Как посчитать погрешности в excel

Как посчитать погрешности в excel

Формула погрешности

  • Формула погрешности

Формула погрешности (оглавление)

  • Формула погрешности
  • Примеры формулы допустимой погрешности (с шаблоном Excel)
  • Калькулятор формулы ошибки поля

Формула погрешности

В статистике мы рассчитываем доверительный интервал, чтобы увидеть, куда упадет значение данных выборочной статистики. Диапазон значений, которые находятся ниже и выше выборочной статистики в доверительном интервале, называется границей ошибки. Другими словами, это в основном степень ошибки в статистике выборки. Чем выше погрешность, тем меньше будет достоверность результатов, поскольку степень отклонения в этих результатах очень высока. Как следует из названия, погрешность — это диапазон значений выше и ниже фактических результатов. Например, если мы получаем ответ в опросе, в котором 70% людей ответили «хорошо», а допустимая погрешность составляет 5%, это означает, что в целом от 65% до 75% населения считают, что ответ «хороший»,

Margin of Error = Z * S / √n

  • Z — Z счет
  • S — стандартное отклонение населения
  • n — Размер выборки

Другая формула для расчета погрешности:

Margin of Error = Z * √((p * (1 – p)) / n)

  • p — доля образца (доля образца, которая является успешной)

Теперь, чтобы найти желаемую оценку z, вам нужно знать доверительный интервал выборки, потому что оценка Z зависит от этого. Ниже приведена таблица, чтобы увидеть отношение доверительного интервала и z балла:

Доверительный интервал Z — Оценка
80% 1, 28
85% 1, 44
90% 1, 65
95% 1, 96
99% 2, 58

Как только вы знаете доверительный интервал, вы можете использовать соответствующее значение z и рассчитать предел погрешности оттуда.

Примеры формулы допустимой погрешности (с шаблоном Excel)

Давайте рассмотрим пример, чтобы лучше понять расчёт Margin of Error.

Вы можете скачать этот шаблон Margin of Error здесь — Шаблон Margin of Error

Формула погрешности — пример № 1

Допустим, мы проводим опрос, чтобы увидеть, каков балл, который получают студенты университетов. Мы выбрали 500 учеников случайным образом и задали их оценку. Среднее значение составляет 2, 4 из 4, а стандартное отклонение составляет, скажем, 30%. Предположим, что доверительный интервал составляет 99%. Рассчитайте погрешность.

Решение:

Погрешность рассчитывается по формуле, приведенной ниже

Граница ошибки = Z * S / √n

  • Погрешность = 2, 58 * 30% / √ (500)
  • Погрешность = 3, 46%

Это означает, что с вероятностью 99% средний балл учащихся составляет 2, 4 плюс или минус 3, 46%.

Формула погрешности — пример № 2

Допустим, вы запускаете новый продукт для здоровья на рынке, но вы не знаете, какой вкус понравится людям. Вы путаетесь между ароматом банана и ванили и решили провести опрос. Для вас это 500 000 человек, что является вашим целевым рынком, и из этого вы решили спросить мнение 1000 человек, и это будет образец. Предположим, что доверительный интервал составляет 90%. Рассчитайте погрешность.

Решение:

Как только опрос закончен, вы узнали, что банану понравился 470 человек, а 530 попросили аромат ванили.

Погрешность рассчитывается по формуле, приведенной ниже

Граница ошибки = Z * √ ((p * (1 — p)) / n)

  • Погрешность = 1, 65 * √ ((0, 47 * (1 — 0, 47)) / 1000)
  • Погрешность = 2, 60%

Таким образом, мы можем сказать, что с 90% уверенностью, что 47% всех людей любили банановый аромат плюс или минус 2, 60%.

объяснение

Как обсуждалось выше, предел погрешности помогает нам понять, подходит ли размер выборки для вашего опроса или нет. В случае, если погрешность слишком велика, возможно, размер нашей выборки слишком мал, и нам нужно его увеличить, чтобы результаты выборки более точно соответствовали результатам совокупности.

Существуют некоторые сценарии, в которых предел погрешности не будет иметь большого значения и не поможет нам в отслеживании ошибки:

  • Если вопросы опроса не разработаны и не помогают получить требуемый ответ
  • Если люди, отвечающие на опрос, имеют некоторую предвзятость в отношении продукта, для которого проводится опрос, то и результат будет не очень точным
  • Если выбранная выборка является надлежащим представителем населения, в этом случае также результаты будут далеко.

Кроме того, одно большое предположение здесь состоит в том, что население обычно распределено. Таким образом, если размер выборки слишком мал и распределение населения не является нормальным, z-оценка не может быть рассчитана, и мы не сможем найти предел погрешности.

Актуальность и использование формулы ошибки

Всякий раз, когда мы используем выборочные данные, чтобы найти какой-то релевантный ответ для набора населения, возникает некоторая неопределенность и вероятность того, что результат может отличаться от фактического результата. Допустимая погрешность скажет нам, что каков уровень отклонения, это образец выборки. Нам необходимо минимизировать погрешность, чтобы результаты наших выборок отражали реальную историю данных о населении. Поэтому, чем ниже погрешность, тем лучше будут результаты. Запас погрешности дополняет и дополняет имеющуюся у нас статистическую информацию. Например, если опрос показал, что 48% людей предпочитают проводить время дома в выходные дни, мы не можем быть настолько точными, и в этой информации отсутствуют некоторые элементы. Когда мы ввели здесь предел погрешности, скажем, 5%, то результат будет интерпретирован как 43-53% людей, которым понравилась идея быть дома в выходные дни, что имеет полный смысл.

Калькулятор формулы ошибки поля

Вы можете использовать следующий калькулятор Margin of Error

Рекомендуемые статьи

Это было руководство по формуле ошибки. Здесь мы обсудим, как рассчитать погрешность, а также на практических примерах. Мы также предоставляем калькулятор Margin of Error с загружаемым шаблоном Excel. Вы также можете посмотреть следующие статьи, чтобы узнать больше —

  1. Руководство по формуле амортизации прямой линии
  2. Примеры формулы удвоения времени
  3. Как рассчитать амортизацию?
  4. Формула для центральной предельной теоремы
  5. Альтман Z Оценка | Определение | Примеры
  6. Формула амортизации | Примеры с шаблоном Excel

Расчет случайной погрешности средствами Excel

С использованием встроенных функций Excel расчет доверительного интервала проводится следующим образом.

1) Рассчитывается среднее значение

=СРЗНАЧ(число1; число2; . )
число1, число2, . — аргументы, для которых вычисляется среднее.

2) Рассчитывается стандартное отклонение

=СТАНДОТКЛОНП(число1; число2; . )
число1, число2, . — аргументы, для которых вычисляется стандартное отклонение.

3) Рассчитывается абсолютная погрешность

=ДОВЕРИТ(альфа ;станд_откл;размер)
альфа — уровень значимости используемый для вычисления уровня надежности.

( , т.е. означает надежности );
станд_откл — стандартное отклонение, предполагается известным;
размер — размер выборки.

Задание: Обработать заданный набор экспериментальных данных методом Стьюдента, построить экспериментальные кривые методом наименьших квадратов.

Предположим, в ходе эксперимента по измерению электросопротивления были получены следующие данные:

Используя для определения сопротивления закон Ома произведем обработку данной серии экспериментальных данных.

Используемуе формулы
Результат расчета

Для построения графика используем мастер диаграмм.

Полученные экспериментальные данные следует аппроксимировать. Для выполнения этой процедуры в Excel предусмотрен мастер, добавляющий линию тренда, производящий аппроксимацию и сглаживание.

В меню «Диаграмма» выберите пункт «Добавить линию тренда…».

В результате, должен получиться следующий график.

Задание 1.

Просчитать погрешность измерений и построить график ее распределения.

Задание 1 Задание 2 Задание 3
№ опыта № опыта № опыта
10,3 15,55 25,65
10,277 15,527 25,627
10,325 15,575 25,675
10,285 15,535 25,635
10,297 15,547 25,647
10,31 15,56 25,66
10,35 15,6 25,7
10,35 15,6 25,7
10,29 15,54 25,64
10,38 15,63 25,73
Задание 4 Задание 5 Задание 6
№ опыта №опыта № опыта
27,65 23,65 17,3
27,627 23,627 17,277
27,675 23,675 17,325
27,635 23,635 17,285
27,647 23,647 17,297
27,66 23,66 17,31
27,7 23,7 17,35
27,7 23,7 17,35
27,64 23,64 17,29
27,73 23,73 17,38
Задание 7 Задание 8 Задание 9
№ опыта № опыта № опыта
10,3 13,55 12,65
10,277 13,527 12,627
10,325 13,575 12,675
10,285 13,535 12,635
10,297 13,547 12,647
10,31 13,56 12,66
10,35 13,6 12,7
10,35 13,6 12,7
10,29 13,54 12,64
10,38 13,63 12,73
Задание 10 Задание 11 Задание 12
№ опыта №опыта № опыта
26,65 24,65 18,3
26,627 24,627 18,277
26,675 24,675 18,325
26,635 24,635 18,285
26,647 24,647 18,297
26,66 24,66 18,31
26,7 24,7 18,35
26,7 24,7 18,35
26,64 24,64 18,29
26,73 24,73 18,38
Задание 13 Задание 14 Задание 15
№ опыта № опыта № опыта
10,3 15,55 25,65
10,277 15,527 25,627
10,325 15,575 25,675
10,285 15,535 25,635
10,297 15,547 25,647
10,31 15,56 25,66
10,35 15,6 25,7
10,35 15,6 25,7
10,29 15,54 25,64
10,38 15,63 25,73
Задание 16 Задание 17 Задание 18
№ опыта №опыта № опыта
27,65 23,65 17,3
27,627 23,627 17,277
27,675 23,675 17,325
27,635 23,635 17,285
27,647 23,647 17,297
27,66 23,66 17,31
27,7 23,7 17,35
27,7 23,7 17,35
27,64 23,64 17,29
27,73 23,73 17,38

Задание 2.
Определить является ли 3-е измерение промахом.

Ссылка на основную публикацию