Измерение температуры. Термопары
Принцип действия термопары основан на так называемом эффекте Зеебека. Если две проволоки из разных металлов с одного конца сварить (это место будет называться рабочим или горячим спаем) и нагреть до температуры Т1, то на оставшихся свободных концах проволок (холодный спай) с более низкой, комнатной температурой Т2 появиться термоЭДС . Чем выше разница температур между рабочим и холодным спаем ΔТ, тем больше термоЭДС. Величина термоЭДС не зависит от диаметра и длины проволок, а зависит от материала проволок и температуры спаев
Наибольшее распространение получили термопары градуировок ХА (в европейской системе обозначений (К), ХК (L) и ППР (В). Термопары ХК (хромель-копелевые) имеют диапазон измерения 0…800°С и в настоящее время применяются редко. Термопары ХА (хромель-алюмелевые) имеют диапазон 0…1300°С и применяются наиболее широко. В частности они используются на стендах нагрева, с их помощью измеряется температура внутреннего пространства печей и температура отходящих газов в газоходах. Термопары градуировки ППР (платина-платинородиевые) имеют температурный диапазон 0…1600°С. Кроме возможности измерять температуру 1600°С и выше они обладают еще одним преимуществом – высокой точностью.
Указанные максимальные температуры не являются предельными для термопар. Они способны измерять и большие температуры, но при этом существенно падает срок их службы. Так термопара градуировки ППР может измерять температуру до 1800°С, поэтому именно она используется для измерения температуры жидкой стали.
Конструкция термопары имеет следующий вид. Сваренные с одного конца проволоки помещаются внутрь керамической трубки с двумя отверстиями, либо на них одеваются керамические бусы с целью изолировать проволоки друг от друга по всей длине. Часто в качестве изолятора используется керамический порошок, который засыпается внутрь чехла, в который вставлена термопара.
Чехол выполняется из жаропрочных марок стали или из неметаллического материала высокой температурной стойкости: керамики, корунда и т.п. Термопары в металлическом чехле конструктивно могут быть с изолированным или с заземленным (неизолированным) спаем, то есть иметь электрический контакт с чехлом термопары.
Если сигнал с термопары подается на вход контроллера, то необходимо применять термопару с изолированным спаем. Иначе возможны произвольные скачки показаний температуры в значительных пределах. Особенно сильно этот эффект проявляется если используется контроллер Siemens S200.
Свободные концы проволок соединяют с плюсовой и минусовой клеммами, расположенными в головке термопары. Выходным сигналом термопары является термоЭДС, измеряемая в милливольтах (мВ). Для измерения выходного сигнала можно использовать цифровой мультиметр и затем, применив градуировочные таблицы или номограммы по величине измеренного напряжения определить измеряемую температуру. Отключать вторичный прибор при этом не обязательно, так как он не оказывает заметного влияния на результат измерения. Для более точного определения температуры по термоЭДС термопары можно воспользоваться градуировочными таблицами.
Для подключения термопар ко входам вторичных приборов или контроллерам применяют специальный компенсационный провод. Необходимость применения компенсационных проводов связана с тем, что головка термопары с клеммами может располагаться в рабочей зоне с повышенной температурой, например 100°С. Если подключить к клеммам термопары ХА обычный медный провод, то в местах соединения как бы образуются еще два рабочих спая с температурой 100°С. Возникающие при этом две паразитные термоЭДС (на плюсовой и минусовой клеммах) исказят показания термопары.
Компенсационный провод импортного производства имеет специальную цветовую маркировку. Так компенсационный кабель градуировки ХА европейского производства имеет зеленую (+) и белую (-) жилы. Выпущенный в советское время компенсационный провод не имел специальной цветовой маркировки.Если компенсационный провод будет подключен без соблюдения полярности, то наблюдается следующий эффект: после пуска теплового агрегата показания термопары сначала растут. Это связано с нагревом рабочего спая. После того как атмосфера вокруг теплового агрегата прогреется, показания термопары начинают быстро падать, вплоть до нулевых значений. Это связано с тем, что образовавшиеся два паразитных рабочих спая включены в обратной полярности основному рабочему спаю. И значение основной термоЭДС уменьшается на величину двух паразитных термоЭДС.
На вход вторичного прибора или контроллера значение измеренной температуры поступает в виде сигнала термоЭДС. Так как величина этой термоЭДС определяется разностью температур рабочего и холодного спаев:
Е = f (Т1 – Т2), [мВ]
то вторичному прибору необходимо знать температуру холодного спая для однозначного определения температуры рабочего спая. Ведь термоЭДС может принимать одинаковые значения при различных значениях (Т1 – Т2). Например разности температур (200 — 50) и (150 — 0) дадут одинаковые значения термоЭДС, хотя при этом разность значений температур рабочих спаев в этих двух случаях достигала 200 -150 = 50°С.
Поэтому во вторичном приборе вблизи входных клемм, к которым подключается термопара, монтируется так называемый датчик температуры холодного спая. Как правило это полупроводниковый сенсор – диод или транзистор. Теперь по измеренной термоЭДС и известной температуре холодного спая, вторичный прибор, зная градуировку подключенной термопары, может однозначно определить температуру рабочего спая.
На некоторых предприятиях термопары ХА изготавливают самостоятельно, сваривая специальную проволоку диаметром 2-3 мм. Для определения полярности полученной термопары в этом случае используют обычный магнит: минус термопары притягивается к магниту, плюс не магнититься. На компенсационный провод и большинство промышленно выпускаемых термопар ХА это правило не распространяется. Определить полярность термопары можно и с помощью обычного милливольтметра, подключив его к выводам термопары и нагревая рабочий спай термопары, например, зажигалкой.
Распространенной неисправностью у термопар является разрушение рабочего спая в следствии появления трещин из-за частых и значительных колебаний температуры. При этом термопара может нормально работать пока измеряемая ей температура не превысит определенного порога, после которого контакт в спае пропадает, термопара уходит в обрыв или ее показания начинают сильно скакать.
Для бесконтактного непрерывного измерения температуры применяют стационарные пирометры. В случае, если в поле «зрения» пирометра может попадать пламя горелки, то следует использовать пирометры со спектральным диапазоном измерения 3,5. 4 мкм чтобы исключить влияние температуры факела на показания пирометра.
Тема: Как определить тип термопары. Статья
Как определить тип термопары. Статья
Статья с канала ОВЕН на Я.Дзен.
Автор: А. Сидорцев, продукт-менеджер по датчикам температуры.
Часто при наладке печей и других агрегатов, купленных «с рук», необходимо определить тип термопары, которая там установлена. Это очень важный момент, о котором нельзя забывать: если измерительный вход вторичного прибора (например, ТРМ) не будет настроен на нужный тип термопары, то его показания будут далеки от реальности. А это грозит браком продукции и даже выходом из строя печи.
Итак, сначала нужно посмотреть на бирку на кабельном выводе термопары или на ее головке. В некоторых случаях бирки делают металлическими.
Термопарная вставка ДТПК071. Тип термопары – К (ХА)
Вне зависимости от производителя датчика, на бирке обычно указываются в явном виде тип термопары – ХА (К), ХК (L), ЖК (J), НН (N), ПП (S) и др. (об этих типах термопар мы уже писали подробно, кликайте на название типа, который вам интересен).
Если нашли в маркировке тип термопары, выставьте в соответствующем параметре ТРМ нужное значение. Например, как это сделать в ТРМ251 – распространенном «печном» терморегуляторе – мы показываем в этом видео (на 19:10).
Но часто все бывает не так просто. Маркировка могла стереться или потеряться. Тогда «вооружаемся» постоянным магнитом и проверяем – магнитится ли один из термоэлектродов?
1. Да. Тогда это либо ХА (К) – хромель-алюмель, либо ЖК (J) – железо-константан. У ХА магнитится отрицательный электрод – алюмель, а у ЖК – положительный, железо.
2. Нет. Тогда все сложнее, это какой-то другой тип термопары.
Следующий шаг: можно попытаться определить тип термопары по цвету кабеля.
По международной классификации провод в белой изоляции всегда «минусовой». Но не всегда термопарные и компенсационные провода, применяемые в СНГ, соответствуют по цветам европейскому стандарту.
Если эти меры не помогли установить тип термопары, нужна «тяжелая артиллерия». Скачиваем ГОСТ 8.585-2001, берем точный милливольтметр и подключаем к нему неопознанную термопару. Необходимо также иметь другой, известный датчик, подключенный либо к такому же милливольтметру, либо к ТРМу. Оба датчика помещаем в печь рядом друг с другом. Начинаем повышать температуру и записываем значения милливольт от неизвестной термопары при определенных температурах/милливольтах с известной термопары. Желательно добраться хотя бы градусов до 200-300.
Затем сравниваем полученные милливольты от искомой термопары с ГОСТовскими значениями различных типов термопар. Это трудоемкий, но надежный метод определения типа термопары. Одно но: если ее характеристика не «уплыла» за годы службы.
Я бы рекомендовал при покупке печи с уже поработавшей термопарой все-таки заменить ее на новую. В нашей практике случалось, что до 100 °C термопара работает идеально, а при 700 °C ее погрешность равнялась уже 90 °C. Цена датчика и цена времени + ушедшей в брак продукции чаще всего несоизмеримы: лучше потратить 1-2 тысячи рублей и быть уверенным в качестве своих изделий, чем потерять десятки или сотни тысяч, и все равно потом купить новую термопару.
А вы как считаете?
О термопарах: что это такое, принцип действия, подключение, применение
В автоматизации технологических процессов очень часто приходится снимать показатели о температурных изменениях, для их загрузки в системы управления, с целью дальнейшей обработки. Для этого требуются высокоточные, малоинерционные датчики, способные выдерживать большие температурные нагрузки в определённом диапазоне измерений. В качестве термоэлектрического преобразователя широко используются термопары – дифференциальные устройства, преобразующие тепловую энергию в электрическую.
Устройства также являются простым и удобным датчиком температуры для термоэлектрического термометра, предназначенного для осуществления точных измерений в пределах довольно широких температурных диапазонов. В частности, управляющая автоматика газовых котлов и других отопительных систем срабатывает от электрического сигнала, поступающего от сенсора на базе термопары. Конструкции датчика обеспечивают необходимую точность измерений в выбранном диапазоне температур.
Устройство и принцип действия
Термопара конструктивно состоит из двух проволок, каждая из которых изготовлена из разных сплавов. Концы этих проводников образуют контакт (горячий спай) выполненный путём скручивания, с помощью узкого сварочного шва либо сваркой встык. Свободные концы термопары замыкаются с помощью компенсационных проводов на контакты измерительного прибора или соединяются с автоматическим устройством управления. В точках соединения образуется другой, так называемый, холодный спай. Схематически устройство изображено на рисунке 1.
Рис. 1. Схема строения термопары
Красным цветом выделено зону горячего спая, синим – холодный спай.
Электроды состоят из разных металлов (металл А и металл В), которые на схеме окрашены в разные цвета. С целью защиты термоэлектродов от агрессивной горячей среды их помещают в герметичную капсулу, заполненную инертным газом или жидкостью. Иногда на электроды надевают керамические бусы, как показано на рис. 2).
Рис. 2. Термопара с керамическими бусами
Принцип действия основан на термоэлектрическом эффекте. При замыкании цепи, например милливольтметром (см. рис. 3) в точках спаек возникает термо-ЭДС. Но если контакты электродов находятся при одинаковой температуре, то эти ЭДС компенсируют друг друга и ток не возникает. Однако, стоит нагреть место горячей спайки горелкой, то согласно эффекту Зеебека возникнет разница потенциалов, поддерживающая существование электрического тока в цепи.
Рис. 3. Измерение напряжения на проводах ТП
Примечательно, что напряжение на холодных концах электродов пропорционально зависит от температуры в области горячей спайки. Другими словами, в определённом диапазоне температур мы наблюдаем линейную термоэлектрическую характеристику, отображающую зависимость напряжения от величины разности температур между точками горячей и холодной спайки. Строго говоря, о линейности показателей можно говорить лишь в том случае, когда температура в области холодной спайки постоянна. Это следует учитывать при выполнении градуировок термопар. Если на холодных концах электродов температура будет изменяться, то погрешность измерения может оказаться довольно значительной.
В тех случаях, когда необходимо добиться высокой точности показателей, холодные спайки измерительных преобразователей помещают даже в специальные камеры, в которых температурная среда поддерживается на одном уровне специальными электронными устройствами, использующими данные термометра сопротивления (схема показана на рис. 4). При таком подходе можно добиться точности измерений с погрешностью до ± 0,01 °С. Правда, такая высокая точность нужна лишь в немногих технологических процессах. В ряде случаев требования не такие жёсткие и погрешность может быть на порядок ниже.
Рис. 4. Решение вопроса точности показаний термопар
На погрешность влияют не только перепады температуры в среде, окружающей холодную спайку. Точность показаний зависит от типа конструкции, схемы подключения проводников, и некоторых других параметров.
Типы термопар и их характеристики
Различные сплавы, используемые для изготовления термопар, обладают разными коэффициентами термо-ЭДС. В зависимости от того, из каких металлов изготовлены термоэлектроды, различают следующие основные типы термопар:
- ТПП13 – платинородий-платиновые (тип R);
- ТПП10 – платинородий-платиновые (тип S);
- ТПР – платинородий-платинродиевые (тип B);
- ТЖК – железо-константановые (тип J);
- ТМКн – медь-константановые (тип T);
- ТНН – нихросил-нисиловые (тип N);
- ТХА – хромель-алюмелевые (тип K);
- ТХКн – хромель-константановые (тип E);
- ТХК – хромель-копелевые (тип L);
- ТМК – медь-копелевые (тип M);
- ТСС – сильх-силиновые (тип I);
- ТВР – вольфрамрениевые (типы A-1 – A-3).
Технические требования к термопарам задаются параметрами определёнными ГОСТ 6616-94, а их НСХ (номинальные статические характеристики преобразования), оптимальные диапазоны измерений, установленные классы допуска регулируются стандартами МЭК 62460, и определены ГОСТ Р 8.585-2001. Заметим, также, что НСХ в вольфрам-рениевых термопарах отсутствовали в таблицах МЭК до 2008 г. На сегодняшний день указанными стандартами не определены характеристики термопары хромель-копель, но их параметры по прежнему регулируются ГОСТ Р 8.585-2001. Поэтому импортные термопары типа L не являются полным аналогом отечественного изделия ТХК.
Классификацию термодатчиков можно провести и по другим признакам: по типу спаев, количеству чувствительных элементов.
Типы спаев
В зависимости от назначения термодатчика спаи термопар могут иметь различную конфигурацию. Существуют одноэлементные и двухэлементные спаи. Они могут быть как заземлёнными на корпус колбы, так и незаземленными. Понять схемы таких конструкций можно из рисунка 5.
Рис. 5. Типы спаев
Буквами обозначено:
- И – один спай, изолированный от корпуса;
- Н – один соединённый с корпусом спай;
- ИИ – два изолированных друг от друга и от корпуса спая;
- 2И – сдвоенный спай, изолированный от корпуса;
- ИН – два спая, один из которых заземлён;
- НН – два неизолированных спая, соединённых с корпусом.
Заземление на корпус снижает инерционность термопары, что, в свою очередь, повышает быстродействие датчика и увеличивает точность измерений в режиме реального времени.
С целью уменьшения инерционности в некоторых моделях термоэлектрических преобразователей оставляют горячий спай снаружи защитной колбы.
Многоточечные термопары
Часто требуется измерение температуры в различных точках одновременно. Многоточечные термопары решают эту проблему: они фиксируют данные о температуре вдоль оси преобразователя. Такая необходимость возникает в химических и нефтехимических отраслях, где требуется получать информацию о распределении температуры в реакторах, колоннах фракционирования и в других ёмкостях, предназначенных для переработки жидкостей химическим способом.
Многоточечные измерительные преобразователи температуры повышают экономичность, не требуют сложного обслуживания. Количество точек сбора данных может достигать до 60. При этом используется только одна колба и одна точка ввода в установку.
Таблица сравнения термопар
Выше мы рассмотрели типы термоэлектрических преобразователей. У читателя, скорее всего, резонно возник вопрос: Почему так много типов термопар существует?
Дело в том, что заявленная производителем точность измерений возможна только в определённом интервале температур. Именно в этом диапазоне производитель гарантирует линейную характеристику своего изделия. В других диапазонах зависимость напряжения от температуры может быть нелинейной, а это обязательно отобразится на точности. Следует учитывать, что материалы обладают разной степенью плавкости, поэтому для них существует предельное значение рабочих температур.
Для сравнения термопар составлены таблицы, в которых отображены основные параметры измерительных преобразователей. В качестве примера приводим один из вариантов таблицы для сравнения распространённых термопар.
Тип термопары | K | J | N | R | S | B | T | E |
Материал положительного электрода | Cr—Ni | Fe | Ni—Cr—Si | Pt—Rh (13 % Rh) | Pt—Rh (10 % Rh) | Pt—Rh (30 % Rh) | Cu | Cr—Ni |
Материал отрицательного электрода | Ni—Al | Cu—Ni | Ni—Si—Mg | Pt | Pt | Pt—Rh (6 % Rh | Cu—Ni | Cu—Ni |
Температурный коэффициент | 40…41 | 55.2 | 68 | |||||
Рабочий температурный диапазон, ºC | 0 до +1100 | 0 до +700 | 0 до +1100 | 0 до +1600 | 0 до 1600 | +200 до +1700 | −185 до +300 | 0 до +800 |
Значения предельных температур, ºС | −180; +1300 | −180; +800 | −270; +1300 | – 50; +1600 | −50; +1750 | 0; +1820 | −250; +400 | −40; +900 |
Класс точности 1, в соответствующем диапазоне температур, (°C) | ±1,5 от −40 °C до 375 °C | ±1,5 от −40 °C до 375 °C | ±1,5 от −40 °C до 375 °C | ±1,0 от 0 °C до 1100 °C | ±1,0 от 0 °C до 1100 °C | ±0,5 от −40 °C до 125 °C | ±1,5 от −40 °C до 375 °C | |
±0,004×T от 375 °C до 1000 °C | ±0,004×T от 375 °C до 750 °C | ±0,004×T от 375 °C до 1000 °C | ±[1 + 0,003×(T − 1100)] от 1100 °C до 1600 °C | ±[1 + 0,003×(T − 1100)] от 1100 °C до 1600 ° | ±0,004×T от 125 °C до 350 °C | ±0,004×T от 375 °C до 800 °C | ||
Класс точности 2 в соответствующем диапазоне температур, (°C) | ±2,5 от −40 °C до 333 °C | ±2,5 от −40 °C до 333 °C | ±2,5 от −40 °C до 333 °C | ±1,5 от 0 °C до 600 °C | ±1,5 от 0 °C до 600 °C | ±0,0025×T от 600 °C до 1700 °C | ±1,0 от −40 °C до 133 °C | ±2,5 от −40 °C до 333 °C |
±0,0075×T от 333 °C до 1200 °C | ±0, T от 333 °C до 750 °C | ±0,0075×T от 333 °C до 1200 °C | ±0,0025×T от 600 °C до 1600 °C | ±0,0025×T от 600 °C до 1600 °C | ±0,0075×T от 133 °C до 350 °C | ±0,0075×T от 333 °C до 900 °C | ||
Цветовая маркировка выводов по МЭК | Зелёный – белый | Чёрный – белый | Сиреневый – белый | Оранжевый – белый | Оранжевый – белый | Отсутствует | Коричневый – белый | Фиолетовый – белый |
Способы подключения
Каждая новая точка соединения проводов из разнородных металлов образует холодный спай, что может повлиять на точность показаний. Поэтому подключения термопары выполняют, по возможности, проводами из того же материала, что и электроды. Обычно производители поставляют изделия с подсоединёнными компенсационными проводами.
Некоторые измерительные приборы содержат схемы корректировки показаний на основе встроенного термистора. К таким приборам просто подключаются провода, соблюдая их полярность (см. рис. 6).
Рис. 6. Компенсационные провода
Часто используют схему подключения «на разрыв». Измерительный прибор, подключают через проводник того же типа что и клеммы (чаще всего медь). Таким образом, в местах соединения отсутствует холодный спай. Он образуется лишь в одном месте: в точке присоединения провода к электроду термопары. На рисунке 7 показана схема такого подключения.
Рис. 7. Схема подключения на разрыв
При подключении термопары следует как можно ближе размещать измерительные системы, чтобы избежать использования слишком длинных проводов. Во всяком проводе возможны помехи, которые усиливаются с увеличением длины проволоки. Если от радиопомех можно избавиться путём экранирования проводки, то бороться с токами наводки гораздо сложнее.
В некоторых схемах используют компенсирующий терморезистор между контактом измерительного прибора и точкой холодного спая. Поскольку внешняя температура одинаково влияет на резистор и на свободный спай, то данный элемент будет корректировать такие воздействия.
И напоследок: подключив термопару к измерительному прибору, необходимо, пользуясь градуировочными таблицами, выполнить процедуру калибровки.
Применение
Термопары используются везде, где требуется измерение температуры в технологической среде. Они применяются в автоматизированных системах управления в качестве датчиков температуры. Термопары типа ТВР, у которых внушительный диаметр термоэлектрода, незаменимы там, где требуется получать данные о слишком высокой температуре, в частности в металлургии.
Газовые котлы, конвекторы, водонагревательные колонки также оборудованы термоэлектрическими преобразователями.
Преимущества
- высокая точность измерений;
- достаточно широкий температурный диапазон;
- высокая надёжность;
- простота в обслуживании;
- дешевизна.
Недостатки
Недостатками изделий являются факторы:
- влияние свободных спаев на показатели приборов;
- ограничение пределов рабочего диапазона нелинейной зависимостью ТЭДС от степени нагревания, порождающей сложности в разработке вторичных преобразователей сигналов;
- при длительной эксплуатации в условиях перепадов температур ухудшаются градуировочные характеристики;
- необходимость в индивидуальной градуировке для получения высокой точности измерений, в пределах погрешности в 0,01 ºC.
Благодаря тому, что проблемы связанные с недостатками решаемы, применение термопар более чем оправдано.
Что такое термопара, принцип действия, основные виды и типы
Термопара – это устройство для измерения температур во всех отраслях науки и техники. Данная статья представляет общий обзор термопар с разбором конструкции и принципом действия устройства. Описаны разновидности термопар с их краткой характеристикой, а также дана оценка термопары как измерительного прибора.
Устройство термопары
Принцип работы термопары. Эффект Зеебека
Работа термопары обусловлена возникновением термоэлектрического эффекта, открытым немецким физиком Томасом Зеебеком (Tomas Seebeck) в 1821 г.
Явление основано на возникновении электричества в замкнутом электрическом контуре при воздействии определенной температуры окружающей среды. Электрический ток возникает при наличии разницы температур между двумя проводниками (термоэлектродами) различного состава (разнородных металлов или сплавов) и поддерживается сохранением места их контактов (спаев). Устройство выводит на экран подсоединенного вторичного прибора значение измеряемой температуры.
Выдаваемое напряжение и температура находятся в линейной зависимости. Это означает, что увеличение измеряемой температуры приводит к большему значению милливольт на свободных концах термопары.
Находящийся в точке измерения температуры спай называется «горячим», а место подключения проводов к преобразователю — «холодным».
Компенсация температуры холодного спая (КХС)
Компенсация холодного спая (КХС) – это компенсация, вносимая в виде поправки в итоговые показания при измерении температуры в точке подсоединения свободных концов термопары. Это связано с расхождениями между реальной температурой холодных концов с вычисленными показаниями градуировочной таблицы для температуры холодного спая при 0°С.
КХС является дифференциальным способом, при котором показания абсолютной температуры находятся из известного значения температуры холодного спая (другое название эталонный спай).
Конструкция термопары
При конструировании термопары учитывают влияние таких факторов, как «агрессивность» внешний среды, агрегатное состояние вещества, диапазон измеряемых температур и другие.
Особенности конструкции термопар:
1) Спаи проводников соединяются между собой скруткой или скруткой с дальнейшей электродуговой сваркой (редко пайкой).
ВАЖНО: Не рекомендуется использовать способ скручивания из-за быстрой потери свойств спая.
2) Термоэлектроды должны быть электрически изолированы по всей длине, кроме точки соприкосновения.
3) Способ изоляции подбирается с учетом верхнего температурного предела.
- До 100-120°С – любая изоляция;
- До 1300°С – фарфоровые трубки или бусы;
- До 1950°С – трубки из Al2O3;
- Свыше 2000°С – трубки из MgO, BeO, ThO2, ZrO2.
4) Защитный чехол.
Материал должен быть термически и химически стойким, с хорошей теплопроводностью (металл, керамика). Использование чехла предотвращает коррозию в определенных средах.
Удлиняющие (компенсационные) провода
Данный вид проводов необходим для удлинения концов термопары до вторичного прибора или барьера. Провода не используются в случае наличия у термопары встроенного преобразователя с унифицированным выходным сигналом. Наиболее широкое применение получил нормирующий преобразователь, размещенный в стандартной клеммной головке датчика с унифицированным сигналом 4-20мА, так называемая «таблетка».
Материал проводов может совпадать с материалом термоэлектродов, но чаще всего заменяется на более дешевый с учетом условий, предотвращающих образования паразитных (наведенных) термо-ЭДС. Применение удлиняющих проводов также позволяет оптимизировать производство.
Лайфхак! Для правильного определения полярности компенсационных проводов и их подключения к термопаре запомните мнемоническое правило ММ — минус магнитится. То есть берём любой магнит и минус у компенсации будет магнитится, в отличии от плюса.
Типы и виды термопар
Многообразие термопар объясняется различными сочетаниями используемых сплавов металлов. Подбор термопары осуществляется в зависимости от отрасли производства и необходимого температурного диапазона.
Термопара хромель-алюмель (ТХА)
Положительный электрод: сплав хромель (90% Ni, 10% Cr).
Отрицательный электрод: сплав алюмель (95% Ni, 2% Mn, 2% Al, 1% Si).
Изоляционный материал: фарфор, кварц, окиси металлов и т.д.
Диапазон температур от -200°С до 1300°С кратковременного и 1100°С длительного нагрева.
Рабочая среда: инертная, окислительная (O2=2-3% или полностью исключено), сухой водород, кратковременный вакуум. В восстановительной или окислительно-восстановительной атмосфере в присутствии защитного чехла.
Недостатки: легкость в деформировании, обратимая нестабильность термо-ЭДС.
Возможны случаи коррозии и охрупчивания алюмеля в присутствии следов серы в атмосфере и хромеля в слабоокислительной атмосфере («зеленая глинь»).
Термопара хромель-копель (ТХК)
Положительный электрод: сплав хромель (90% Ni, 10% Cr).
Отрицательный электрод: сплав копель (54,5% Cu, 43% Ni, 2% Fe, 0,5% Mn).
Диапазон температур от -253°С до 800°С длительного и 1100°С кратковременного нагрева.
Рабочая среда: инертная и окислительная, кратковременный вакуум.
Недостатки: деформирование термоэлектрода.
Возможно испарение хрома при длительном вакууме; реагирование с атмосферой, содержащей серу, хром, фтор.
Термопара железо-константан (ТЖК)
Положительный электрод: технически чистое железо (малоуглеродистая сталь).
Отрицательный электрод: сплав константан (59% Cu, 39-41% Ni, 1-2% Mn).
Используется для проведения измерений в восстановительных, инертных средах и вакууме. Температура от -203°С до 750°С длительного и 1100°С кратковременного нагрева.
Применение складывается на совместном измерении положительных и отрицательных температур. Невыгодно использовать только для отрицательных температур.
Недостатки: деформирование термоэлектрода, низкая коррозийная стойкость.
Изменение физико-химических свойств железа около 700°С и 900 °С. Взаимодействует с серой и водными парами с образованием коррозии.
Термопара вольфрам-рений (ТВР)
Положительный электрод: сплавы ВР5 (95% W, 5% Rh)/ВАР5 (BP5 с кремнещелочной и алюминиевой присадкой)/ВР10 (90% W, 10% Rh).
Отрицательный электрод: сплавы ВР20 (80% W, 20% Rh).
Изоляция: керамика из химически чистых окислов металлов.
Отмечается механическая прочность, термостойкость, малая чувствительность к загрязнениям, легкость изготовления.
Измерение температур от 1800°С до 3000°С, нижний предел – 1300°С. Измерения проводятся в среде инертного газа, сухого водорода или вакуума. В окислительных средах только для измерения в быстротекущих процессах.
Недостатки: плохая воспроизводимость термо-ЭДС, ее нестабильность при облучении, непостоянная чувствительность в температурном диапазоне.
Термопара вольфрам-молибден (ВМ)
Положительный электрод: вольфрам (технически чистый).
Отрицательный электрод: молибден (технически чистый).
Изоляция: глиноземистая керамика, защита кварцевыми наконечниками.
Инертная, водородная или вакуумная среда. Возможно проведение кратковременных измерений в окислительных средах в присутствии изоляции. Диапазон измеряемых температур составляет 1400-1800°С, предельная рабочая температура порядка 2400°С.
Недостатки: плохая воспроизводимость и чувствительность термо-ЭДС, инверсия полярности, охрупчивание при высоких температурах.
Термопары платинородий-платина (ТПП)
Положительный электрод: платинородий (Pt c 10% или 13% Rh).
Отрицательный электрод: платина.
Изоляция: кварц, фарфор (обычный и огнеупорный). До 1400°С — керамика с повышенным содержанием Al2O3, свыше 1400°С — керамику из химически чистого Al2O3.
Предельная рабочая температура 1400°С длительно, 1600°С кратковременно. Измерение низких температур обычно не производят.
Рабочая среда: окислительная и инертная, восстановительная в присутствии защиты.
Недостатки: высокая стоимость, нестабильность при облучении, высокая чувствительность к загрязнениям (особенно платиновый электрод), рост зерен металла при высоких температурах.
Термопары платинородий-платинородий (ТПР)
Положительный электрод: сплав Pt c 30% Rh.
Отрицательный электрод: сплав Pt c 6% Rh.
Среда: окислительная, нейтральная и вакуум. Использование в восстановительных и содержащих пары металлов или неметаллов средах в присутствии защиты.
Максимальная рабочая температура 1600°С длительно, 1800°С кратковременно.
Изоляция: керамика из Al2O3 высокой чистоты.
Менее подвержены химическим загрязнениям и росту зерна, чем термопара платинородий-платина.
Схема подключения термопары
- Подключение потенциометра или гальванометра непосредственно к проводникам.
- Подключение с помощью компенсационных проводов;
- Подключение обычными медными проводами к термопаре, имеющей унифицированный выход.
Стандарты на цвета проводников термопар
Цветная изоляция проводников помогает отличить термоэлектроды друг от друга для правильного подключения к клеммам. Стандарты отличаются по странам, нет конкретных цветовых обозначений для проводников.
ВАЖНО: Необходимо узнать используемый стандарт на предприятии для предотвращения ошибок.
Точность измерения
Точность зависит от вида термопары, диапазона измеряемых температур, чистоты материала, электрических шумов, коррозии, свойств спая и процесса изготовления.
Термопарам присуждается класс допуска (стандартный или специальный), устанавливающий доверительный интервал измерений.
ВАЖНО: Характеристики на момент изготовления меняются в период эксплуатации.
Быстродействие измерения
Быстродействие обуславливается способностью первичного преобразователя быстро реагировать на скачки температуры и следующим за ними потоком входных сигналов измерительного прибора.
Факторы, увеличивающие быстродействие:
- Правильная установка и расчет длины первичного преобразователя;
- При использовании преобразователя с защитной гильзой необходимо уменьшить массу узла, подобрав меньший диаметр гильз;
- Сведение к минимуму воздушного зазора между первичным преобразователем и защитной гильзой;
- Использование подпружиненного первичного преобразователя и заполнения пустот в гильзе теплопроводящим наполнителем;
- Быстро движущаяся среда или среда с большей плотностью (жидкость).
Проверка работоспособности термопары
Для проверки работоспособности подключают специальный измерительный прибор (тестер, гальванометр или потенциометр) или измеряют напряжение на выходе милливольтметром. При наличии колебаний стрелки или цифрового индикатора термопара является исправной, в противном случае устройство подлежит замене.
Причины выхода из строя термопары:
- Неиспользование защитного экранирующего устройства;
- Изменение химического состава электродов;
- Окислительные процессы, развивающиеся при высоких температурах;
- Поломка контрольно-измерительного прибора и т.д.
Преимущества и недостатки использования термопар
Достоинствами использования данного устройства можно назвать:
- Большой температурный диапазон измерений;
- Высокая точность;
- Простота и надежность.
К недостаткам следует отнести:
- Осуществление постоянного контроля холодного спая, поверки и калибровки контрольной аппаратуры;
- Структурные изменения металлов при изготовлении прибора;
- Зависимость от состава атмосферы, затраты на герметизацию;
- Погрешность измерений из-за воздействия электромагнитных волн.
Термометр сопротивления — датчик для измерения температуры: что это такое, описание и виды
Что такое тензодатчик, типы тензометрических датчиков, схема подключения и их применение
Что такое люминесцентная лампа и как она работает?
Что такое частотный преобразователь, основные виды и какой принцип работы