Как получить в замкнутом проводнике электрический ток используя магнитное поле
Перейти к содержимому

Как получить в замкнутом проводнике электрический ток используя магнитное поле

Магнитное поле тока, магнитный ток.

Магнитное поле тока представляет собой силовое поле, воздействующее на электрические заряды и на тела, находящиеся в движении и имеющие магнитный момент, вне зависимости от состояния их движения. Магнитное поле является частью электромагнитного поля.

Ток заряженных частиц либо магнитные моменты электронов в атомах создают магнитное поле. Также, магнитное поле возникает в результате определенных временных изменений электрического поля.

Вектор индукции магнитного поля В представляет собой главную силовую характеристику магнитного поля. В математике В = В (X,Y,Z) определяется как векторное поле. Это понятие служит для определения и конкретизации физического магнитного поля. В науке зачастую вектор магнитной индукции попросту, для краткости, именуется магнитным полем. Очевидно, что такое применение допускает некоторую вольную трактовку этого понятия.

Ещё одной характеристикой магнитного поля тока есть векторные потенциал.

Векторный потенциал

В научной литературе часто можно встретить, что в качестве главной характеристики магнитного поля, в условиях отсутствия магнитной среды (вакууме), рассматривается вектор напряжённости магнитного поля. Формально, такая ситуация вполне приемлема, поскольку в вакууме вектор напряженности магнитного поля H и вектор магнитной индукции B совпадают. В тоже время, вектор напряженности магнитного поля в магнитной среде не наполнен тем же физическим смыслом, и является второстепенной величиной. Исходя из этого при формальной равенства этих подходов для вакуума, систематическая точка зрения рассматривает вектор магнитной индукции основной характеристикой магнитного поля тока.

основной характеристикой магнитного поля

Магнитное поле, безусловно, представляет собой особенный вид материи. С помощью этой материи происходит взаимодействие между обладающими магнитным моментом и движущимися заряженными частицами либо телами.

Специальная теория относительности рассматривает магнитные поля как следствие существования самих электрических полей.

В совокупности магнитное и электрическое поля формируют электромагнитное поле. Проявлениями электромагнитного поля является свет и электромагнитные волны.

Магнитное поле тока

Квантовая теория магнитного поля рассматривает магнитное взаимодействие как отдельный случай электромагнитного взаимодействия. Он переносится безмассовым бозоном. Бозон представляет собой фотон — частицу, которую можно представить как квантовое возбуждение электромагнитного поля.

Порождается магнитное поле либо током заряженных частиц, либо трансформирующимся во временном пространстве электрическим полем, либо собственными магнитными моментами частиц. Магнитные моменты частиц для однообразного восприятия формально сводятся к электрическим токам.

Вычисление значения магнитного поля.

Простые случаи позволяют вычислить значения магнитного поля проводника с током по закону Био-Савара-Лапласа, либо при помощи теоремы о циркуляции. Таким же образом может быть найдено значение магнитного поля и для тока, произвольно распределённого в объёме или пространстве. Очевидно, эти законы применимы для постоянных либо относительно медленно изменяющихся магнитных и электрических полей. То есть, в случаях наличия магнитостатики. Более сложные случаи требуют вычисления значения магнитного поля тока согласно уравнений Максвелла.

Проявление наличия магнитного поля.

Основным проявлением магнитного поля является влияние на магнитные моменты частиц и тел, на заряженные частицы находящиеся в движении. Силой Лоренца называется сила, которая воздействует на электрически заряженную частицу, которая движется в магнитном поле. Эта сила имеет постоянно выраженную перпендикулярную направленность к векторам v и B. Она также имеет пропорциональное значение заряду частицы q, составляющей скорости v, осуществляющейся перпендикулярно направлению вектора магнитного поля B, и величине, которая выражает индукцию магнитного поля B. Сила Лоренца согласно Международной системе единиц имеет такое выражение: F = q [v, B], в системе единиц СГС: F = q / c [v, B]

Векторное произведение отображено квадратными скобками.

В результате влияния силы Лоренца на движущиеся по проводнику заряженные частицы, магнитное поле и может осуществлять воздействие на проводник с током. Силой Ампера является сила, действующая на проводник с током. Составляющими этой силы считаются силы, воздействующие на отдельные заряды, которые движутся внутри проводника.

Явление взаимодействия двух магнитов.

Явление магнитного поля, которое мы можем встретить в повседневной жизни, получило название взаимодействие двух магнитов. Оно выражается в отталкивании друг от друга одинаковых полюсов и притяжении противоположных полюсов. С формальной точки зрения описать взаимодействия между двумя магнитами как взаимодействие двух монополей, является достаточно полезной, реализуемой и удобной идеей. В то же время, детальный анализ свидетельствует, что в действительности это не совсем верное описание явления. Основным вопросом, остающимся без ответа в рамках такой модели, является, почему монополя не могут быть разделены. Собственно, экспериментально доказано, что любое изолированное тело не имеет магнитный заряд. Также эту модель невозможно применить к магнитному полю, созданному макроскопическим током.

С нашей точки зрения, правильно считать, что сила, действующая на магнитный диполь, находящийся в неоднородном поле, стремится развернуть его таким образом, чтобы магнитный момент диполя имел одинаковое с магнитным полем направление. Однако нет магнитов, которые подвержены воздействию суммарной силы со стороны однородного магнитного поля тока. Сила, которая действует на магнитный диполь с магнитным моментом m выражается следующей формулой:

Магнитное поле тока, магнитный ток.

.

Действующая на магнит сила со стороны неоднородного магнитного поля, выражается суммой всех сил, которые определяются данной формулой, и воздействующих на элементарные диполи, которые составляют магнит.

Электромагнитная индукция.

В случае изменения во времени потока вектора магнитной индукции через замкнутый контур, в этом контуре формируется ЭДС электромагнитной индукции. Если контур неподвижен, она порождается вихревым электрическим полем, которое возникает в результате изменения магнитного поля со временем. Когда магнитное поле не изменяется со временем и нет изменений потока из-за движения контура-проводника, то ЭДС порождается силой Лоренца.

Как получить в замкнутом проводнике электрический ток используя магнитное поле

учительучительучительучитель

электромагнитная индукция

«Электромагнитная индукция»

Электромагнитная индукция — это явление, которое заключается в возникновении электрического тока в замкнутом проводнике в результате изменения магнитного поля, в котором он находится. Это явление открыл английский физик М. Фарадей в 1831 г. Суть его можно пояснить несколькими простыми опытами.

Описанный в опытах Фарадея принцип получения переменного тока используется в индукционных генераторах, вырабатывающих электрическую энергию на тепловых или гидроэлектростанциях. Сопротивление вращению ротора генератора, возникающее при взаимодействии индукционного тока с магнитным полем, преодолевается за счет работы паровой или гидротурбины, вращающей ротор. Такие генераторы преобразуют механическую энергию в энергию электрического тока.

Вихревые токи, или токи Фуко

Если массивный проводник поместить в переменное магнитное поле, то в этом проводнике благодаря явлению электромагнитной индукции возникают вихревые индукционные токи, называемые токами Фуко.

Вихревые токи возникают также при движении массивного проводника в постоянном, но неоднородном в пространстве магнитном поле. Токи Фуко имеют такое направление, что действующая на них в магнитном поле сила тормозит движение проводника. Маятник в виде сплошной металлической пластинки из немагнитного материала, совершающий колебания между полюсами электромагнита, резко останавливается при включении магнитного поля.

Во многих случаях нагревание, вызываемое токами Фуко, оказывается вредным, и с ним приходится бороться. Сердечники трансформаторов, роторы электродвигателей набирают из отдельных железных пластин, разделенных слоями изолятора, препятствующего развитию больших индукционных токов, а сами пластины изготовляют из сплавов, имеющих высокое удельное сопротивление.

Электромагнитное поле

Электрическое поле, созданное неподвижными зарядами, является статическим и действует на заряды. Постоянный ток вызывает появление постоянного во времени магнитного поля, действующего на движущиеся заряды и токи. Электрическое и магнитное поля существуют в этом случае независимо друг от друга.

Явление электромагнитной индукции демонстрирует взаимодействие этих полей, наблюдаемое в веществах, в которых есть свободные заряды, т. е. в проводниках. Переменное магнитное поле создает переменное электрическое поле, которое, действуя на свободные заряды, создает электрический ток. Этот ток, будучи переменным, в свою очередь порождает переменное магнитное поле, создающее электрическое поле в том же проводнике, и т. д.

Совокупность переменного электрического и переменного магнитного полей, порождающих друг друга, называется электромагнитным полем. Оно может существовать и в среде, где нет свободных зарядов, и распространяется в пространстве в виде электромагнитной волны.

Классическая электродинамика — одно из высших достижений человеческого разума. Она оказала огромное влияние на последующее развитие человеческой цивилизации, предсказав существование электромагнитных волн. Это привело в дальнейшем к созданию радио, телевидения, телекоммуникационных систем, спутниковых средств навигации, а также компьютеров, промышленных и бытовых роботов и прочих атрибутов современной жизни.

Краеугольным камнем теории Максвелла явилось утверждение, что источником магнитного поля может служить одно только переменное электрическое поле, подобно тому, как источником электрического поля, создающим в проводнике индукционный ток, служит переменное магнитное поле. Наличие проводника при этом не обязательно — электрическое поле возникает и в пустом пространстве. Линии переменного электрического поля, аналогично линиям магнитного поля, замкнуты. Электрическое и магнитное поля электромагнитной волны равноправны.

Электромагнитная индукция

Электромагнитная индукция — явление возникновения электрического тока, электрического поля или электрической поляризации при изменении магнитного поля во времени или при движении материальной среды в магнитном поле. Электромагнитная индукция была открыта Майклом Фарадеем 29 августа 1831 года. Он обнаружил, что электродвижущая сила (ЭДС), возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром.

На странице -> решение задач по физике собраны решения задач и заданий с решёнными примерами по всем темам физики.

Электромагнитная индукция

Электромагнитная индукция — это явление возникновения тока в замкнутом проводнике при прохождении через него магнитного потока, изменяющегося со временем.

Потокосцепление и индуктивность

Была приведена формула (22.10), которую можно использовать для вычисления работы при повороте контура с током во внешнем магнитном поле. Выясним теперь, как подсчитать работу при повороте соленоида во внешнем магнитном поле, если он имеет Электромагнитная индукциявитков.

Поскольку работа при повороте одного витка равна Электромагнитная индукцияа в рассматриваемом случае магнитный поток пронизывает Электромагнитная индукциявитков, то работа при повороте соленоида выразится формулой

Электромагнитная индукция

Если обозначить произведение Электромагнитная индукциячерез Электромагнитная индукция(греч. «пси»), то для работы получим формулу

Электромагнитная индукцияили Электромагнитная индукция(23.1)

Величину Электромагнитная индукцияхарактеризующую связь («сцепление») магнитного потока с замкнутой цепью, сквозь которую он проходит, называют потокосцеплением. Если магнитный поток Ф пронизывает катушку с числом витков Электромагнитная индукциято потокосцепление равно произведению числа витков на магнитный поток:

Электромагнитная индукция(23.2)

(Покажите, что единицей потокосцепления в СИ является вебер; §22.12.)

Теперь представим себе любую замкнутую цепь, по которой течет ток I. Этот ток создает свое собственное магнитное поле вокруг цепи. Пусть сквозь поверхность, охваченную проводниками замкнутой цепи, проходит собственный поток Ф. Если эта цепь представляет собой один плоский контур, то Электромагнитная индукцияравно Ф. Если же проводники цепи образуют катушку с Электромагнитная индукциявитками, то Электромагнитная индукцияТаким образом, собственное потокосцепление цепи зависит от ее конфигурации, т. е. от расположения проводников в пространстве.

Опыт показал, что когда в замкнутой цепи нет ферромагнетиков, то собственное потокосцепление этой цепи изменяется прямо пропорционально силе тока I в ней:

Электромагнитная индукция(23.3)

Коэффициент пропорциональности L остается постоянным только при неизменной конфигурации проводов замкнутой цепи и неизменной окружающей среде. Коэффициент L, характеризующий зависимость собственного потокосцепления замкнутой цепи от ее формы и от окружающей среды, называется индуктивностью цепи.

Выведем единицу индуктивности L в СИ:

Электромагнитная индукция

За единицу индуктивности в СИ принимают генри (Гн). Генри называют индуктивность такой цепи, в которой возникает потокосцепление в 1 Вб при токе в 1 А.

Вспомним, что единица магнитной проницаемости в СИ имеет наименование Электромагнитная индукция(§22.8) или Электромагнитная индукция(§22.14). Так как Электромагнитная индукция(§22.12), то Электромагнитная индукцияОбычно используют последнее наименование — генри на метр.

В качестве примера определим индуктивность соленоида Lcoл. Из (23.3) имеем

Электромагнитная индукция

Так как Фсол определяется соотношением (22.15), то

Электромагнитная индукция(23.4)

Таким образом, индуктивность соленоида определяется средой, размерами и числом витков соленоида.

Явление электромагнитной индукции

Было установлено, что электрический ток и его магнитное поле всегда существуют одновременно. Фарадей, зная о тесной связи между током и магнитным полем, был уверен, что с помощью магнитного поля можно создать в замкнутом проводнике электрический ток. Он провел многочисленные опыты и доказал это, открыв в 1831 г. явление электромагнитной индукции.

Возникновение в замкнутом проводнике электрического тока, обусловленное изменением магнитного поля, называют явлением электромагнитной индукции. Полученный таким способом ток называют индукционным (наведенным), а создающую его э. д. с. называют э. д. с. индукции.

Всесторонние исследования явления электромагнитной индукции показали, что с помощью этого явления можно получить электрический ток практически любой мощности, что позволяет широко использовать электрическую энергию в промышленности. В настоящее время почти вся электрическая энергия, используемая на производстве, получается с помощью индукционных генераторов, принцип работы которых основан на явлении электромагнитной индукции. Поэтому Фарадей по праву считается одним из основателей электротехники.

Рассмотрим подробнее явление электромагнитной индукции.

ЭДС индукции, возникающая в прямолинейном проводнике при его движении в магнитном поле. Правило правой руки

Пусть в однородном магнитном поле с индукцией В находится прямолинейный металлический проводник длиной l (рис. 23.1). Если этот проводник привести в движение со скоростью Электромагнитная индукциятак, чтобы угол Электромагнитная индукциямежду векторами В и Электромагнитная индукциясоставлял 90°, то вместе с проводником будут направленно двигаться и его собственные электроны. Так как их движение происходит в магнитном поле, то на них должна действовать сила Лоренца.

Электромагнитная индукция

С помощью правила левой руки можно установить, что свободные электроны будут смещаться к концу провода А. Напряжение U, которое при этом возникает между концами провода A и В, создаст в нем электрическую силу Электромагнитная индукциякоторая уравновесит силу Лоренца Электромагнитная индукцияИтак, смещение электронов к концу А прекратится при Электромагнитная индукцияПоскольку Электромагнитная индукцияa Электромагнитная индукцияимеем Электромагнитная индукцияоткуда

Электромагнитная индукция

Так как напряжение на полюсах при разомкнутой цепи равно э. д. с., то э. д. с. индукции, возникающая в проводнике при его движении в магнитном поле, выражается формулой

Электромагнитная индукция(23.5)

Заметим, что сторонними силами, создающими э. д. с., здесь являются магнитные силы, действующие на свободные электроны в проводнике. Если этот проводник включить в цепь, то в ней возникнет индукционный ток; это можно установить по показанию гальванометра G.

Направление индукционного тока, возникающего в прямолинейном проводнике при его движении в магнитном поле, определяется по правилу правой руки (рис. 23.2): если правую руку расположить вдоль проводника так, чтобы линии магнитной индукции входили в ладонь, а отогнутый большой палец показывал направление движения проводника, то четыре вытянутых пальца укажут направление индукционного тока в проводнике.

Электромагнитная индукция

Опыты Фарадея

Рассмотрим опыты Фарадея, с помощью которых он открыл явление электромагнитной индукции.

1. Возьмем соленоид, соединенный с гальванометром (рис. 23.3), и будем вдвигать в него постоянный магнит. Оказывается, что при движении магнита стрелка гальванометра отклоняется. Если же магнит останавливается, то стрелка гальванометра возвращается в нулевое положение. То же самое получается при выдвижении магнита из соленоида или при надевании соленоида на неподвижный магнит. Такие опыты показывают, что индукционный ток возникает в соленоиде только при относительном’ перемещении соленоида и магнита.

Электромагнитная индукция

2. Будем опускать в соленоид В катушку с током А (рис. 23.4). Оказывается, что и в этом случае в соленоиде В возникает индукционный ток только при относительном перемещении соленоида В и катушки А.

Электромагнитная индукция

3. Вставим катушку А в соленоид В и закрепим их неподвижно (рис. 23.5). При этом тока в соленоиде нет. Но в моменты замыкания или размыкания цепи катушки А в соленоиде В появляется индукционный ток. То же самое получается в моменты усиления или ослабления тока в катушке А с помощью изменения сопротивления R.

Электромагнитная индукция

В дальнейшем цепь катушки А, соединенную с источником электрической энергии, будем называть первичной, а цепь соленоида В, в которой возникает индукционный ток, — вторичной. Эти же названия будем применять и к самим катушкам.

4. Включим первичную катушку в сеть переменного тока, а вторичную катушку соединим с лампой накаливания (рис. 23.6). Оказывается, лампа непрерывно горит, пока в первичной катушке течет переменный ток.

Электромагнитная индукция

Нетрудно заметить, что общим для всех описанных опытов является изменение магнитного поля в соленоиде, которое и создает в нем индукционный ток.

Выясним теперь, всякое ли изменение магнитного поля вокруг замкнутого контура наводит в нем индукционный ток. Возьмем плоский контур в виде рамки, соединенной с гальванометром. Поместим рядом с рамкой магнит так, чтобы его линии индукции не проходили внутри рамки, а находились в ее плоскости (рис. 23.7, а).

Электромагнитная индукция

Оказывается, что при перемещении рамки или магнита вдоль плоскости рисунка .стрелка гальванометра не отклоняется. Если же рамку поворачивать вокруг оси 00′ (рис. 23.7, б), то в ней возникает индукционный ток.

На основании описанных опытов можно сделать следующий вывод: индукционный ток (и э. д. с. индукции) в замкнутом контуре появляется только в том случае, когда изменяется магнитный поток, который проходит через площадь, охваченную контуром.

Закон Ленца для электромагнитной индукции. Объяснение диамагнитных явлений

Индукционный ток создает собственное магнитное поле. Связь между направлением индукционного тока в контуре и индуцирующим магнитным полем была установлена Ленцем.

В опыте, изображенном, на рис. 23.3, индукционный ток в соленоиде создает магнитное поле, полюсы которого указаны в отверстии соленоида. Проследив взаимодействие между магнитными полюсами соленоида и магнита во всех четырех случаях, приведенных на рисунке, и сравнив его с направлением движения магнита, можно видеть, что взаимодействие между полюсами всегда препятствует движению магнита. Ленцу удалось обобщить эту закономерность на все случаи электромагнитной индукций. Найденную им связь называют законом (правилом) Ленца для электромагнитной индукции: э. д. с. индукции создает в замкнутом контуре такой индукционный ток, который своим магнитным полем препятствует причине, вызывающей появление этой э. д. с.

Используя закон Ленца для определения направления индукционного тока, следует поступать следующим образом:

1) найти причину, создающую индукционный ток;

2) считая, что индукционный, ток противодействует этой причине, найти направление его магнитного поля;

3) определить направление индукционного тока по направлению его магнитного поля.

Приведем пример. Причиной, вызывающей появление индукционного тока во вторичной катушке при размыкании цепи первичной катушки (рис. 23.5), является исчезновение поля первичной катушки. Мешая этому исчезновению, индукционный ток во_вторичной катушке должен создавать магнитное поле такого же направления, как у поля первичной катушки. Следовательно, направление индукционного тока во вторичной катушке будет совпадать с направлением тока, который протекал в первичной катушке до размыкания. (Покажите, что при замыкании цепи первичной катушки во вторичной возникает ток обратного направления.)

Из закона Ленца можно установить, что энергия индукционного тока в проводнике получается за счет той энергии, которая затрачивается на преодоление противодействия магнитного поля индукционного тока. Например, если разомкнуть цепь катушки, изображенной на рис. 23.3, и подсчитать работу, нужную для того, чтобы вставить в нее и вынуть магнит определенное число раз, а затем повторить этот опыт при замкнутой цепи, то во втором случае работа будет заметно больше, чем в первом. Это объясняется тем, что в первом случае собственного магнитного поля вокруг катушки нет, так как в ней нет тока, а во втором случае поле есть. Лишняя работа во втором случае идет на преодоление противодействия этого поля и равна энергии индукционного тока в катушке. Нетрудно видеть, что с помощью явления электромагнитной индукции можно превращать механическую энергию в электрическую, а также передавать электрическую энергию из одной цепи в другую.

Когда индукционный ток возникает вследствие какого-либо механического движения, то электрическая энергия получается за счет механической. Такое превращение энергии происходит в индукционных генераторах, установленных на электростанциях. Когда же индукционный ток возникает при отсутствии механического движения, то электрическая энергия переходит из одной цепи в другую. Такая передача энергии происходит в трансформаторах (§ 26.5).

Явлением электромагнитной индукции объясняют диамагнитный эффект. Когда вещество попадает в магнитное поле, на каждый движущийся по орбите электрон начинает действовать сила Лоренца, которая увеличивает или уменьшает (в зависимости от направления вращения электрона) центростремительную силу, действующую на электрон. Это приводит к изменению орбиты и частоты обращения электрона, что равносильно уменьшению или увеличению кругового тока, соответствующего движению электрона по орбите, причем получается, что круговые токи электронов усиливаются, если их магнитные поля направлены против внешнего поля, и уменьшаются, если они направлены по полю.

Таким образом, если в отсутствие внешнего поля круговые токи электронов в молекуле диамагнетика уравновешивают друг друга и молекула не имеет магнитного момента, то во внешнем поле это равновесие нарушается и возникает результирующий магнитный момент молекулы, направленный против внешнего поля. Этот результат, вообще говоря, прямо следует и из закона Ленца: изменение круговых токов в молекуле является индукционным током, и его магнитное поле должно быть направлено против вызвавшего его внешнего поля.

Диамагнитный эффект возникает во всех веществах, но если молекулы вещества имеют собственные магнитные моменты, которые ориентируются по направлению внешнего магнитного поля и усиливают его, то диамагнитный эффект перекрывается более сильным парамагнитным эффектом и вещество оказывается парамагнетиком.

Сильный диамагнитный эффект наблюдается при сверхпроводимости. Когда сверхпроводник попадает в магнитное поле, в нем, как и в обычном проводнике, наводятся индукционные токи, но, в отличие от молекулярных индукционных токов, их образуют свободные электроны. В сверхпроводнике эти индукционные токи не встречают сопротивления и циркулируют, пока существует внешнее магнитное поле, противодействуя его проникновению внутрь сверхпроводника. Сверхпроводники, как и все диамагнетики, выталкиваются из магнитного поля.

Величина ЭДС индукции

При выполнении опытов Фарадея можно видеть, что стрелка гальванометра отклоняется тем дальше, чем быстрее вдвигается в соленоид магнит или катушка с током (§ 23.4). То же самое получится, если усилить магнитное поле первичной катушки, увеличив в ней ток. Подробное изучение этого явления показало, что э. д. с. индукции, возникающая в какой-либо цепи, прямо пропорциональна скорости изменения потокосцепления магнитного поля с этой цепью:

Электромагнитная индукция(23.6)

Отметим, что когда цепь состоит из одного витка, т. е. является простым контуром, то формула (23.6) принимает вид

Электромагнитная индукция(23.6а)

В этих формулах Электромагнитная индукция— время, за которое происходит изменение потокосцепления на Электромагнитная индукцияЕсли Электромагнитная индукцияочень мало, то формулы (23.6) дают мгновенное значение э. д. с. индукции. Если же Электромагнитная индукциявелико, то при подсчете по этим формулам получается среднее значение э. д. с. индукции.

Знак минус в формулах показывает, что, когда потокосцепление уменьшается ( Электромагнитная индукцияотрицательно), э. д. с. создает индукционный ток, увеличивающий потокосцепление, и наоборот. Таким образом, знак минус показывает, что в соответствии с законом Ленца э. д. с. индукции должна препятствовать причине, вызывающей ее появление.

Из формулы (23.6а) видно, что единицу магнитного потока в СИ можно назвать вольт-секундой, так как

Электромагнитная индукция

Вихревое электрическое поле и его связь с магнитным полем

Появление э. д. с. индукции в прямолинейном проводнике, движущемся в магнитном поле, было объяснено действием силы Лоренца на подвижные носители зарядов. Однако объяснить таким способом появление э. д. с. индукции во вторичной цепи при неподвижной относительно нее первичной цепи (четвертый опыт в § 23.4) оказалось невозможным, поскольку магнитное поле не действует на покоящиеся заряды.

Вспомним, что на покоящиеся заряды действует электрическое поле. Не оно ли создает индукционный ток во вторичной цепи? Если это так, то откуда это электрическое поле берется? Объяснить это можно тем, что переменное магнитное поле может создавать электрическое поле, которое уже и возбуждает в замкнутом проводнике индукционный ток.

Такое объяснение явления электромагнитной индукции впервые дал Д. Максвелл. Развивая эту идею, он создал теорию электромагнитного поля, которая была подтверждена многими опытами. По теории Максвелла в пространстве, в котором изменяется магнитное поле, обязательно возникает электрическое поле с замкнутыми линиями напряженности, независимо от присутствия вещества.

На рис. 23.8 прямые линии изображают изменяющееся магнитное поле с индукцией В, возрастающей (а) и убывающей (б), а замкнутые линии — возникшее электрическое поле, напряженность которого Е. Если в этом пространстве окажется проводник, то в нем возникнет индукционный ток. Например, при выдвижении магнита из катушки на рис. 23.3, г возникает электрическое поле, изображенное на рис. 23.8, б, которое и создает ток в соленоиде. (Объясните, как возникает ток в других случаях, показанных на рис. 23.3.)

Электромагнитная индукция

На рис. 23.8 видно, что линии электрического и магнитного полей расположены во взаимно перпендикулярных плоскостях. Исследования показали, что вектор напряженности (индукции) магнитного поля в каждой точке пространства перпендикулярен вектору напряженности созданного им электрического поля. Именно поэтому наибольшая э. д. с. индукции в прямолинейном проводнике возникает тогда, когда он движется перпендикулярно к линиям индукции магнитного поля.

Вихревые токи

Возьмем катушку с выступающим сердечником из мягкого ферромагнетика и положим на его конец металлический предмет. Если катушку включить в сеть переменного тока, то предмет быстро и сильно нагревается.

Заменим предмет алюминиевым кольцом К, надетым на сердечник (рис. 23.9), и снова включим катушку в сеть. Если кольцо держать, то оно сильно нагревается, а если не держать, то при включении катушки в сеть оно соскакивает с сердечника. Описанные явления объясняются тем, что изменяющееся магнитное поле вокруг сердечника создает электрическое поле, поэтому в теле и в кольце возникают сильные индукционные токи, так как сопротивление тела и кольца очень маленькое. Эти токи и нагревают их. Соскакивает кольцо потому, что индукционный ток в кольце направлен противоположно току в катушке, а такие токи отталкиваются друг от друга.

Электромагнитная индукция

Индукционные токи, которые возникают в сплошных металлических телах, находящихся в переменном магнитном поле, и замыкаются внутри этих тел, называют вихревыми токами или токами Фуко (в честь французского ученого Ж. Фуко, который их исследовал).

Якорь электродвигателя и сердечник трансформатора по условиям

своей работы находятся в переменном магнитном поле, поэтому в них должны циркулировать вихревые токи. Энергия, затраченная на создание вихревых токов, превращается во внутреннюю энергию якоря и сердечника, т. е. идет на их нагревание (кроме потерь энергии на нагревание вихревыми токами, в них возникают еще и потери, обусловленные гистерезисом). Для ослабления вредного действия вихревых токов тела, которые должны находиться в переменном магнитном поле, делают из отдельных листов, изолированных друг от друга (рис. 23.10).

Электромагнитная индукция

Заметим, что ферриты имеют очень большое удельное сопротивление, поэтому вихревые токи в них практически не возникают, и это значительно уменьшает потери энергии в них. Поскольку потери энергии, вызванные гистерезисом, в ферритах тоже очень малы, их применение заметно повышает к. п. д. приборов, например трансформаторов.

Если вихревой ток вызывается движением тела в магнитном поле, то согласно закону Ленца этот ток должен тормозить движение тела. Тормозящее действие вихревых токов можно проиллюстрировать с помощью следующего опыта.

Если медную пластинку Р (рис. 23.11) заставить колебаться при выключенном токе в электромагните М, а затем при включенном токе в нем, то будет видно, что во втором случае колебания прекращаются почти мгновенно. Внешне кажется, что в этом случае пластинка как бы вязнет в густой жидкости. Тормозящее действие вихревых токов используется в измерительных приборах для успокоения колебаний стрелки измерительного механизма.

Электромагнитная индукция

В современной технике нагревание вихревыми токами используется для закалки деталей и для изготовления сплавов в индукционных печах.

Роль магнитных полей в явлениях, происходящих на Солнце и в космосе

Изучение Солнца показало, что оно имеет магнитное поле, напряженность которого примерно в два раза выше, чем у поля Земли. Многие явления, происходящие в атмосфере Солнца (образование темных пятен, факелов и др.), тесно связаны с возникновением и развитием в отдельных областях сильных местных магнитных полей. Эти области получили название активных.

Как отмечалось выше, в слое, лежащем под фотосферой, происходит интенсивное перемешивание газа — конвекция. Исследования показали, что в области пятна всегда существует сильное магнитное поле, напряженность которого в тысячу раз больше, чем в других, невозмущенных областях. Это поле отклоняет заряженные частицы плазмы и препятствует образованию конвекционных потоков. В этой области подъем горячего газа из глубины прекращается, и газ в пятне сильно охлаждается.

В области факела магнитное ноле далеко не такое сильное, чтобы остановить вертикальные конвекционные потоки плазмы. Однако оно подавляет беспорядочные движения плазмы в потоке и уменьшает внутреннее трение. Таким образом, создается устойчивый восходящий поток горячего газа — факел.

Многие явления, наблюдаемые в атмосфере Солнца, связаны с изменяющимися магнитными полями. Как было показано выше, при движении заряженной частицы в постоянном магнитном поле изменяется только направление скорости ее движения. Оказывается, что изменяющееся во времени магнитное поле, пронизывающее плазму, изменяет не только направление, но и величину скорости заряженных частиц и может создавать направленное движение плазмы. Так иногда образуются мощные потоки плазмы, которые выбрасывают огромные массы газа в корону и образуют протуберанцы — гигантские облака газа, простирающиеся далеко в корону (рис. 6.4).

Сильное магнитное поле, изменяющееся при развитии группы пятен, оказывает давление на плазму, и в хромосфере над областью пятен иногда происходит резкое сжатие плазмы, вызывающее сильное повышение температуры газа. В этой зоне хромосферы наблюдается внезапное резкое усиление свечения газа, называемое хромосферной вспышкой.

Изменяющееся магнитное поле выбрасывает в космическое пространство потоки частиц плазмы, движущихся со скоростью около 1000 км/с, которые называют корпускулярными потоками. Некоторые частицы разгоняются до огромных скоростей (сравнимых со скоростью света), образуя солнечные космические лучи.

Многолетние наблюдения показали, что число и общая площадь пятен периодически изменяются, достигая максимума в среднем через каждые 11 лет. В это время увеличивается число факелов, количество протуберанцев, чаще, чем обычно, наблюдаются вспышки, в десятки раз возрастает интенсивность корпускулярного излучения. Все эти явления объединяются под общим названием — солнечная активность.

Потоки выброшенных Солнцем заряженных частиц, долетая до Земли, отклоняются ее магнитным полем и в свою очередь воздействуют на магнитное поле Земли. В периоды максимума солнечной активности наблюдаются сильные возмущения магнитного поля Земли — магнитные бури, вызывающие беспорядочные колебания стрелки компаса. Часть заряженных частиц проникает в магнитное поле Земли и, двигаясь по спиралям вдоль силовых линий, оказывается как бы в ловушке. Скапливаясь в кольцевых зонах вокруг Земли, заряженные частицы образуют радиационные пояса, обнаруженные с помощью спутников. В области полюсов космические частицы легко проникают в атмосферу, вызывая полярные сияния.

Магнитные поля существуют и в межзвездном пространстве. Они в десятки тысяч раз слабее земного магнитного поля, но обладают огромной протяженностью и поэтому оказывают большое влияние на характер движения заряженных частиц в межзвездном пространстве.

Явление самоиндукции ЭДС самоиндукции

Вспомним, что собственное магнитное поле в цепи постоянного тока изменяется в моменты замыкания и размыкания цепи, а также при изменении в ней силы тока. Это означает, что в указанные моменты в такой цепи должна возникать э. д. с. индукции. Возникновение э. д. с. индукции в цепи, которое вызвано изменением магнитного поля тока, текущего в этой же цепи, называют явлением самоиндукции, а появляющуюся электродвижущую силу — э. д. с. самоиндукции.

Выясним подробнее, что происходит при замыкании цепи. Пусть имеется разомкнутая цепь (рис. 23.12), состоящая из источника электрической энергии Б и последовательно соединенных ключа К, лампочки М и катушки с сердечником из ферромагнетика S. При замыкании цепи лампочка загорается с некоторым запозданием. Это объясняется возникновением в катушке значительной э. д. с. самоиндукции, которая согласно закону Ленца мешает быстрому нарастанию тока в цепи (см. рис. 23.13; I0 — сила постоянного тока в цепи).

Электромагнитная индукция

Электромагнитная индукция

Заметим, что энергия источника, затраченная на преодоление противодействия э. д. с. самоиндукции, накапливается в магнитном поле этой цепи, главным образом внутри катушки с сердечником S. (Почему?) Когда сила тока в цепи становится постоянной, то и энергия магнитного поля цепи не изменяется. Энергия магнитного поля цепи зависит не только от силы тока, но и от вида цепи, т. е. от ее индуктивности L. В сильных электромагнитах магнитная энергия особенно велика.

Для наблюдения явления самоиндукции при размыкании составляют цепь, показанную на рис. 23.14. При размыкании этой цепи ключом К остается замкнутой цепь катушки S и лампочки М. Так как ток в катушке начинает быстро спадать (рис. 23.15), то в ней создается э. д. с. самоиндукции, которая замедляет спад тока. При этом катушка на короткое время становится источником энергии, который создает ток в лампочке М. В момент размыкания цепи ток в лампе спадает до нуля и, изменив направление, скачком увеличивается до такой величины, которая может быть значительно больше, чем сила тока в лампе до размыкания. Поэтому лампа в момент размыкания может ярко вспыхнуть и даже перегореть.

Электромагнитная индукция

Электромагнитная индукция

Явление самоиндукции создает искру в том месте, где происходит размыкание цепи. Если в цепи имеются мощные электромагниты, в которых запасена большая магнитная энергия, то искра может перейти в дуговой разряд и испортить выключатель. Для размыкания таких цепей на электростанциях пользуются масляными выключателями и применяются другие меры предосторожности.

Выведем формулу для вычисления э. д. с. самоиндукции. Так как всякая э. д. с. индукции может быть найдена по формуле (23.6) Электромагнитная индукцияа Электромагнитная индукциято Электромагнитная индукцияоткуда

Электромагнитная индукция(23.7)

Э. д. с. самоиндукции в цепи пряно пропорциональна скорости изменения силы тока в этой цепи.

Энергия магнитного поля

В предыдущем параграфе говорилось, что энергия магнитного поля цепи зависит от силы тока в ней и от ее формы. Уточним эту зависимость. Вспомним, что энергия магнитного поля цепи Электромагнитная индукцияравна работе, которая затрачивается на преодоление э. д. с. самоиндукции, возникающей при замыкании цепи. Если среднее значение э. д. с. самоиндукции при этом равно Электромагнитная индукцияа по цепи за время нарастания тока в ней Электромагнитная индукцияпрошел заряд q, то работа по преодолению э. д. с. самоиндукции равна Электромагнитная индукцияТогда

Электромагнитная индукция

Знак минус означает, что заряды при этом движутся против э. д. с. самоиндукции. Так как — Электромагнитная индукциято

Электромагнитная индукция

Поскольку ток в цепи возрастает от 0 до Электромагнитная индукцияполучаем, что Электромагнитная индукцияa Электромагнитная индукцияесть средняя сила тока за время его нарастания. Приняв среднюю силу тока за Электромагнитная индукцияи подставляя значения Электромагнитная индукцияи Электромагнитная индукцияв приведенное выше соотношение, найдем формулу для вычисления энергии магнитного поля цепи, в которой идет.ток Электромагнитная индукция

Электромагнитная индукция(23.8)

Энергия магнитного поля цепи прямо пропорциональна квадрату величины тока в ней и зависит от ее индуктивности L. Поскольку индуктивность соленоида с сердечником из ферромагнетика особенно велика, большая магнитная энергия получается в цепи, содержащей электромагниты.

Услуги по физике:

Лекции по физике:

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Электромагнитная индукция

Мы знаем, что проводник с током, помещенный в магнитное поле, приходит в движение. Это обусловлено явлением магнитной индукции. Существует и другое очень важное явление, в известном смысле обратное явлению магнитной индукции: при движении замкнутого проводника в маг­нитном поле в нем по­является электрический ток. Это явление называется электромагнитной индукцией.

Возьмем проводник, концы которого зам­кнуты на гальванометр (прибор для обнаруже­ния малых электрических токов, можно использовать микроамперметр), и быстро пересечем этим проводником поле магнита (рисунок 1). При этом мы заметим, что стрелка гальванометра отклонится в тот мо­мент, когда проводник пересечет магнитное по­ле. Следовательно, по проводнику в этот мо­мент пройдет электри­ческий ток.

Электромагнитная индукция

Рисунок 1. Электромагнитная индукция. При быстром пересечении проводником магнитных силовых линий в проводнике возникает электрический ток.

Пересечем теперь магнитное поле проводником в обратном направлении. Стрелка гальванометра снова отклонится, но уже в противоположную сторону. Это говорит о том, что по про­воднику снова прошел электрический ток, но уже в обратном направлении.

Отсюда можно сделать вывод, что при пересечении про­водником магнитного поля в проводнике возникает ЭДС, направление которой зависит от направления движения про­водника. Эта ЭДС называется индуктированной ЭДС или ЭДС индукции, то есть наведение ЭДС в проводнике и есть не что иное, как явление электромагнитной индукции (не следует сме­шивать с магнитной индукцией!).

Наведение ЭДС индукции при движении проводника в магнитном поле объясняется следующим образом. При движе­нии проводника вместе с ним движутся и свободные электроны, находящиеся в нем. При изучении магнитной индукции мы узнали, что на электрические заряды, движущиеся в магнитном поле, дей­ствует сила в направлении, перпендикулярном направлению магнитного потока. Поэтому при движении электронов вместе с проводником, пересекающим магнитные силовые линии, на электроны будут действо­вать силы, заставляющие их перемещаться вдоль проводника, что и приводит к возникновению электрического тока в нем.

Явление электромагнитной индукции имеет большое значе­ние в электро- и радиотехнике, поэтому мы остановимся на нем несколько подробнее.

Попробуем производить перемещение проводника в магнитном поле с различной скоростью. При этом мы заметим, что стрелка гальванометра будет отклоняться тем больше, чем быстрее наш проводник пересекает магнитное поле. При очень медленном перемещении проводника в нем совершенно не воз­никает тока или, говоря точнее, ток будет настолько мал, что наш гальванометр не в состоянии его обнаружить.

Далее обратим внимание на то обстоятельство, что, вдви­гая проводник в пространство между полюсами магнита, мы тем самым увеличиваем число магнитных силовых линий, охва­тываемых замкнутым контуром проводника, а при обратном перемещении проводника уменьшаем число этих линий, или, другими словами, в первом случае магнитный поток, охваты­ваемый нашим замкнутым контуром, увеличивается, а во вто­ром случае уменьшается. С этой точки зрения возникновение индукционного тока в замкнутом проводящем контуре мы мо­жем объяснить как результат изменения величины магнитного потока внутри контура; большие или меньшие отклонения стрелки при разных скоростях движения проводника свиде­тельствуют о том, что ЭДС индукции зависит от скорости изменения магнитного потока внутри контура.

При быстром возрастании (или убывании) магнитного по­тока внутри контура в нем наводится большая ЭДС индук­ции, а при медленном возрастании (или убывании)малая.

На принципе электромагнитной индукции основано устрой­ство электродинамических микрофонов, звукоснимателей , трансформаторов, электроизмерительных приборов, генераторов электрического тока и т. д.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *