Взаимодействие магнитов объясняется тем что
Перейти к содержимому

Взаимодействие магнитов объясняется тем что

Постоянные магниты — виды и свойства, формы, взаимодействие магнитов

Ферромагнитное изделие, способное сохранять значительную остаточную намагниченность после снятия внешнего магнитного поля, называется постоянным магнитом.

Постоянные магниты изготавливают из различных металлов, таких как: кобальт, железо, никель, сплавы редкоземельных металлов (для неодимовых магнитов), а также из естественных минералов типа магнетитов.

Постоянные магниты - виды и свойства, взаимодействие магнитов

Сфера применения постоянных магнитов сегодня очень широка, однако назначение их принципиально везде одно и то же — как источник постоянного магнитного поля без подвода электроэнергии. Таким образом, магнит — это тело, обладающее своим собственным магнитным полем.

Магнит и магнитное поле

Само же слово «магнит» происходит от греческого словосочетания, которое переводится как «камень из Магнесии», по названию азиатского города, где были в древности открыты залежи магнетита — магнитного железняка. С физической точки зрения элементарным магнитом является электрон, а магнитные свойства магнитов вообще обуславливаются магнитными моментами электронов, входящих в состав намагниченного материала.

Постоянный магнит является частью магнитных систем электротехнических изделий. Работа устройств с постоянными магнитами, как правило, основана на преобразовании энергии:

механической в механическую (сепараторы, магнитные муфты и т. п.);

механической в электромагнитную (электрогенераторы, громкоговорители и т. п.);

электромагнитной в механическую (электродвигатели, динамики, магнитоэлектрические системы и т. п.);

механической во внутреннюю (тормозные устройства и т. п.).

К постоянным магнитам предъявляются следующие требования:

высокая удельная магнитная энергия;

минимальные габариты при заданной напряженности поля;

сохранение работоспособности в широком диапазоне рабочих температур;

устойчивость к воздействию внешних магнитных полей; – технологичность;

низкая стоимость исходного сырья;

стабильность магнитных параметров во времени.

Разнообразие задач, решаемых при помощи постоянных магнитов, вызывает необходимость создания множества форм их исполнения. Часто постоянным магнитам придается форма подковы (т. н. «подковообразные» магниты).

На рисунке приведены примеры форм промышленно выпускаемых постоянных магнитов на основе редкоземельных элементов с защитным покрытием.

Промышленно выпускаемые постоянные магниты различной формы

Промышленно выпускаемые постоянные магниты различной формы: а – диск; б – кольцо; в – параллелепипед; г – цилиндр; д – шар; е – сектор полого цилиндра

Также выпускаются магниты из магнитотвердых металлических сплавов и ферритов в виде стержней круглого и прямоугольного сечения, а также трубчатые, С-образные, подковообразные, в виде пластин прямоугольной формы и др.

После того как материалу придана форма, он должен быть намагничен, т. е. помещен во внешнее магнитное поле, т.к. магнитные параметры постоянных магнитов определяются не только их формой или материалом, из которого они изготовлены, но и направлением намагничивания.

Заготовки намагничивают, используя постоянные магниты, электромагниты постоянного тока или намагничивающие катушки, через которые пропускаются импульсы тока. Выбор способа намагничивания зависит от материала и формы постоянного магнита.

В результате сильного нагревания, толчков постоянные магниты могут частично или полностью потерять свои магнитные свойства (размагнититься).

Петля гистерезиса

Характеристики размагничивающего участка петли магнитного гистерезиса материала, из которого изготовлен постоянный магнит, определяют свойства того или иного постоянного магнита: чем выше коэрцитивная сила Нс, и чем выше остаточная магнитная индукция Вr – тем сильнее и стабильнее магнит.

Коэрцитивная сила (буквально в переводе с латинского — «удерживающая сила») — сила, препятствующая изменению магнитной поляризации ферромагнетиков.

Пока ферромагнетик не поляризован, т. е. элементарные токи не ориентированы, коэрцитивная сила препятствует ориентировке элементарных токов. Но когда ферромагнетик уже поляризован, она удерживает элементарные токи в ориентированном положении и после того, как внешнее намагничивающее поле устранено.

Этим объясняется остаточный магнетизм, который наблюдается у многих ферромагнетиков. Чем больше коэрцитивная сила, тем сильнее выражено явление остаточного магнетизма.

Итак, коэрцитивная сила — это значение напряжённости магнитного поля, необходимого для полного размагничивания ферро- или ферримагнитного вещества. Таким образом, чем большей коэрцитивной силой обладает конкретный магнит, тем он устойчивее к размагничивающим факторам.

Единица измерения коэрцитивной силы в системе СИ — Ампер/метр. А магнитная индукция, как известно, — это векторная величина, являющаяся силовой характеристикой магнитного поля. Характерное значение остаточной магнитной индукции постоянных магнитов — порядка 1 Тесла.

Магнитный гистерезис — наличие последствия поляризации магнетиков приводит к тому, что намагничивание и размагничивание магнитного материала происходят неодинаково, т. к. намагничивание материала все время немного отстает от намагничивающего поля.

При этом часть энергии, затраченной на намагничивание тела, при размагничивании не возвращается обратно, а превращается в тепло. Поэтому многократное перемагничивание материала связано с заметными потерями энергии и иногда может вызвать сильное нагревание намагничиваемого тела.

Чем сильнее выражен гистерезис в материале, тем больше потери в нем при перемагничивании. Поэтому для магнитных цепей с переменным магнитным потоком применяют материалы, не обладающие гистерезисом (смотрите — Магнитопроводы электротехнических устройств).

Игровой набор с постоянными магнитами

Магнитные свойства постоянных магнитов могут изменяться под действием времени и внешних факторов, к которым относятся:

Изменение магнитных свойств характеризуется нестабильно- стью постоянного магнита, которая может быть структурной или магнитной.

Структурная нестабильность связана с изменениями кристаллической структуры, фазовыми превращениями, уменьшением внутренних напряжений и т. п. В этом случае исходные магнитные свойства могут быть получены восстановлением структуры (например, термообработкой материала).

Магнитная нестабильность обусловлена изменением магнитной структуры вещества магнита, которая стремится к термодинамическому равновесию с течением времени и под влиянием внешних воздействий. Магнитная нестабильность может быть:

обратимой (возвращение к исходным условиям восстанавливает исходные магнитные свойства);

необратимой (возращение исходных свойств может быть достигнуто только путем повторного намагничивания).

Грузоподьемный магнит

Постоянный магнит или электромагнит — что лучше?

Применение постоянных магнитов для создания постоянного магнитного поля вместо эквивалентных им электромагнитов позволяет:

уменьшить массогабаритные характеристики изделий;

исключить применение дополнительных источников питания (что упрощает конструкцию изделий, снижает стоимость их изготовления и эксплуатации);

обеспечить практически неограниченное время поддерживания магнитного поля в рабочих условиях (в зависимости от применяемого материала).

Недостатками постоянных магнитов являются:

хрупкость материалов, применяемых при их создании (это затрудняет механическую обработку изделий);

необходимость защиты от влияния влаги и плесневых грибков (для ферритов ГОСТ 24063), а также от воздействия повышенных влажности и температуры.

Виды и свойства постоянных магнитов

Ферритовые магниты хоть и отличаются хрупкостью, но обладают хорошей коррозийной стойкостью, что при невысокой цене делает их наиболее распространенными. Такие магниты изготавливают из сплава оксида железа с ферритом бария или стронция. Данный состав позволяет материалу сохранять свои магнитные свойства в широком температурном диапазоне — от -30°C до +270°C.

Применение ферритового магнита

Магнитные изделия в форме ферритовых колец, брусков и подков широко используются как в промышленности, так и в быту, в технике и электронике. Их используют в акустических системах, в генераторах, в двигателях постоянного тока. В автомобилестроении ферритовые магниты устанавливают в стартеры, в стеклоподъемники, в системы охлаждения и в вентиляторы.

Ферритовые магниты отличаются коэрцитивной силой порядка 200 кА/м и остаточной магнитной индукцией порядка 0,4 Тесла. В среднем, ферритовый магнит может прослужить от 10 до 30 лет.

Постоянные магниты на основе сплава из алюминия, никеля и кобальта отличаются непревзойденной температурной устойчивостью и стабильностью: они способны сохранять свои магнитные свойства при температурах до +550°C, хотя коэрцитивная сила, характерная для них, относительно мала. Под действием относительно небольшого магнитного поля, такие магниты потеряют исходные магнитные свойства.

Посудите сами: типичная коэрцитивная сила порядка 50 кА/м при остаточной намагниченности порядка 0,7 Тесла. Однако несмотря на эту особенность, магниты альнико незаменимы для некоторых научных исследований.

Постоянные магниты на основе сплава из алюминия, никеля и кобальта

Типичное содержание компонентов в сплавах альнико с высокими магнитными свойствами изменяется в следующих пределах: алюминий — от 7 до 10%, никель — от 12 до 15%, кобальт — от 18 до 40%, и от 3 до 4% меди.

Чем больше кобальта, тем выше индукция насыщения и магнитная энергия сплава. Добавки в виде от 2 до 8% титана и всего 1% ниобия способствуют получению большей коэрцитивной силы — до 145 кА/м. Добавка от 0,5 до 1% кремния обеспечивает изотропию магнитных свойств.

Если нужна исключительная устойчивость к коррозии, окислению и температуре до +350°C, то магнитный сплав самария с кобальтом — то что надо.

По стоимости самарий-кобальтовые магниты дороже неодимовых за счёт более дефицитного и дорогого металла — кобальта. Тем не менее, именно их целесообразно применять в случае необходимости иметь минимальные размеры и вес конечных изделий.

Наиболее целесообразно это в космических аппаратах, авиационной и компьютерной технике, миниатюрных электродвигателях и магнитных муфтах, в носимых приборах и устройствах (часах, наушниках, мобильных телефонах и т.д.)

Самариевые магниты

Благодаря особой коррозийной стойкости, именно самариевые магниты применяются в стратегических разработках и военных приложениях. Электродвигатели, генераторы, подъемные системы, мототехника – сильный магнит из сплава самария-кобальта идеально подходит для агрессивных сред и сложных условий эксплуатации. Коэрцитивная сила порядка 700 кА/м при остаточной магнитной индукции порядка 1 Тесла.

Неодимовые магниты на сегодняшний день очень востребованы и представляются наиболее перспективными. Сплав неодим-железо-бор позволяет создавать супермагниты для различных сфер, начиная с защелок и игрушек, заканчивая электрогенераторами и мощными подъемными машинами.

Неодимовые магниты

Высокая коэрцитивная сила порядка 1000 кА/м и остаточная намагниченность порядка 1,1 Тесла, позволяют магниту сохраняться на протяжении многих лет, за 10 лет неодимовый магнит теряет лишь 1% своей намагниченности, если температура его в условиях эксплуатации не превышает +80°C (для некоторых марок до +200°C). Таким образом, лишь два недостатка есть у неодимовых магнитов — хрупкость и низкая рабочая температура.

Магнитный порошок вместе со связующим компонентом образует мягкий, гибкий и легкий магнит. Связующие компоненты, такие как винил, каучук, пластик или акрил позволяют получать магниты различных форм и размеров.

Магнитопласты

Магнитная сила, конечно, уступает чистому магнитному материалу, но иногда такие решения необходимы для достижения определенных необычных для магнитов целей: в производстве рекламной продукции, при изготовлении съемных наклеек на авто, а также в изготовлении различных канцелярских и сувенирных товаров.

Одноименные полюса магнитов отталкиваются, а разноименные полюса притягиваются. Взаимодействие магнитов объясняется тем, что любой магнит имеет магнитное поле, и эти магнитные поля взаимодействуют между собой. В чем, например, причина намагничивания железа?

Согласно гипотезе французского ученого Ампера, внутри вещества существуют элементарные электрические токи (токи Ампера), которые образуются вследствие движения электронов вокруг ядер атомов и вокруг собственной оси.

При движении электронов возникают элементарные магнитные поля. И если кусок железа внести во внешнее магнитное поле, то все элементарные магнитные поля в этом железе ориентируются одинаково во внешнем магнитном поле, образуя собственное магнитное поле куска железа. Так, если приложенное внешнее магнитное поле было достаточно сильным, то после его отключения кусок железа станет постоянным магнитом.

Взаимодействие магнитов

Знание формы и намагниченности постоянного магнита позволяет для расчетов заменить его эквивалентной системой электрических токов намагничивания. Такая замена возможна как при расчете характеристик магнитного поля, так и при расчетах сил, действующих на магнит со стороны внешнего поля.

Для примера проведем расчет силы взаимодействия двух постоянных магнитов. Пусть магниты имеют форму тонких цилиндров, их радиусы обозначим r1 и r2, толщины h1, h2 , оси магнитов совпадают, расстояние между магнитами обозначим z, будем считать, что оно значительно больше размеров магнитов.

Возникновение силы взаимодействия между магнитами объясняется традиционным способом: один магнит создает магнитное поле, которое воздействует на второй магнит.

Для расчета силы взаимодействия мысленно заменим магниты с однородной намагниченностью J1 и J2 круговыми токами, текущими по боковой поверхности цилиндров. Силы этих токов выразим через намагниченности магнитов, а их радиусы будем считать равными радиусам магнитов.

Разложим вектор индукции B магнитного поля, создаваемого первым магнитом в месте расположения второго на две составляющие: осевую, направленную вдоль оси магнита, и радиальную — перпендикулярную ей.

Для вычисления суммарной силы, действующей на кольцо, необходимо мысленно разбить его на малые элементы Idl и просуммировать силы Ампера, действующие на каждые такой элемент.

Используя правило левой руки, легко показать, что осевая составляющая магнитного поля приводит к появлению сил Ампера, стремящихся растянуть (или сжать) кольцо – векторная сумма этих сил равна нулю.

Наличие радиальной составляющей поля приводит к возникновению сил Ампера, направленных вдоль оси магнитов, то есть к их притяжению или отталкиванию. Останется вычислить силы Ампера — это и будут силы взаимодействия между двумя магнитами.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Взаимодействие магнитов объясняется тем что

Постоянные магниты – это тела, длительное время сохраняющие намагниченность.
Основное свойство магнтов: притягивать тела из железа или его сплавов (напр. стали).

Постоянный магнит всегда имеет 2 магнитных полюса: северный ( N ) и южный ( S ).
Наиболее сильно магнитное поле постоянного магнита у его полюсов.

Постоянные магниты изготавливают обычно из з железа, стали, чугуна и других сплавов железа (сильные магниты), а также из никеля, кобальта ( слабые магниты ).
Магниты бывают естественные ( природные) из железной руды магнитного железняка и искусственные, полученные намагничиванием железа при внесении его в магнитное поле.

одноименные полюса отталкиваются, а разноименные полюса притягиваются.
Взаимодействие магнитов объясняется тем, что любой магнит имеет магнитное поле, и эти магнитные поля взаимодействуют между собой.

Магнитное поле постоянных магнитов

В чем причины намагничивания железа?
Согласно гипотезе французского ученого Ампера внутри вещества существуют элементарные электрические токи ( токи Ампера ), которые образуются вследствие движения электронов вокруг ядер атомов и вокруг собственной оси. При движении электронов возникает элементарные магнитные поля. При внесении куска железа во внешнее магнитное поле все элементарные магнитные поля в этом железе ориентируются одинаково во внешнем магнитном поле, образуя собственное магнитное поле. Так кусок железа становится магнитом.

Как выглядит магнитное поле постоянных магнитов?
Представление о виде магнитного поля можно получить с помощью железных опилок. Стоит лишь положить на магнит лист бумаги и посыпать его сверху железными опилками.

Для постоянного полосового магнита

Для постоянного дугообразного магнита

Если к вертушке, сделанной из железных спиц, поднести магнит, а рядом под вертушкой поставить горелку, то что будет происходить?

Природные (или естественные) магниты — это куски магнитного железняка.

Магнитный железняк или магнетит в разных странах называли по-разному:
китайцы называли его чу-ши;
греки – адамас и каламита, геркулесов камень;
французы – айман;
индусы – тхумбака;
египтяне – кость Ора,
испанцы – пьедрамант;
немцы – магнесс и зигельштейн;
англичане – лоудстоун.
Почти половина этих названий переводится как "любящий", именно так описывалось основное свойство магнитов — притягивать, «любить» железо.

По химическому составу магнетит состоит на 31% из FeO и на 69% из Fe2O3.
___

Естественные магниты, выточенные из кусков магнитного железняка, иногда достигали больших размеров. По сей день в Тартусском университете находится самый крупный известный естественный магнит. Его масса 13 кг, а подъемная сила 40 кг (в арматуре).
Такие магниты в медной оправе с железными накладками выпускались уральскими заводами. Их использовали горные офицеры, моряки, изготовители компасов, исследователи.
___

Такие магниты заказывали и богатые любители курьезов. Обычно оправой магнитов служила красиво отделанная медная коробка, наверху крепилась подвижная ручка, снизу подвешивалось «ярмо» с фигурно вырезанной рамкой и крючком для подвески груза. Эти магниты поднимали груз, превышающий по массе сам магнит раз в десять.
___

Один из самых сильных естественных магнитов был, по преданию, у Ньютона – в его перстень был вставлен магнит, поднимавший предметы, масса которых была в 50 (!) раз больше массы самого магнита.

. что нейтронные звезды являются самыми сильными магнитами во Вселенной. Их магнитное поле во много миллиардов раз больше, чем магнитное поле Земли.

Искусственные магниты стали изготовлять ещё в Англии в 18 веке.
___

Чтобы намагнитить вещество, его надо поместить в магнитное поле.

КАК СДЕЛАТЬ МАГНИТ

Искусственные магниты можно получить:
1. натирая куском магнитного железняка (или одним концом постоянного магнита) в одном направлении железные бруски;
2. или просто прислоняя ненамагниченный железный брусок к постоянному магниту.
Оказывается так можно получить искусственные магниты гораздо более сильные, чем те, которыми натираешь!
___

Некоторые вещества очень легко намагнитить. Но обычно легконамагничивающиеся вещества так же легко и размагничиваются (чистое железо). Такие вещества называют магнитомягкими.
___

Труднонамагничивающиеся вещества (сталь) остаются сильнонамагниченными и после удаления внешнего магнитного поля, их называют магнитотвердыми.
___

В конце прошлого века заметили, что добавка к железу 3% вольфрама примерно в 3 раза улучшает свойства искусственных магнитов. Добавка кобальта улучшает свойства еще в 3 раза.
___

Лучшим предвоенным магнитным сплавом был сплав альнико на базе алюминия, никеля и кобальта.
С помощью магнитов из альнико можно было поднимать железные предметы массой, в 500 раз превышающей массу самого магнита.
А при спекании порошкообразного альнико удалось изготовить магнит, который поднял предмет, чья масса превосходила массу магнита в 4450 раз!
___

Еще более сильные магниты изготовляют из сплава магнико, в состав которого входят железо, кобальт, никель и некоторые другие добавки. Созданные на основе этого сплава «порошковые» магниты могут поднимать груз железа массой, более чем в 5000 раз превышающей их собственную.
___

Еще более сильными являются так называемые оксидно-бариевые магниты.

Японцы создали магнит, один квадратный сантиметр которого притягивает 900 кг груза.
Изобретение представляет собой цилиндр высотой 2 и диаметром — 1,5 см.
В уникальный сплав магнита входят такие металлы, как неодим и европий.

А ОНИ ВСЕ ТАКИЕ РАЗНЫЕ

Интересно, что все вещества, помещенные в магнитное поле, намагничиваются.
…Но по-разному!

Разные вещества по-разному реагируют на помещении их во внешнее магнитное поле:
— есть вещества, ослабляющие действие внешнего поля внутри себя – это парамагнетики.
— есть вещества, усиливающие внешнее поле внутри себя – это диамагнетики.
— есть вещества с огромной способностью (в тысячи раз) усиливать внешнее поле внутри себя (железо, кобальт, никель, сплавы и соединения этих металлов) – это ферромагнетики.

Ферромагнетики делятся на :
— материалы, которые после воздействия на них сильного внешнего магнитного поля сами становятся магнитами – это магнитотвердые материалы.
— материалы, которые ведут себя, как магниты, пока они находятся в сильном внешнем магнитном поле, но если внешнее магнитное поле исчезает, такие материалы сразу же теряют свои магнитные свойства — это магнитомягкие материалы.

На городской площади гватемальского городка Демокрасия стоит дюжина древних фигур, найденных при раскопках городища ольмеков. Эти скульптуры «Толстые мальчики» более трех тысяч лет назад были высечены из глыб магнитной породы.
Интересно, что магнитные силовые линии как бы выходят из живота «толстяков»!
Кроме «толстых мальчиков», древние ольмеки умели высекать фигуры морских черепах с намагниченной головой, связывая, вероятно, способность черепах находить правильный курс в открытом море.
___

В китайских летописях есть описания магнитных ворот, через которые не мог пройти недоброжелатель с оружием.
___

Существует рассказ о часовне Магомета с магнитным сводом, под которым парит железный сундук с прахом пророка. Однако европейским путешественникам ни разу не удалось увидеть этой диковины.
___

Плиний писал, что александрийский архитектор Хинократ начал делать свод храма Арсинои из магнитного камня, для того чтобы железная фигура Арсинои висела в воздухе; этот замысел не был, повидимому, осуществлен.
Многие историки церкви утверждают, что в александрийском храме Сераписа статуя бога Солнца могла, к изумлению молящихся, взлететь к потолку, увлекаемая силой большого магнита.
___

Постоянные магниты

Конспект по физике для 8 класса «Постоянные магниты». Что такое постоянные магниты. Какими свойствами обладают постоянные магниты. Что собой представляют силовые линии магнитного поля постоянных магнитов.

Постоянные магниты

На предыдущем уроке мы познакомились с электромагнитами, которые приобретают магнитные свойства лишь при включении тока. Но в природе существуют вещества, которые длительное время могут сохранять намагниченность.

ПОСТОЯННЫЕ МАГНИТЫ

В природе существуют лишь три металла — кобальт, железо и никель — которые остаются намагниченными, если находящийся рядом с ними магнит убирают. Тела, длительное время сохраняющие намагниченность, называют постоянными магнитами или магнитами.

К магниту прилипают гвозди, канцелярские скрепки и другие предметы из железа, никеля и стали. Любой кусок железа или стали становится магнитом, если по нему несколько раз провести в одном направлении концом постоянного магнита.

В первой половине XIX в., сразу после открытия Эрстедом действия тока на магнитную стрелку, Ампер исследовал магнитные взаимодействия и сделал вывод, что «все магнитные явления сводятся к чисто электрическим эффектам». Согласно гипотезе Ампера, в любом магните присутствует множество круговых электрических токов, действием которых и объясняются магнитные силы. Интересно, что, выдвигая свою гипотезу, Ампер ещё не знал ни о строении атома, ни о существовании электронов. Современная теория магнетизма подтвердила правильность предположения Ампера.

Движение электронов внутри атомов или молекул создаёт токи, которые называют элементарными кольцевыми токами. В магнитах эти токи ориентированы одинаково, поэтому магнитные поля, образующиеся вокруг каждого такого тока, имеют одинаковое направление. Они усиливают друг друга, создавая поле вокруг и внутри магнита.

СЕВЕРНЫЙ И ЮЖНЫЙ ПОЛЮС МАГНИТА

Положим магнит в коробочку с мелкими железными опилками. Если мы достанем магнит, то увидим, что опилки прилипают не ко всей поверхности магнита, а лишь к некоторым его частям.

Те места магнита, которые оказывают наиболее сильное магнитное действие, называют полюсами магнита. У каждого магнита обязательно есть два полюса: северный (N) и южный (S). Красным цветом окрашивают южный полюс магнита, синим — северный.

Получить магнит с одним полюсом невозможно. Если магнит разделить на две части, то каждая из них окажется магнитом с двумя полюсами.

ВЗАИМОДЕЙСТВИЕ МАГНИТОВ

Если к магнитной стрелке поднести магнит, то можно заметить, что северный полюс стрелки будет притягиваться к южному полюсу магнита и отталкиваться от его северного полюса. Южный полюс стрелки будет отталкиваться от южного полюса магнита и притягиваться к его северному полюсу.

Таким образом, разноимённые магнитные полюсы притягиваются, одноимённые отталкиваются.

МАГНИТНОЕ ПОЛЕ ПОСТОЯННЫХ МАГНИТОВ

Взаимодействие магнитов объясняется тем, что вокруг любого магнита существует магнитное поле. Выясним, как располагаются линии магнитного поля постоянных магнитов. Положим магнит на стол и накроем его стеклом. Насыпав на стекло железные опилки, мы получим картину магнитного поля постоянного магнита. Аналогично можно получить линии магнитного поля двух магнитов, обращённых друг к другу одноимёнными и разноимёнными полюсами.

Силовые линии магнитного поля постоянного магнита, как и силовые линии магнитного поля тока, являются замкнутыми линиями. Вне магнита магнитные линии выходят из северного полюса магнита и входят в южный, замыкаясь внутри магнита, так же как магнитные линии катушки с током.

Исследования последних лет подтвердили предположения учёных о существовании дрейфа континентов. По характеру намагниченности железных месторождений, возникших несколько сотен миллионов лет назад, рядом учёных была высказана гипотеза о существовании некогда в Южном полушарии единого гигантского континента, который позже раскололся на Южную Америку, Африку, Австралию и Антарктиду.

Вы смотрели Конспект по физике для 8 класса «Постоянные магниты».

Взаимодействие магнитов объясняется тем что

учительучительучительучитель

«Магнитное поле постоянного магнита.
Взаимодействие постоянных магнитов»

Тела, длительное время сохраняющие магнитные свойства, или намагниченность, называют постоянными магнитами. Поднося магнит к железным опилкам, можно заметить, что они притягиваются к концам магнита и практически не притягиваются к его середине. Те места магнита, которые производят наиболее сильное магнитное действие, называются полюсами магнита. Магнит имеет два полюса: северный — N и южный — S . Принято северный полюс магнита окрашивать синим цветом, а южный — красным. Если полосовой магнит разделить на две части, то каждая из них окажется магнитом с двумя полюсами.

Линии магнитной индукции постоянных магнитов замкнуты, все они выходят из северного полюса и входят в южный, замыкаясь внутри магнита. Магнитные стрелки и магниты взаимодействуют между собой. Разноимённые магнитные полюсы притягиваются друг к другу, а одноимённые — отталкиваются. Взаимодействие магнитов объясняется тем, что магнитное поле одного магнита действует на другой магнит и, наоборот, магнитное поле 2-го магнита действует на 1-й.

Причиной наличия у веществ магнитных свойств является движение электронов, существующих в каждом атоме. При своём движении вокруг атома электроны создают магнитные поля. Если эти поля имеют одинаковую ориентацию, то вещество, например железо или сталь, намагничены достаточно сильно.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *