из последних обнаруженных физиками частиц является тетракварк (подробнее про их открытие я рассказывала вот здесь). Если совсем кратко, то тетракварки представляют собой частицу экзотической материи, которая содержит два тяжелых кварка и два легких антикварка. Кварки, как, вероятно, помнит читатель, являются фундаментальными строительными блоками Вселенной, из которых состоит вся материя.
Кварки также являются частицами, из которых могут состоять адроны — первая группа элементарных частиц. До недавнего времени считалось, что нейтроны состоят из трех кварков, но новая частица адрона состоит из четырех. Исследователи отмечают, что тетракварк – самая долгоживущая частица из всех известных.
Тетракварки были обнаружены в 2020 году
Еще одной новинкой в нашем зоопарке оказались энионы. Это не просто новые частицы, они настолько необычны, что физики отнесли их к третьему царству элементарных частиц.
Критерий деления элементарных частиц на два царства – это значение спина, квантового числа, которое характеризует собственный момент импульса частицы. Иными словами, если спин отдельно взятой частицы определяется целым числом – перед вами бозон, а если полуцелым – фермион.
Теперь же утверждение о том, что каждая последняя частица во Вселенной – от космических лучей до кварков – является либо фермионом, либо бозоном, кажется, придется пересмотреть. Вот что говорит об этом Фрэнк Вильчек, лауреат Нобелевской премии по физике из Массачусетского технологического института: «Раньше у нас были бозоны и фермионы, а теперь у нас есть это третье царство элементарных частиц».
В ходе научного исследования ученые доказали, что энионы принадлежат к отдельному классу элементарных частиц.
В ходе недавнего исследования физикам наконец удалось доказать, что энионы ведут себя как нечто среднее между поведением бозонов и фермионов. Более того, их поведение в точности соответствует теоретическим предсказаниям.
Причем здесь гравитационные волны?
Итак, освежив в памяти Стандартную модель, которая объясняет как взаимодействуют невидимые глазу частицы создавая реальность, идем дальше: если взаимодействие элементарных частиц создает наш мир, то может ли физика объяснить наше существование?
Очень похоже на то. По крайней мере астрофизики полагают, что в начале Вселенной существовал дисбаланс между материей и антивеществом. И чтобы понять, откуда он взялся, ученые обратились к гравитационным волнам.
Гравитационные волны – это изменения гравитационного поля, распространяющиеся подобно волнам. Если совсем просто, то они искажают пространство-время. Подробнее о том, что такое гравитационные волны и когда и как их открыли читайте в увлекательном материале моего коллеги Артема Сутягина.
Гравитационные волны могут разрешить кризис космологии
Команда физиков-теоретиков, возглавляемая Грэмом Уайтом из Института физики и математики Вселенной Кавли, сосредоточилась на явлении, под названием Q-ball. Как и во многих концепциях теоретической физики, Q-ball относительно трудно объяснить.
Между тем, одна из самых больших космологических загадок заключается в том, почему Вселенная состоит из гораздо большего количества материи, чем антивещества. Совсем недавно команда физиков-теоретиков поняла, где искать ответ – необходимо обнаружить гравитационные волны, создаваемые причудливыми квантовыми объектами под названием Q-ball.
Не будем также забывать, что у каждого вида обычной частицы материи есть партнер из антивещества с противоположными характеристиками. Так что когда материя взаимодействует с антивеществом, они уничтожают друг друга. Именно этот факт и делает наше существование загадкой, поскольку космологи почти уверены, что на заре Вселенной было равное количество вещества и антивещества.
Гравитационные волны, зафиксированные детектором LIGO, произошли из-за столкновения черных дыр
Но если все эти партнеры по материи и антивеществу должны были уничтожить друг друга, Вселенная бы осталась без материи вообще. Но материя, как мы знаем, существует, и исследователи начинают постепенно понимать в чем весь сыр-бор.
Одна из потенциальных причин может заключаться в Q-ball-ах – теоретических «комках», которые образовались сразу после Большого взрыва, до того, как Вселенная начала расширяться. Эти объекты должны содержать свою собственную асимметрию материи и антивещества. Это означает, что внутри каждого Q-ball-а существуют неравные доли материи и антивещества.
И если бы Q—ball-ы высвободили больше материи, чем антивещества, то стали бы причиной гравитационной ряби в пространстве-времени. Согласно результатам нового исследования, опубликованного в журнале Physical Review Letters, в таком случае обнаружить Q-ball-ы можно было бы с помощью гравитационных волн. Но как?
Распад Q-ball – ключ к созданию гравитационных волн
По сути, Q-ball-ы – это скопления заряженных полей, которые превратились в комки и слиплись. Однажды склеенные, они, как правило, служат долго, пережив фоновое излучение, возникшее в результате расширения Вселенной. Но вот в них потенциально интересно, так это то, что происходит, когда Q-ball распадаются.
Распад Q-ball происходит быстро и яростно. Причем настолько, что они образуют гравитационные волны! Более того, эти события распада относительно распространены, и у ученых должны быть средства для их обнаружения. Обсерватории гравитационных волн, такие как LIGO, уже обнаружили гравитационные волны от других источников, сравнимые по силе и частоте с волнами, вызванными распадающимися Q-ball-ами.
Вероятно, скоро мы узнаем о Вселенной много нового
Хотите всегда быть в курсе последних новостей из мира и высоких технологий? Подписывайтесь на наш канал в Telegram – так вы точно не пропустить ничего интересного!
Отметим, что до сих пор не было обнаружено гравитационных волн, приписываемых распадам Q-ball-ов. Тем не менее, доктор Уайт и его коллеги с оптимизмом смотрят в ближайшее будущее:
Почти наверняка мы скоро обнаружим сигнал с начала времен, подтверждающий эту теорию о том, почему мы и остальной мир материи вообще существуем. Это захватывающее утверждение, и оно должно интересовать любого, кто кровно заинтересован в том, почему материя вообще существует, – пишут авторы научной работы.
Разобраться как устроен наш мир непросто, но, кажется, реально
И напоследок хочется напомнить – видимо в ближайшие годы нас ожидает огромное количество открытий. Ранее в этому году мы рассказывали о «новой силе природы» – ученые из ЦЕРН действительно стоят на пороге открытия «новой физики».
Так что ждем с нетерпением дальнейших исследований и стараемся разобраться в невероятно сложной для человеческого понимания физике строительных блоков нас самих и нашей Вселенной.
Это не микромир — это другое: объясняем квантовую физику простым языком
Введение. Принципиальная сложность понимания квантовой теории
Сложно представить, как выглядела бы наша цивилизация без классической физики и математики. Понятия об абсолютной «объективной реальности, существующей независимо от нашего сознания», о трехмерном евклидовом пространстве и равномерно текущем времени настолько глубоко укоренились в сознании, что мы не замечаем их. А главное, отказываемся замечать, что применимы они лишь в некоторых рутинных ситуациях и для объяснения устройства Вселенной оказываются попросту неверны.
Хотя нечто подобное уже столетия назад высказывалось восточными философами и мистиками, в западной науке впервые об этом заговорил Эйнштейн. Это была революция, которую наше сознание не приняло. Со снисходительностью мы повторяем: «все относительно», «время и пространство едины», — всегда держа в уме, что это допущение, научная абстракция, имеющая мало общего с нашей привычной устойчивой действительностью. На самом же деле как раз наши представления слабо соотносятся с действительностью — удивительной и невероятной.
После того как в общих чертах было открыто строение атома и предложена его «планетарная» модель, ученые столкнулись со множеством парадоксов, для объяснения которых появился целый раздел физики — квантовая механика. Она быстро развивалась и далеко продвинулась в объяснении Вселенной. Но объяснения эти настолько сложны для восприятия, что до сих пор мало кто может осознать их хотя бы в общих чертах.
Действительно, большинство достижений квантовой механики сопровождаются настолько сложным математическим аппаратом, что он попросту не переводится ни на один из человеческих языков. Математика, как и музыка, предмет крайне абстрактный, и над адекватным выражением смысла, к примеру, свертывания функций или многомерных рядов Фурье ученые бьются до сих пор. Язык математики строг, но мало соотносится с нашим непосредственным восприятием.
Кроме того, Эйнштейн математически показал, что наши понятия времени и пространства иллюзорны. В действительности пространство и время нераздельны и образуют единый четырехмерный континуум. Представить его вряд ли возможно, ведь мы привыкли иметь дело только с тремя измерениями.
Планетарная теория. Волна или частица
До конца XIX века атомы считались неделимыми «элементами». Открытие радиации позволило Резерфорду проникнуть под «оболочку» атома и сформулировать планетарную теорию его строения: основная масса атома сосредоточена в ядре. Положительный заряд ядра компенсируется отрицательно заряженными электронами, размеры которых настолько малы, что их массой можно пренебречь. Электроны вращаются вокруг ядра по орбитам, подобно вращению планет вокруг Солнца. Теория весьма красивая, но возникает ряд противоречий.
Во-первых, почему отрицательно заряженные электроны не «падают» на положительное ядро? Во-вторых, в природе атомы сталкиваются миллионы раз в секунду, что ничуть не вредит им — чем объяснить удивительную прочность всей системы? Говоря словами одного из «отцов» квантовой механики Гейзенберга, «никакая планетная система, которая подчиняется законам механики Ньютона, никогда после столкновения с другой подобной системой не возвратится в свое исходное состояние». Кроме того, размеры ядра, в котором собрана практически вся масса, в сравнении с целым атомом чрезвычайно малы. Можно сказать, что атом — пустота, в которой с бешеной скоростью вращаются электроны. При этом такой «пустой» атом предстает как весьма твердая частица. Объяснение этому явлению выходит за рамки классического понимания. На самом деле на субатомном уровне скорость частицы возрастает тем больше, чем больше ограничивается пространство, в котором она движется. Так что чем ближе электрон притягивается к ядру, тем быстрее он движется и тем больше отталкивается от него. Скорость движения настолько велика, что «со стороны» атом «выглядит твердым», как выглядят диском лопасти вращающегося вентилятора.
Данные, плохо укладывающиеся в рамки классического подхода, появились задолго до Эйнштейна. Впервые подобная «дуэль» состоялась между Ньютоном и Гюйгенсом, которые пытались объяснить свойства света. Ньютон утверждал, что это поток частиц, Гюйгенс считал свет волной. В рамках классической физики примирить их позиции невозможно. Ведь для нее волна — это передающееся возбуждение частиц среды, понятие, применимое лишь для множества объектов. Ни одна из свободных частиц не может перемещаться по волнообразной траектории. Но вот в глубоком вакууме движется электрон, и его перемещения описываются законами движения волн. Что здесь возбуждается, если нет никакой среды? Квантовая физика предлагает соломоново решение: свет является одновременно и частицей, и волной.
Вероятностные электронные облака. Строение ядра и ядерные частицы
Постепенно становилось все более ясно: вращение электронов по орбитам вокруг ядра атома совершенно не похоже на вращение планет вокруг звезды. Обладая волновой природой, электроны описываются в терминах вероятности. Мы не можем сказать об электроне, что он находится в такой-то точке пространства, мы можем только описать примерно, в каких областях он может находиться и с какой вероятностью. Вокруг ядра электроны формируют «облака» таких вероятностей от простейшей шарообразной до весьма причудливых форм, похожих на фотографии привидений.
Но тот, кто хочет окончательно понять устройство атома, должен обратиться к его основе, к строению ядра. Составляющие его крупные элементарные частицы — положительно заряженные протоны и нейтральные нейтроны — также обладают квантовой природой, а значит, движутся тем быстрее, чем в меньший объем они заключены. Поскольку размеры ядра чрезвычайно малы даже в сравнении с атомом, эти элементарные частицы носятся со вполне приличными скоростями, близкими к скорости света. Для окончательного объяснения их строения и поведения нам понадобится «скрестить» квантовую теорию с теорией относительности. К сожалению, такая теория до сих пор не создана и нам придется ограничиться несколькими общепринятыми моделями.
Теория относительности показала (а проведенные эксперименты доказали), что масса является лишь одной из форм энергии. Энергия — величина динамическая, связанная с процессами или работой. Поэтому элементарную частицу следует воспринимать как вероятностную динамическую функцию, как взаимодействия, связанные с непрерывным превращением энергии. Это дает неожиданный ответ на вопрос, насколько элементарны элементарные частицы, можно ли разделить их на «еще более простые» блоки. Если разогнать две частицы в ускорителе, и затем столкнуть, мы получим не две, а три частицы, причем совершенно одинаковые. Третья просто возникнет из энергии их столкновения — таким образом, они и разделятся, и не разделятся одновременно!
Участник вместо наблюдателя
В мире, где понятия пустого пространства, изолированной материи теряют смысл, частица описывается только через ее взаимодействия. Для того чтобы сказать что-то о ней, нам придется «вырвать» ее из первоначальных взаимодействий и, подготовив, подвергнуть другому взаимодействию — измерению. Так что мы меряем в итоге? И насколько правомерны наши измерения вообще, если наше вмешательство меняет взаимодействия, в которых участвует частица, — а значит, меняет и ее саму?
В современной физике элементарных частиц все больше нареканий вызывает. сама фигура ученого-наблюдателя. Правомернее было бы называть его «участником».
Наблюдатель-участник необходим не только для измерения свойств субатомной частицы, но и для того, чтобы определить эти самые свойства, ведь и о них можно говорить лишь в контексте взаимодействия с наблюдателем. Стоит ему выбрать способ, каким он будет проводить измерения, и в зависимости от этого реализуются возможные свойства частицы. Стоит сменить наблюдающую систему, и свойства наблюдаемого объекта также изменятся.
Этот важный момент раскрывает глубинное единство всех вещей и явлений. Сами частицы, непрерывно переходя одна в другую и в иные формы энергии, не имеют постоянных или точных характеристик — эти характеристики зависят от способа, каким мы решили их видеть. Если понадобится измерить одно свойство частицы, другое непременно изменится. Такое ограничение не связано с несовершенством приборов или другими вполне исправимыми вещами. Это характеристика действительности. Попробуйте точно измерить положение частицы, и вы ничего не сможете сказать о направлении и скорости ее движения — просто потому, что у нее их не будет. Опишите точно движение частицы — вы не найдете ее в пространстве. Так современная физика ставит перед нами проблемы уже совершенно метафизического свойства.
Принцип неопределенности. Место или импульс, энергия или время
Мы уже говорили, что разговор о субатомных частицах нельзя вести в привычных нам точных терминах, в квантовом мире нам остается лишь вероятность. Это, конечно, не та вероятность, о которой говорят, делая ставки на скачках, а фундаментальное свойство элементарных частиц. Они не то чтобы существуют, но скорее — могут существовать. Они не то чтобы обладают характеристиками, а скорее — могут ими обладать. Научно выражаясь, частица является динамической вероятностной схемой, и все ее свойства находятся в постоянном подвижном равновесии, балансируют, как Инь и Ян на древнем китайском символе тайцзи. Недаром нобелевский лауреат Нильс Бор, возведенный в дворянское звание, для своего герба выбрал именно этот знак и девиз: «Противоположности дополняют друг друга». Математически распределение вероятности представляет собой неравномерные волновые колебания. Чем больше амплитуда волны в определенном месте, тем выше вероятность существования частицы в нем. При этом длина ее непостоянна — расстояния между соседними гребнями неодинаковы, и чем выше амплитуда волны, тем сильнее разница между ними. В то время как амплитуда соответствует положению частицы в пространстве, длина волны связана с импульсом частицы, то есть с направлением и скоростью ее движения. Чем больше амплитуда (чем точнее можно локализовать частицу в пространстве), тем более неопределенной становится длина волны (тем меньше можно сказать об импульсе частицы). Если мы сможем установить положение частицы с предельной точностью, у нее вообще не будет никакого определенного импульса.