Поля силовые линии которых замкнуты называются
Перейти к содержимому

Поля силовые линии которых замкнуты называются

Расчёт магнитных полей с помощью закона Био–Савара–Лапласа. Магнитное поле в веществе (Главы 3-4 учебного пособия по общей физике) , страница 2

Таким образом, индукция магнитного поля на оси кругового витка с током убывает обратно пропорционально третьей степени расстояния от центра витка до точки на оси. Вектор магнитной индукции на оси витка параллелен оси. Его направление можно определить с помощью правого винта: если направить правый винт параллельно оси витка и вращать его по направлению тока в витке, то направление поступательного движения винта покажет направление вектора магнитной индукции.

3.5 Силовые линии магнитного поля

Магнитное поле, как и электростатическое, удобно представлять в графической форме – с помощью силовых линий магнитного поля.

Силовая линия магнитного поля – это линия, касательная к которой в каждой точке совпадает с направлением вектора магнитной индукции.

Силовые линии магнитного поля проводят так, что их густота пропорциональна величине магнитной индукции: чем больше магнитная индукция в некоторой точке, тем больше густота силовых линий.

Таким образом, силовые линии магнитного поля имеют сходство с силовыми линиями электростатического поля.

Однако им свойственны и некоторые особенности.

Рассмотрим магнитное поле, созданное прямым проводником с током I.

Пусть этот проводник перпендикулярен плоскости рисунка.

В различных точках, расположенных на одинаковых расстояниях от проводника, индукция одинакова по величине.

Направление вектора В в разных точках показано на рисунке.

Линией, касательная к которой во всех точках совпадает с направлением вектора магнитной индукции, является окружность.

Следовательно, силовые линии магнитного поля в этом случае представляют собой окружности, охватывающие проводник. Центры всех силовых линий расположены на проводнике.

Таким образом, силовые линии магнитного поля замкнуты (силовые линии электростатического не могут быть замкнуты, они начинаются и заканчиваются на зарядах).

Поэтому магнитное поле является вихревым (так называют поля, силовые линии которых замкнуты).

Замкнутость силовых линий означает ещё одну, очень важную особенность магнитного поля – в природе не существует (по крайней мере, пока не обнаружено) магнитных зарядов, которые являлись бы источником магнитного поля определённой полярности.

Поэтому не бывает отдельно существующе-го северного или южного магнитного полюса магнита.

Даже если распилить пополам постоянный магнит, то получится два магнита, каждый из которых имеет оба полюса.

3.6. Сила Лоренца

Экспериментально установлено, что на заряд, движущийся в магнитном поле, действует сила. Эту силу принято называть силой Лоренца:

.

Модуль силы Лоренца

,

где a – угол между векторами v и B.

Направление силы Лоренца зависит от направления вектора />. Его можно определить с помощью правила правого винта или правила левой руки. Но направление силы Лоренца не обязательно совпадает с направлением вектора />!

Дело в том, что сила Лоренца равна результату произведения вектора [v, В] на скаляр q. Если заряд положительный, то Fл параллельна вектору [v, В]. Если же q < 0, то сила Лоренца противоположна направлению вектора [v, В] (см. рисунок).

Если заряженная частица движется параллельно силовым линиям магнитного поля, то угол a между векторами скорости и магнитной индукции равен нулю. Следовательно, сила Лоренца на такой заряд не действует (sin 0 = 0, Fл = 0).

Если же заряд будет двигаться перпендикулярно силовым линиям магнитного поля, то угол a между векторами скорости и магнитной индукции равен 90 0 . В этом случае сила Лоренца имеет максимально возможное значение: Fл = qvB.

Сила Лоренца всегда перпендикулярна скорости движения заряда. Это означает, что сила Лоренца не может изменить величину скорости движения, но изменяет её направление.

Поэтому в однородном магнитном поле заряд, влетевший в магнитное поле перпендикулярно его силовым линиям, будет двигаться по окружности.

Если на заряд действует только сила Лоренца, то движение заряда подчиняется следующему уравнению, составленному на основе второго закона Ньютона: ma = Fл.

Поскольку сила Лоренца перпендикулярна скорости, постольку ускорение заряженной частицы является центростремительным (нормальным): (здесь R – радиус кривизны траектории заряженной частицы).

Электричество и магнетизм

где $E↖<→>$ — напряженность поля; $F↖<→>$ — сила, действующая на помещенный в данную точку поля заряд $q$. Направление вектора $E↖<→>$ совпадает с направлением силы, действующей на положительный заряд, и противоположно направлению силы, действующей на отрицательный заряд.

Единицей напряженности в СИ является вольт на метр (В/м).

Напряженность поля точечного заряда. Согласно закону Кулона, точечный заряд $q_0$ действует на другой заряд $q$ с силой, равной

Модуль напряженности поля точечного заряда $q_0$ на расстоянии $r$ от него равен

Вектор напряженности в любой точке электрического поля направлен вдоль прямой, соединяющей эту точку и заряд.

Силовые линии электрического поля

Электрическое поле в пространстве принято представлять силовыми линиями. Понятие о силовых линиях ввел М. Фарадей при исследовании магнетизма. Затем это понятие было развито Дж. Максвеллом в исследованиях по электромагнетизму.

Силовая линия, или линия напряженности электрического поля, — это линия, касательная к которой в каждой ее точке совпадает с направлением силы, действующей на положительный точечный заряд, находящийся в этой точке поля.

Линии напряженности положительно заряженного шарика;

Линии напряженности двух разноименно заряженных шариков;

Линии напряженности двух одноименно заряженных шариков

Линии напряженности двух пластин, заряженных разными по знаку, но одинаковыми по абсолютной величине зарядами.

Линии напряженности на последнем рисунке почти параллельны в пространстве между пластинами, и плотность их одинакова. Это говорит о том, что поле в этой области пространства однородно. Однородным называется электрическое поле, напряженность которого одинакова во всех точках пространства.

В электростатическом поле силовые линии не замкнуты, они всегда начинаются на положительных зарядах и заканчиваются на отрицательных зарядах. Они нигде не пересекаются, пересечение силовых линий говорило бы о неопределенности направления напряженности поля в точке пересечения. Плотность силовых линий больше вблизи заряженных тел, где напряженность поля больше.

Поле заряженного шара. Напряженность поля заряженного проводящего шара на расстоянии от центра шара, превышающем его радиус $r≥R$, определяется по той же формуле, что и поля точечного заряда. Об этом свидетельствует распределение силовых линий, аналогичное распределению линий напряженности точечного заряда.

Заряд шара распределен равномерно по его поверхности. Внутри проводящего шара напряженность поля равна нулю.

Магнитное поле. Взаимодействие магнитов

Явление взаимодействия постоянных магнитов (установление магнитной стрелки вдоль магнитного меридиана Земли, притяжение разноименных полюсов, отталкивание одноименных) известно с древних времен и систематически исследовано У. Гильбертом (результаты опубликованы в 1600 г. в его трактате «О магните, магнитных телах и о большом магните — Земле»).

Природные (естественные) магниты

Магнитные свойства некоторых природных минералов были известны уже в древности. Так, имеются письменные свидетельства более чем 2000-летней давности об использовании в Китае естественных постоянных магнитов в качестве компасов. О притяжении и отталкивании магнитов и намагничивании ими железных опилок упоминается в трудах древнегреческих и римских ученых (например, в поэме «О природе вещей» Лукреция Кара).

Природные магниты представляют собой куски магнитного железняка (магнетита), состоящего из $FeO$ (31 %) и $Fe_2O$ (69 %). Если такой кусок минерала поднести к мелким железным предметам — гвоздям, опилкам, тонкому лезвию и т. д., они к нему притянутся.

Искусственные постоянные магниты

Постоянный магнит — это изделие из материала, являющегося автономным (самостоятельным, изолированным) источником постоянного магнитного поля.

Искусственные постоянные магниты изготавливают из специальных сплавов, в которые входят железо, никель, кобальт и др. Эти металлы приобретают магнитные свойства (намагничиваются), если их поднести к постоянным магнитам. Поэтому, чтобы изготовить из них постоянные магниты, их специально держат в сильных магнитных полях, после чего они сами становятся источниками постоянного магнитного поля и способны длительное время сохранять магнитные свойства.

На рисунке изображены дугообразный и полосовой магниты.

На рис. даны картины магнитных полей этих магнитов, полученных методом, который впервые применил в своих исследованиях М. Фарадей: с помощью железных опилок, рассыпанных на листе бумаги, на котором лежит магнит. У каждого магнита есть два полюса — это места наибольшего сгущения магнитных силовых линий (их называют также линиями магнитного поля, или линиями магнитной индукции поля). Это места, к которым сильнее всего притягиваются железные опилки. Один из полюсов принято называть северным (($N$), другой — южным ($S$). Если поднести два магнита друг к другу одноименными полюсами, можно увидеть, что они отталкиваются, а если разноименными — притягиваются.

На рис. наглядно видно, что магнитные линии магнита — замкнутые линии. Показаны силовые линии магнитного поля двух магнитов, обращенных друг к другу одноименными и разноименными полюсами. Центральная часть этих картин напоминает картины электрических полей двух зарядов (разноименных и одноименных). Однако существенным различием электрического и магнитного полей является то, что линии электрического поля начинаются на зарядах и заканчиваются на них. Магнитных же зарядов в природе не существует. Линии магнитного поля выходят из северного полюса магнита и входят в южный, они продолжаются и в теле магнита, т. е., как было сказано выше, являются замкнутыми линиями. Поля, силовые линии которых замкнуты, называются вихревыми. Магнитное поле — это вихревое поле (в этом его отличие от электрического).

Применение магнитов

Самым древним магнитным прибором является всем хорошо известный компас. В современной технике магниты используются очень широко: в электродвигателях, в радиотехнике, в электроизмерительной аппаратуре и т. д.

Магнитное поле Земли

Земной шар является магнитом. Как у всякого магнита, у него есть свое магнитное поле и свои магнитные полюсы. Именно поэтому стрелка компаса ориентируется в определенном направлении. Понятно, куда именно должен указывать северный полюс магнитной стрелки, ведь притягиваются разноименные полюсы. Поэтому северный полюс магнитной стрелки указывает на южный магнитный полюс Земли. Этот полюс находится на севере земного шара, несколько в стороне от северного географического полюса (на острове Принца Уэльского — около $75°$ северной широты и $99°$ западной долготы, на расстоянии примерно $2100$ км от северного географического полюса).

При приближении к северному географическому полюсу силовые линии магнитного поля Земли все под большим углом наклоняются к горизонту, и в области южного магнитного полюса становятся вертикальными.

Северный магнитный полюс Земли находится вблизи южного географического полюса, а именно на $66.5°$ южной широты и $140°$ восточной долготы. Здесь силовые линии магнитного поля выходят из Земли.

Другими словами, магнитные полюсы Земли не совпадают с ее географическими полюсами. Поэтому направление магнитной стрелки не совпадает с направлением географического меридиана, и магнитная стрелка компаса лишь приблизительно показывает направление на север.

На стрелку компаса могут влиять также некоторые природные явления, например, магнитные бури, которые являются временными изменениями магнитного поля Земли, связанными с солнечной активностью. Солнечная активность сопровождается выбросом с поверхности Солнца потоков заряженных частиц, в частности, электронов и протонов. Эти потоки, движущиеся с большой скоростью, создают свое магнитное поле, взаимодействующее с магнитным полем Земли.

На земном шаре (кроме кратковременных изменений магнитного поля) встречаются области, в которых наблюдается постоянное отклонение направления магнитной стрелки от направления магнитной линии Земли. Это области магнитной аномалии (от греч. anomalia — отклонение, ненормальность). Одной из самых больших таких областей является Курская магнитная аномалия. Причиной аномалий являются огромные залежи железной руды на сравнительно небольшой глубине.

Земное магнитное поле надежно защищает поверхность Земли от космического излучения, действие которого на живые организмы разрушительно.

Полеты межпланетных космических станций и кораблей позволили установить, что у Луны и планеты Венера отсутствует магнитное поле, а у планеты Марс оно очень слабое.

Опыты Эрстедаи Ампера. Индукция магнитного поля

В 1820 г. датский ученый Г. X. Эрстед обнаружил, что магнитная стрелка, помещенная вблизи проводника, по которому течет ток, поворачивается, стремясь расположиться перпендикулярно к проводнику.

Схема опыта Г. X. Эрстеда изображена на рисунке. Проводник, включенный в цепь источника тока, расположен над магнитной стрелкой параллельно ее оси. При замыкании цепи магнитная стрелка отклоняется от своего первоначального положения. При размыкании цепи магнитная стрелка возвращается в свое первоначальное положение. Отсюда следует, что проводник с током и магнитная стрелка взаимодействуют друг с другом. На основании этого опыта можно сделать вывод о существовании магнитного поля, связанного с протеканием тока в проводнике и о вихревом характере этого поля. Описанный опыт и его результаты явились важнейшей научной заслугой Эрстеда.

В том же году французский физик Ампер, которого заинтересовали опыты Эрстеда, обнаружил взаимодействие двух прямолинейных проводников с током. Оказалось, что если токи в проводниках текут в одну сторону, т. е. параллельны, то проводники притягиваются, если в противоположные стороны (т. е. антипараллельны), то отталкиваются.

Взаимодействия между проводниками с током, т. е. взаимодействия между движущимися электрическими зарядами, называют магнитными, а силы, с которыми проводники с током действуют друг на друга, — магнитными силами.

Согласно теории близкодействия, которой придерживался М. Фарадей, ток в одном из проводников не может непосредственно влиять на ток в другом проводнике. Аналогично случаю с неподвижными электрическими зарядами, вокруг которых существует электрическое поле, был сделан вывод, что в пространстве, окружающем токи, существует магнитное поле, которое действует с некоторой силой на другой проводник с током, помещенный в это поле, либо на постоянный магнит. В свою очередь, магнитное поле, создаваемое вторым проводником с током, действует на ток в первом проводнике.

Подобно тому как электрическое поле обнаруживается по его воздействию на пробный заряд, внесенный в это поле, магнитное поле можно обнаружить по ориентирующему действию магнитного поля на рамку с током малых (по сравнению с расстояниями, на которых магнитное поле заметно меняется) размеров.

Провода, подводящие ток к рамке, следует сплести (или расположить близко друг к другу), тогда результирующая сила, действующая со стороны магнитного поля на эти провода, будет равна нулю. Силы же, действующие на такую рамку с током, будут ее поворачивать, так что ее плоскость установится перпендикулярно линиям индукции магнитного поля. В примере, рамка повернется так, чтобы проводник с током оказался в плоскости рамки. При изменении направления тока в проводнике рамка повернется на $180°$. В поле между полюсами постоянного магнита рамка повернется плоскостью перпендикулярно магнитным силовым линиям магнита.

Магнитная индукция

Магнитная индукция ($В↖<→>$) — это векторная физическая величина, характеризующая магнитное поле.

За направление вектора магнитной индукции $В↖<→>$ принимается:

1) направление от южного полюса $S$ к северному полюсу $N$ магнитной стрелки, свободно устанавливающейся в магнитном поле, или

2) направление положительной нормали к замкнутому контуру с током на гибком подвесе, свободно устанавливающемся в магнитном поле. Положительной считается нормаль, направленная в сторону перемещения острия буравчика (с правой нарезкой), рукоятку которого вращают по направлению тока в рамке.

Ясно, что направления 1) и 2) совпадают, что было установлено еще опытами Ампера.

Что касается величины магнитной индукции (т. е. ее модуля) $В$, которая могла бы характеризовать силу действия поля, то экспериментами было установлено, что максимальная сила $F$, с которой поле действует на проводник с током (помещенный перпендикулярно линиям индукции магнитного поля), зависит от силы тока $I$ в проводнике и от его длины $∆l$ (пропорциональна им). Однако сила, действующая на элемент тока (единичной длины и силы тока), зависит только от самого поля, т. е. отношение $/$ для данного поля является величиной постоянной (аналогично отношению силы к заряду для электрического поля). Эту величину и определяют как магнитную индукцию.

Индукция магнитного поля в данной точке равна отношению максимальной силы, действующей на проводник с током, к длине проводника и силе тока в проводнике, помещенном в эту точку.

Чем больше магнитная индукция в данной точке поля, тем с большей силой будет действовать поле в этой точке на магнитную стрелку или движущийся электрический заряд.

Единицей магнитной индукции в СИ является тесла (Тл), названная в честь сербского электротехника Николы Теслы. Как видно из формулы, $1$ Тл $=l/$

Если имеется несколько различных источников магнитного поля, векторы индукции которых в данной точке пространства равны $<В_1>↖<→>, <В_2>↖<→>, <В_3>↖<→>. $, то, согласно принципу суперпозиции полей, индукция магнитного поля в этой точке равна сумме векторов индукции магнитных полей, создаваемых каждым источником.

Линии магнитной индукции

Для наглядного представления магнитного поля М. Фарадей ввел понятие магнитных силовых линий, которые он неоднократно демонстрировал в своих опытах. Картина силовых линий легко может быть получена с помощью железных стружек, насыпанных на картон. На рисунке представлены: линии магнитной индукции прямого тока, соленоида, кругового тока, прямого магнита.

Линиями магнитной индукции, или магнитными силовыми линиями, или просто магнитными линиями называют линии, касательные к которым в любой точке совпадают с направлением вектора магнитной индукции $В↖<→>$ в этой точке поля.

Если вместо железных опилок вокруг длинного прямолинейного проводника с током поместить маленькие магнитные стрелки, то можно увидеть не только конфигурацию силовых линий (концентрические окружности), но и направление силовых линий (северный полюс магнитной стрелки указывает направление вектора индукции в данной точке).

Направление магнитного поля прямого тока можно определить по правилу правого буравчика.

Если вращать рукоятку буравчика так, чтобы поступательное движение острия буравчика указывало направление тока, то направление вращения рукоятки буравчика укажет направление силовых линий магнитного поля тока.

Направление магнитного поля прямого тока можно определять также и с помощью первого правила правой руки.

Если охватить проводник правой рукой, направив отогнутый большой палец по направлению тока, то кончики остальных пальцев в каждой точке покажут направление вектора индукции в этой точке.

Вихревое поле

Линии магнитной индукции являются замкнутыми, это свидетельствует о том, что в природе нет магнитных зарядов. Поля, силовые линии которых замкнуты, называют вихревыми полями. То есть магнитное поле — это вихревое поле. Этим оно отличается от электрического поля, создаваемого зарядами.

Соленоид

Соленоид — это проволочная спираль с током.

Соленоид характеризуется числом витков на единицу длины $n$, длиной $l$ и диаметром $d$. Толщина провода в соленоиде и шаг спирали (винтовой линии) малы по сравнению с его диаметром $d$ и длиной $l$. Термин «соленоид» применяют и в более широком значении — так называют катушки с произвольным сечением (квадратный соленоид, прямоугольный соленоид), и не обязательно цилиндрической формы (тороидальный соленоид). Различают длинный соленоид ($l>>d$) и короткий ($l 1$ (у платины $μ = 1.00036$); у ферромагнетиков $μ >> 1$ (железо, никель, кобальт).

Диамагнетики отталкиваются от магнита, парамагнетики — притягиваются. По этим признакам их можно отличить друг от друга. У большинства веществ магнитная проницаемость практически не отличается от единицы, только у ферромагнетиков намного превосходит ее, достигая нескольких десятков тысяч единиц.

Ферромагнетики. Наиболее сильные магнитные свойства проявляют ферромагнетики. Магнитные поля, создаваемые ферромагнетиками, намного сильнее внешнего намагничивающего поля. Правда, магнитные поля ферромагнетиков создаются не вследствие обращения электронов вокруг ядер — орбитального магнитного момента, а вследствие собственного вращения электрона — собственного магнитного момента, называемого спином.

Температура Кюри ($Т_с$) — это температура, выше которой ферромагнитные материалы теряют свои магнитные свойства. Для каждого ферромагнетика она своя. Например, для железа $Т_с = 753°$С, для никеля $Т_с = 365°$С, для кобальта $Т_с = 1000°$ С. Существуют ферромагнитные сплавы, у которых $Т_с 0$), или уменьшается ($∆Ф 0$,и иметь одинаковое с ними направление, если $∆Ф

Электромагнитное поле — основные понятия, формулы и определения с примерами

Сильное электромагнитное поле отрицательно действует на человеческий организм — повреждается центральная нервная система, может возникнуть рак головного мозга, уровень гемоглобина в крови понижается, нарушается память и понижается внимание.

Карта электромагнитного поля:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Электрический заряд и электромагнитное поле

При трении тел друг о друга на них возникают электрические заряды. В этом случае говорят, что тело наэлектризовано, оно получило электрический заряд, или оно потеряло электрический заряд.

Электрическое взаимодействие между наэлектризованными телами в зависимости от знаков их зарядов может носить характер притяжения или отталкивания:

  • — тела, обладающие зарядами одинакового знака, отталкиваются друг от друга;
  • — тела, обладающие зарядами противоположного знака, притягиваются друг к другу.

В природе существуют заряды двух видов: положительный электрический заряд (+) и отрицательный электрический заряд (-). Заряды одинакового знака отталкиваются друг от друга, а заряды разного знака притягиваются друг к другу. Тела, не обладающие избытком электрического заряда, называют электрически нейтральными, или незаряженными телами.

Электрический заряд обозначают буквой q. За единицу измерения электрического заряда в СИ принят 1 кулон, названный так в честь французского ученого Шарля Кулона: [q] = 1 Кл.

Электростатическое поле — вид материи, который создается неподвижными электрическими зарядами.

Напряженность электрического поля — силовая характеристика этого поля. Являясь векторной величиной, напряженность электрического поля направлена так же, как и электрическая сила, действующая на положительный заряд.

Вещества, продолжительное время сохраняющие свои магнитные свойства, называются постоянными магнитами или просто магнитами. Каждый магнит имеет два полюса: северный (N) и южный (S). Одноименные полюсы магнита отталкиваются, разноименные полюсы магнита притягиваются.

Магнитное поле — вид материи, который создается движущимися зарядами.

Индукция магнитного поля (или магнитная индукция) является силовой характеристикой этого поля. Направление вектора магнитной индукции в данной точке магнитного поля совпадает с направлением северного полюса магнитной стрелки, помещенной в эту точку поля.

Кстати:

Было выяснено, что при полете пчела заряжается положительно. А цветы обладают отрицательным зарядом. Поэтому, когда пчела садится на цветок, ее пыльца прилипает к пчеле. Самым интересным является то, что после контакта пчелы с цветком электромагнитное поле растения меняется. Это изменение как будто подает знаки другим пчелам, находящимся в воздухе: «На этом цветке нет пыльцы!».

Электромагнитное поле - основные понятия, формулы и определения с примерами

Электрический заряд

Электрический заряд — это свойство тел и частиц создавать вокруг себя электромагнитное ноле. Электрический заряд принят также количественной мерой измерения этого свойства тел.

Взаимодействие между заряженными частицами называется электромагнитным взаимодействием. Например, когда говорят, что протон несет положительный заряд, а электрон несет отрицательный заряд, то можно с уверенностью говорить о наличии электромагнитного взаимодействия между ними. Между незаряженными (электрически нейтральными) частицами не существует электромагнитного взаимодействия. Поэтому говорят: Электрический заряд определяет интенсивность электромагнитного взаимодействия.

Электрический заряд обладает следующими особенностями:

1. Электрический заряд дискретен (не непрерывен, делим) — электрический заряд любого тела кратен целому числу элементарных зарядов:Электромагнитное поле - основные понятия, формулы и определения с примерами

Здесь N — число приобретенных или потерянных телом электронов.

Абсолютное значение наименьшего электрического заряда в природе называют элементарным зарядом. Элементарный заряд обозначают буквой е, численное его значение равно абсолютному значению заряда электрона или протона:Электромагнитное поле - основные понятия, формулы и определения с примерами

Кроме электрона и протона в природе существуют ещё несколько видов элементарных частиц. Однако только электроны и протоны могут существовать в свободном состоянии неограниченно долго. Время жизни остальных заряженных частиц очень мало — миллионные доли секунды. Они образуются в результате столкновений быстрых элементарных частиц, и через ничтожно малое время превращаются в другие частицы.

Дискретность заряда позволяет ему равномерно распределяться по поверхности проводника. Предположим, что заряд равномерно распределился по поверхности площадью S.

Величина, численно равная электрическому заряду, приходящемуся на единицу площади поверхности, называется поверхностной плотностью электрического заряда (Электромагнитное поле - основные понятия, формулы и определения с примерами):

Электромагнитное поле - основные понятия, формулы и определения с примерами

Единицей поверхностной плотности электрического заряда в СИ является:Электромагнитное поле - основные понятия, формулы и определения с примерами

2. Для электрического заряда выполняется закон сохранения — алгебраическая сумма электрических зарядов частиц (или тел) замкнутой системы остается неизменной:

Электромагнитное поле - основные понятия, формулы и определения с примерами

3. Электрический заряд является аддитивной величиной — электрический заряд системы равен алгебраической сумме электрических зарядов частиц (или тел) этой системы.

4. Электрический заряд является инвариантной величиной — электрический заряд частиц (или тел) одинаков во всех инерциальных системах отсчета.

Электромагнитное поле

Раздел физики, в котором изучаются электрические и магнитные явления, проявляющиеся при движении и взаимодействии электрических зарядов, называется электродинамикой.

Электродинамика — раздел физики, изучающий закономерности взаимодействия между электрическими зарядами посредством электромагнитного поля.

Электромагнитное поле — вид материи, осуществляющий взаимодействие между электрически заряженными частицами и телами.

Электрическое и магнитное поля являются особыми формами проявления электромагнитного поля. Поэтому состояние электромагнитного поля в произвольной точке пространства и в любой момент времени характеризуется двумя величинами — напряженностью электрического поля Электромагнитное поле - основные понятия, формулы и определения с примерамии индукцией магнитного поля Электромагнитное поле - основные понятия, формулы и определения с примерамиЭти величины являются силовыми характеристиками электромагнитного поля и определяют силы, с которыми оно действует на заряженные частицы. Под «определением силовых характеристик электромагнитного поля» имеется в виду определение сил, действующих на внесенный в поле пробный заряд (положительный точечный заряд). Отметим, что действие электромагнитного поля на заряд может быть различным, в зависимости от того, покоится заряд или движется.

Силу, с которой электромагнитное поле действует на заряд, покоящийся в данной инерциальной системе отсчета, называют электрической. Электрическая сила всегда прямо пропорциональна количественному значению заряда, помещенного в данную точку поля: Электромагнитное поле - основные понятия, формулы и определения с примерами

На электрический заряд, движущийся в данной инерциальной системе отсчета, электромагнитное поле действует, кроме электрической силы, ещё с силой, называемой магнитной силой. Магнитная сила прямо пропорциональна и значению движущегося заряда, и проекции скорости заряда, перпендикулярной вектору магнитной индукции: Электромагнитное поле - основные понятия, формулы и определения с примерами

Поэтому на электрический заряд, движущийся в электромагнитном поле, действует результирующая сила, равная сумме электрической и магнитной сил. Эту силу называют обобщенной силой Лоренца:Электромагнитное поле - основные понятия, формулы и определения с примерами

Напряженность электростатического поля

Поле, созданное неподвижными электрическими зарядами, называется электростатическим.

Напряженность электрического поля — векторная физическая величина, равная отношению электрической силы, с которой поле действует на положительный пробный заряд, помещенный в данную точку поля, к величине этого заряда: Электромагнитное поле - основные понятия, формулы и определения с примерами

Единица измерения напряженности электрического поля в СИ: Электромагнитное поле - основные понятия, формулы и определения с примерами

Электрическая сила равна произведению напряженности электрического поля на величину помещенного в поле заряда: Электромагнитное поле - основные понятия, формулы и определения с примерами

Закон Кулона: сила взаимодействия двух неподвижных точечных электрических зарядов в вакууме прямо пропорциональна произведению модулей этих зарядов и обратно пропорциональна квадрату расстояния между ними:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Учитывая кулоновскую силу в формуле напряженности, выясняем, от каких величин зависит напряженность электрического поля.

Модуль напряженности электрического поля, создаваемого точечным зарядом Электромагнитное поле - основные понятия, формулы и определения с примерамив данной точке, прямо пропорционален величине этого заряда и обратно пропорционален квадрату расстояния до этой точки:Электромагнитное поле - основные понятия, формулы и определения с примерами

Одной из задач электродинамики является определение силовой характеристики электростатического поля, созданного данным электрическим зарядом. Одним из особых состояний электромагнитного поля является создаваемое неподвижным зарядом электростатическое поле.

Электрическое поле — это электромагнитное поле, в котором Электромагнитное поле - основные понятия, формулы и определения с примерами относительно данной системы отсчета. Электрическое поле, созданное покоящимися относительно данной системы отсчета электрическими зарядами, называется электростатическим. В дальнейшем для упрощения, называя поле электрическим, будем подразумевать, что это электростатическое поле.

Электрическое иоле может быть однородным и неоднородным.

Однородное электрическое поле — поле, в каждой точке которого численное значение и направление напряженности электрического поля одинаковы. В противном случае поле неоднородное.

Например, поле между двумя параллельными пластинами, одна из которых обладает положительным, а другая таким же но модулю отрицательным зарядом, является однородным (а), а электрическое поле, создаваемое точечным зарядом, является неоднородным (b).

Электромагнитное поле - основные понятия, формулы и определения с примерами

Напряженность электрического поля, создаваемого точечным электрическим зарядом в вакууме и в среде. Известно, что при внесении пробного заряда в электрическое поле точечного заряда Электромагнитное поле - основные понятия, формулы и определения с примерамив вакууме между зарядами возникает кулоновское взаимодействие.

Силы взаимодействия двух точечных электрических зарядов прямо пропорциональны произведению модулей зарядов, обратно пропорциональны квадрату расстояния между ними и направлены вдоль прямой, соединяющей эти заряды (с).

Электромагнитное поле - основные понятия, формулы и определения с примерами

Электромагнитное поле - основные понятия, формулы и определения с примерами

Здесь Электромагнитное поле - основные понятия, формулы и определения с примерами— коэффициент пропорциональности, равный

Электромагнитное поле - основные понятия, формулы и определения с примерами

Эта постоянная показывает, что два точечных заряда по 1 Кл каждый, находящиеся в вакууме на расстоянии 1 м друг от друга, взаимодействуют с силой 9•10 9 Н.

Здесь Электромагнитное поле - основные понятия, формулы и определения с примерами— электрическая постоянная: Электромагнитное поле - основные понятия, формулы и определения с примерами

Таким образом, на основе закона Кулона можно определить модуль напряженности электрического поля, созданного в вакууме зарядом Электромагнитное поле - основные понятия, формулы и определения с примерамив любой точке на расстоянии Электромагнитное поле - основные понятия, формулы и определения с примерамиот источника поля:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Напряженность в данной точке электрического поля, созданного точечным зарядом в вакууме, прямо пропорциональна величине этого заряда и обратно пропорциональна квадрату расстояния от источника поля до этой точки.

Если заряд alt=»Электромагнитное поле — основные понятия, формулы и определения с примерами» />положительный, то вектор напряженности в произвольной точке поля направлен радиально от источника поля (d), а если же заряд отрицательный — вектор напряженности направлен радиально к источнику поля (заряду alt=»Электромагнитное поле — основные понятия, формулы и определения с примерами» />).

Электромагнитное поле - основные понятия, формулы и определения с примерами

Для электрических полей выполняется принцип суперпозиции.

Напряженность результирующего электрического поля в данной точке пространства, создаваемого несколькими электрическими зарядами, равна геометрической сумме напряженностей отдельных полей:

Электромагнитное поле - основные понятия, формулы и определения с примерами

На рисунке изображена схема определения напряженности результирующего ноля в точке А, созданного двумя точечными зарядами (е).
Электромагнитное поле - основные понятия, формулы и определения с примерами

В среде (внутри однородного диэлектрика) кулоновская сила взаимодействия зарядов слабее по сравнению с силой их взаимодействия в вакууме в Электромагнитное поле - основные понятия, формулы и определения с примерами раз:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Здесь Электромагнитное поле - основные понятия, формулы и определения с примерами — величина, называемая диэлектрической проницаемостью среды и показывающая, во сколько раз кулоновская сила взаимодействия двух электрических зарядов в среде меньше, чем в вакууме при неизменном расстоянии между ними:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Напряженность электрического поля в среде меньше, чем в вакууме, в Электромагнитное поле - основные понятия, формулы и определения с примерами раз:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Значит, диэлектрическая проницаемость среды также является физической величиной, показывающей, во сколько раз напряженность электрического поля, созданного электрическим зарядом в данной точке внутри однородного диэлектрика, меньше, чем в вакууме:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Диэлектрическая проницаемость различных сред различна. Например, для дистиллированной воды alt=»Электромагнитное поле — основные понятия, формулы и определения с примерами» />=81 (для вакуума alt=»Электромагнитное поле — основные понятия, формулы и определения с примерами» /> = 1).

Работа однородного электрического поля

Энергетическая характеристика электрического поля называется электрическим напряжением или просто напряжением.

Скалярная величина, показывающая, какую работу совершило электрическое поле при перемещении единичного заряда из одной точки поля в другую, называется электрическим напряжением между этими точками поля:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Единицей измерения напряжения в СИ является вольт: Электромагнитное поле - основные понятия, формулы и определения с примерами

Механическая работа — скалярная физическая величина, равная произведению модуля силы, действующей на тело, модуля перемещения тела и косинуса угла между векторами силы и перемещения:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Работа силы тяжести в гравитационном поле Земли: Электромагнитное поле - основные понятия, формулы и определения с примерами

Работа силы тяжести не зависит от формы траектории движения тела, она зависит от разности уровней начального и конечного положений центра тяжести тела.

Электромагнитное поле - основные понятия, формулы и определения с примерами

Силы, работа которых не зависит от формы траектории движения тела, называются консервативными. Значит, сила тяжести — консервативная сила.

Это положение позволяет вывести понятие «потенциальной энергии» для системы тел, взаимодействующих с силами гравитационного взаимодействия. Так, выражение mgh в последней формуле является потенциальной энергией взаимодействия Земли и тела, находящегося на высоте h от поверхности Земли:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Работа силы тяжести равна изменению потенциальной энергии тела, взятому с противоположным знаком:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Проведенные учеными исследования показали, что Земля обладает отрицательным электрическим зарядом, а слой ионосферы в её атмосфере — положительным зарядом. Слои атмосферы, лежащие между ними, играют роль изолятора.

Электромагнитное поле - основные понятия, формулы и определения с примерами

Работа однородного электрического поля:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Работа однородного электрического поля, в котором положительный пробный заряд под действием постоянной электрической силы Электромагнитное поле - основные понятия, формулы и определения с примерамисовершает перемещение Электромагнитное поле - основные понятия, формулы и определения с примерамимежду двумя точками поля, равна (а):

Электромагнитное поле - основные понятия, формулы и определения с примерами

Здесь Электромагнитное поле - основные понятия, формулы и определения с примерами— угол между силовой линией поля и вектором перемещения заряда.

Так как проекция вектора перемещения на силовую линию равна Электромагнитное поле - основные понятия, формулы и определения с примерамито работа поля будет равна:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Работа однородного электрического поля при перемещении пробного положительного заряда равна произведению модуля этого заряда на модуль напряженности электрического поля и на проекцию его перемещения на направление силовых линий.

Выражение (1) можно написать и так: Электромагнитное поле - основные понятия, формулы и определения с примерами

Здесь Электромагнитное поле - основные понятия, формулы и определения с примерамии Электромагнитное поле - основные понятия, формулы и определения с примерами— соответственно расстояния от отрицательной пластины до точек 1 и 2. Вследствие пропорциональности работы электрического поля величине пробного заряда отношение Электромагнитное поле - основные понятия, формулы и определения с примерамине зависит от величины пробного заряда и не зависит от траектории его движения. Это отношение зависит от электрического поля, а также от начального и конечного положений заряда в поле.

Так как работа электрической силы при переносе пробного заряда из одной точки электрического поля в другую не зависит от формы траектории, то электрическая сила является консервативной, а электрическое поле — потенциальным.

Скалярная физическая величина, равная отношению работы электрического поля при переносе электрического заряда из одной точки поля в другую к величине этого заряда, называется разностью потенциалов между этими точками, или напряжением между ними:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Здесь Электромагнитное поле - основные понятия, формулы и определения с примерами— разность потенциалов. Индексы 1 и 2 указывают на точки

поля, между которыми перемещается заряд. Единицей измерения разности потенциалов в СИ является вольт: Электромагнитное поле - основные понятия, формулы и определения с примерами

Из выражения (3) можно определить работу поля при перемещении заряда между двумя его точками:

Работа электрического поля при перемещении заряда между двумя его точками равна произведению заряда на разность потенциалов (напряжение) между ними :

Электромагнитное поле - основные понятия, формулы и определения с примерами

Сравнивая (1) и (3), получим формулу, связывающую напряженность и напряжение:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Напряженность электрического поля направлена от точки поля с большим потенциалом к точке с меньшим потенциалом.

Потенциал электрического поля

Для выражения энергетической характеристики электрического ноля в произвольной точке используется физическая величина, называемая потенциалом. Разность потенциалов между любой точкой электрического поля и точкой, принятой за нулевой потенциал, называют потенциалом поля в этой точке. Обычно вычисление потенциала производится относительно бесконечности.

Потенциал — скалярная величина, численно равная работе поля по перемещению единичного положительного заряда в бесконечность при его отталкивании от положительного заряда q:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Потенциал обозначается символом Электромагнитное поле - основные понятия, формулы и определения с примерами. Единицей измерения потенциала в СИ

является вольт: Электромагнитное поле - основные понятия, формулы и определения с примерами

Потенциальная энергия заряда в электрическом поле. Так как электрическое поле является потенциальным, то к замкнутой системе заряд-электрическое поле можно применить теорему о потенциальной энергии.

Работа, совершенная в потенциальном поле, равна изменению потенциальной энергии системы, взятому с противоположным знаком:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Здесь Электромагнитное поле - основные понятия, формулы и определения с примерамии Электромагнитное поле - основные понятия, формулы и определения с примерами— потенциальные энергии заряда в точках 1 и 2 ноля (b).

Электромагнитное поле - основные понятия, формулы и определения с примерами

Сравнив выражения (4) и (7), получим:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Электромагнитное поле - основные понятия, формулы и определения с примерами

Значит, величина, определяемая отношением потенциальной энергии пробного заряда в данной точке поля к величине заряда, равна потенциалу поля.

Эквипотенциальные поверхности

Поверхность, во всех точках которой потенциал поля принимает одинаковые значения, называется эквипотенциальной. Для точечного заряда эквипотенциальными являются концентрические сферы, центры которых совпадают с местонахождением заряда (с). Для однородного электрического поля — это поверхности, перпендикулярные силовым линиям поля (d).
Электромагнитное поле - основные понятия, формулы и определения с примерами

Конденсатор и электрическая емкость

Конденсатор-устройство, используемое для накопления электрических зарядов. Его название происходит от латинского слова «kondensare», что означает сгущение.

Самый простой конденсатор — плоский конденсатор, состоит из двух близко расположенных параллельных металлических пластин с тонким слоем диэлектрика (например, воздуха) между ними (а). На схемах электрических цепей конденсатор обозначают как Электромагнитное поле - основные понятия, формулы и определения с примерами.

Электромагнитное поле - основные понятия, формулы и определения с примерами

Пластины конденсатора электризуются равными по модулю зарядами противоположных знаков.

Способность конденсатора накапливать электрический заряд характеризуется физической величиной, называемой электрической ёмкостью.

Для разделения, накопления и передачи большого количества электрического заряда разных знаков используются устройства, называемые электрофорной машиной (b).

Электромагнитное поле - основные понятия, формулы и определения с примерами

Быстро вращаясь, диски электрофорной машины трутся о воздух между ни-ми и электризуются зарядами разного знака. Заряды пластин снимаются с помощью металлических щеток и накапливаются в двух лейденских банках (1), а оттуда передаются на сферические металлические кондукторы (2). В результате на одном из кондукторов накапливается положительный, а на другом — отрицательный заряд.
Электромагнитное поле - основные понятия, формулы и определения с примерами

Известный сербский ученый Никола Тесла (1856-1943) выдвинул идею о том, что система Земля — атмосфера представляет собой гигантский конденсатор, который является источником дешевой электрической энергии. Согласно этой идее, совпадение частоты слабого электромагнитного излучения, посылаемого в ионосферу Земли, с собственной частотой заряженных частиц ионосферы вызовет в ней резонанс. В результате возникнет очень сильное излучение, окружающее Землю. В это время достаточно будет в любой точке поверхности Земли воткнуть длинный металлический стержень, чтобы непрерывно получать из неба бесплатную электрическую энергию. Главной проблемой было построение башни для создания возбуждающих ионосферу импульсов — резонатора. Американский миллиардер Морган принял решение о финансировании постройки этой башни в Лонг-Айленде (США). Однако незадолго до завершения работы он приостановил и отменил этот проект в целях предотвращения возможной экологической катастрофы.

Известно, что простейшим конденсатором является плоский конденсатор, состоящий из двух параллельных пластин. Характеристикой конденсатора является электрическая ёмкость.

Электрическая ёмкость конденсатора (С) — скалярная физическая величина, равная отношению заряда конденсатора к разности потенциалов (напряжению) между его пластинами:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Единицей измерения электрической ёмкости в СИ является фарад (1Ф):

1 фарад — это электрическая емкость конденсатора, когда заряд пластин 1 Кл создает между ними напряжение 1В:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Фарад — очень большая ёмкость, поэтому на практике используются его дольные единицы (микрофарад, нанофарад, пикофарад и др.):

Электромагнитное поле - основные понятия, формулы и определения с примерами

Заряд конденсатора равен модулю заряда одной из пластин конденсатора. Этот заряд прямо пропорционален напряжению на концах источника, подключенного к конденсатору:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Значит, электроёмкость является коэффициентом пропорциональности между зарядом и напряжением и не зависит ни от заряда, ни от напряжения. От чего же зависит электроёмкость?

Электрическая ёмкость плоского конденсатора зависит от площади его пластин, расстояния между пластинами и диэлектрической проницаемости вещества, находящегося между ними:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Здесь S — площадь одной из пластин конденсатора, d — расстояние между пластинами, alt=»Электромагнитное поле — основные понятия, формулы и определения с примерами» />— диэлектрическая проницаемость вещества, которое находится между его пластинами. Именно диэлектрик, находящийся между пластинами, дает конденсатору возможность длительное время сохранять заряд. Если диэлектриком между пластинами является только воздух ( alt=»Электромагнитное поле — основные понятия, формулы и определения с примерами» />= 1), то такой конденсатор называется воздушным и его электроёмкость:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Энергия электрического поля конденсатора

Энергия однородного электрического поля между пластинами плоского заряженного конденсатора определяется нижеприведенной формулой:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Примечание. Множитель Электромагнитное поле - основные понятия, формулы и определения с примерами в выражении (5) указывает на то, что при движении пластин конденсатора в отдельности каждая из них оказывается движущейся в электрическом поле, созданным зарядом другой пластины. Напряженность поля одной пластины в 2 раза меньше напряженности электрического поля между пластинами.

Если учесть здесь выражение (2), то получаются выражения, отражающие зависимость энергии конденсатора от ёмкости и заряда конденсатора:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Электромагнитное поле - основные понятия, формулы и определения с примерами

Если учесть выражение (3) в выражениях (6) и (7), то можно получить следующие выражения для энергии электрического поля плоского конденсатора:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Распределение энергии электрического ноля в пространстве выражается физической величиной, называемой плотностью энергии электрического поля:

Плотность энергии электрического поля — физическая величина, численно равная энергии электрического поля, приходящейся на единицу объёма:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Здесь Электромагнитное поле - основные понятия, формулы и определения с примерами— плотность энергии электрического поля, единица её измерения в СИ: Электромагнитное поле - основные понятия, формулы и определения с примерами

Если в последнем выражении учесть формулу (8), выражения Электромагнитное поле - основные понятия, формулы и определения с примерамито станет очевидным, что плотность энергии электрического поля прямо пропорциональна квадрату напряженности поля:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Примечание. Конденсатор не может служить аккумулятором, длительное время сохраняющим в себе электрическую энергию (из-за утечки заряда). Однако он, в отличие от аккумулятора, способен мгновенно разряжаться в цепи с малым сопротивлением. Это свойство конденсатора широко используется на практике (например, во вспышках фотоаппаратов и лампах мобильных телефонов).

Соединение конденсаторов

Электрическая цепь может состоять из различных элементов: источник тока, потребители (лампа, электрический звонок, электрический нагреватель, телевизор и др.), ключ, соединительные провода. Одной из простейших цепей является последовательное соединение этих элементов.

Электромагнитное поле - основные понятия, формулы и определения с примерами

При последовательном соединении конец каждого проводника соединяется с началом последующего.

При последовательном соединении силы токов одинаковы в любой части цепи: Электромагнитное поле - основные понятия, формулы и определения с примерами

Общее напряжение цепи при последовательном соединении равно сумме напряжений отдельных участков этой цепи:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Общее сопротивление при последовательном соединении равно сумме сопротивлений отдельных ее участков:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Общее сопротивление Электромагнитное поле - основные понятия, формулы и определения с примерами цепи, состоящей из n проводников с одинаковым сопротивлением R, в n раз больше сопротивления каждого проводника: Электромагнитное поле - основные понятия, формулы и определения с примерами

Параллельным называется соединение проводников, при котором начапа всех проводников соединяются в одной точке (например, в точке А), а концы в другой (например, в точке В).

Напряжения на концах параллельно соединенных проводников одинаковы: Электромагнитное поле - основные понятия, формулы и определения с примерами

При параллельном соединении сила тока в неразветвленной части цепи равна сумме сил токов в отдельных ветвях цепи: Электромагнитное поле - основные понятия, формулы и определения с примерами

Величина, обратная общему сопротивлению параллельно соединенных проводников, равна сумме величин, обратных сопротивлению каждого проводника:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Общее сопротивление участка цепи, состоящей из двух параллельно соединенных проводников, равно:

Электромагнитное поле - основные понятия, формулы и определения с примерами

В соответствии с этим общее сопротивление участка цепи, состоящей из n числа параллельно соединенных проводников с одинаковым сопротивлением R, меньше сопротивления каждого из них в n раз:

Электромагнитное поле - основные понятия, формулы и определения с примерами

На практике часто случается, что при выходе из строя бытовых приборов для срочного их ремонта отсутствуют конденсаторы с необходимым номиналом электроёмкости и напряжения. В таких случаях приходится получить необходимый номинал, используя конденсаторы различного номинала. А для этого необходимо знать правила их соединений.

С целью получения различных значений электроёмкости собирают батареи конденсаторов, соединяя их либо последовательно, либо параллельно.

Последовательное соединение конденсаторов

При последовательном соединении конденсаторов отрицательно заряженная пластина первого конденсатора соединена с положительно заряженной пластиной второго и т.д. (с).

Электромагнитное поле - основные понятия, формулы и определения с примерами

Заряды последовательно соединенных конденсаторов одинаковы:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Общее напряжение на концах цепи, состоящей из последовательно соединенных конденсаторов, равно сумме напряжений отдельных конденсаторов:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Величина, обратная общей электроемкости батареи последовательно соединенных конденсаторов, равна сумме величин, обратных значениям электроёмкостей отдельных конденсаторов:
Электромагнитное поле - основные понятия, формулы и определения с примерами

Общая ёмкость цепи, состоящей из последовательно соединенных n конденсаторов одинаковой ёмкости, в n раз меньше ёмкости одного конденсатора:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Напряжение и энергия последовательно соединенных конденсаторов обратно пропорциональны их электрическим ёмкостям:Электромагнитное поле - основные понятия, формулы и определения с примерами

Параллельное соединение конденсаторов

При параллельном соединении положительно заряженные пластины всех конденсаторов соединяют в одной точке, а отрицательно заряженные пластины в другой точке (d).

Электромагнитное поле - основные понятия, формулы и определения с примерами

Общий заряд параллельно соединенных конденсаторов равен сумме зарядов отдельных конденсаторов:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Напряжения на концах параллельно соединенных конденсаторов одинаковы:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Общая электроёмкость батареи параллельно соединенных конденсаторов равна сумме электроёмкостей отдельных конденсаторов:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Общая электроёмкость n числа параллельно соединенных одинаковых конденсаторов в n раз больше электроёмкости одного конденсатора:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Электрические заряды и энергии параллельно соединенных конденсаторов прямо пропорциональны их электроёмкостям:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Движение заряженных частиц в магнитном поле

При равномерном движении по окружности линейная скорость материальной точки численно равна отношению пройденного пути ко времени, за которое этот путь пройден: Электромагнитное поле - основные понятия, формулы и определения с примерами

При равномерном движении по окружности модуль центростремительного ускорения материальной точки равен отношению квадрата линейной скорости к радиусу окружности: Электромагнитное поле - основные понятия, формулы и определения с примерами

Сила, с которой магнитное поле действует на движущуюся заряженную частицу, называется силой Лоренца: Электромагнитное поле - основные понятия, формулы и определения с примерами

Если заряженная частица влетает в магнитное поле в направлении, перпендикулярном линиям индукции, то сила Лоренца принимает максимальное значение:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Сила Лоренца перпендикулярна векторам Электромагнитное поле - основные понятия, формулы и определения с примерами и Электромагнитное поле - основные понятия, формулы и определения с примерами её направление определяется правилом левой руки.

Правило левой руки для определения направления силы Лоренца

Правило левой руки для определения направления силы Лоренца: левую руку следует расположить в магнитном поле так, чтобы вектор магнитной индукции Электромагнитное поле - основные понятия, формулы и определения с примерами входил в ладонь, а четыре пальца были направлены по движению положительного заряда (против движения отрицательного заряда), тогда отогнутый на 90 о большой палец покажет направление действующей на заряд силы Лоренца.

Вблизи Северного и Южного полюсов Земли наблюдаются очень красивые природные явления, называемые «полярным сиянием». Причиной возникновения полярного сияния является действие магнитного поля Земли на поток заряженных частиц в атмосфере.
Электромагнитное поле - основные понятия, формулы и определения с примерами

Магнитное поле — это электромагнитное поле, индукция магнитного поля которого относительно данной системы отсчета отлична от нуля Электромагнитное поле - основные понятия, формулы и определения с примерами напряженность электрического поля которого равна нулю Электромагнитное поле - основные понятия, формулы и определения с примерами

На заряженную частицу, движущуюся в магнитном поле, действует сила Лоренца:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Так как направление силы Лоренца перпендикулярно направлению скорости частицы Электромагнитное поле - основные понятия, формулы и определения с примерамито эта сила не совершает работы: Электромагнитное поле - основные понятия, формулы и определения с примерамиПо этой причине сила Лоренца не может изменить модуль скорости и импульса частицы, а также ее кинетическую энергию. Она способна изменить лишь направление движения частицы. Согласно II закону Ньютона, уравнение движения заряженной частицы в неизменном во времени однородном магнитном поле (при условии Электромагнитное поле - основные понятия, формулы и определения с примерами) имеет вид:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Если частица влетает в поле в направлении, перпендикулярном силовым линиям поля Электромагнитное поле - основные понятия, формулы и определения с примерамито на неё действует максимальная сила Лоренца (sin 90° = 1):Электромагнитное поле - основные понятия, формулы и определения с примерами

В этом случае уравнение движения частицы:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Электромагнитное поле - основные понятия, формулы и определения с примерами

Сообщая телу центростремительное ускорение (так как Электромагнитное поле - основные понятия, формулы и определения с примерами), сила Лоренца заставляет его вращаться по окружности радиусом R (b):Электромагнитное поле - основные понятия, формулы и определения с примерами

Уравнение движения частицы преобразуется: Электромагнитное поле - основные понятия, формулы и определения с примерами

Из выражения (4) можно выяснить, от каких величин зависит радиус окружности, по которой вращается частица:Электромагнитное поле - основные понятия, формулы и определения с примерами

Здесь р и Ек — соответственно модуль импульса и кинетическая энергия частицы.

Радиус окружности, которую описывает заряженная частица в однородном магнитном поле, прямо пропорционален модулю скорости его движения (импульса) и обратно пропорционален модулю вектора магнитной индукции поля.

Период обращения частицы по окружности зависит от массы частицы, величины заряда и модуля индукции магнитного поля:Электромагнитное поле - основные понятия, формулы и определения с примерами

Кстати:

Прибор, используемый для определения массы частицы, называется «масс-спектрограф». Принцип его работы заключается в следующем: вакуумная камера прибора помещается в однородное магнитное поле (вектор его индукции направлен к нам перпендикулярно плоскости рисунка). Заряженные частицы сначала ускоряются электрическим полем, а затем, отклоняясь магнитным полем, описывают дугу, оставляя след на фотопластинке (с). Радиус кривизны дуги измеряется. Это позволяет точно вычислить массу частицы с известным значением заряда.

Электромагнитное поле - основные понятия, формулы и определения с примерами

Действие магнитного поля на проводник с током

Направление вектора индукции магнитного поля, созданного электрическим током, удобно определять правилом правого буравчика: если направление поступательного движения буравчика совпадает с направлением тока в проводнике, то направление вращения ручки буравчика показывает направление вектора индукции магнитного поля, созданного этим током (1). Направление вектора индукции магнитного поля кругового тока также определяется правилом правого буравчика: если вращать рукоятку буравчика по направлению кругового тока, то направление поступательного движения буравчика покажет направление вектора индукции магнитного поля, созданного током (2).

Электромагнитное поле - основные понятия, формулы и определения с примерами

При помещении проводника с током в однородное магнитное поле модуль действующей на него силы Ампера равен произведению модуля индукции магнитного поля, длины этого проводника, силы тока в нем и синуса угла между направлением тока и вектором магнитной индукции:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Направление силы Ампера определяется правилом левой руки: если расположить левую руку в магнитном поле так, чтобы линии магнитной индукции были направлены в ладонь, а четыре пальца были вытянуты по направлению тока, то отведенный под 90 о большой палец укажет направление силы Ампера.

В начале XIX века один из основоположников математической теории электромагнетизма, немецкий математик и физик Карл Фридрих Гаусс (1777-1855) разработал теорию электромагнитной пушки, называемой «пушкой Гаусса». Принцип её работы основан на взаимодействии катушки с током и железного снаряда (постоянный магнит). На рисунке изображены модель пушки Гаусса и схема принципа его работы (а).

Электромагнитное поле - основные понятия, формулы и определения с примерами

После того, как датский ученый X. Эрстед экспериментально установил существование взаимодействия проводника с током и магнитной стрелки, французский физик А. Ампер выяснил, что два параллельных проводника с током взаимодействуют как два постоянных магнита. Стало известно, что между параллельными проводниками с токами одинакового направления взаимодействие носит характер притяжения, а между проводниками с токами противоположного направления -характер отталкивания. Так как электрический ток является упорядоченным движением заряженных частиц, то магнитное взаимодействие является взаимодействием магнитных полей, созданных движущимися заряженными частицами в пространстве.

Магнитное поле действует с определенной силой на любой проводник с током (пробный ток), помещенный в это поле. Модуль этой силы, называемой силой Ампера, равен произведению силы тока в проводнике, модуля вектора магнитной индукции, длины проводника и синуса угла между направлением тока и вектором индукции магнитного поля:Электромагнитное поле - основные понятия, формулы и определения с примерами

Известно, что направление силы Ампера определяется правилом левой руки. Если проводник с током перпендикулярен вектору магнитной индукции (sin90°=l), то сила Ампера принимает максимальное значение:Электромагнитное поле - основные понятия, формулы и определения с примерами

С помощью этой формулы можно выразить физическую суть силовой характеристики магнитного поля — индукции магнитного поля.

Индукция магнитного поля — векторная величина, численно равная максимальной силе, действующей на элемент тока (Электромагнитное поле - основные понятия, формулы и определения с примерами), помещенный в это поле:Электромагнитное поле - основные понятия, формулы и определения с примерами

За направление вектора магнитной индукции в данной точке поля принимают направление, которое указывает северный полюс свободной магнитной стрелки, помещенной в эту точку поля (с). Единицей измерения магнитной индукции в СИ является тесла (Тл):

Электромагнитное поле - основные понятия, формулы и определения с примерами

Электромагнитное поле - основные понятия, формулы и определения с примерами

1 тесла — индукция такого магнитного поля, которое на проводник длиной 1 м, расположенный перпендикулярно линиям магнитной индукции, и силой тока 1 А, действует с силой 1 Н.

Магнитное поле, в каждой точке которого числовое значение и направление вектора магнитной индукции Электромагнитное поле - основные понятия, формулы и определения с примерами одинаковы, называется однородным магнитным полем.

Для магнитного поля выполняется принцип суперпозиции: вектор индукции результирующего магнитного поля, созданного несколькими проводниками с током, равен геометрической сумме векторов индукции отдельных магнитных полей, созданных этими проводниками: Электромагнитное поле - основные понятия, формулы и определения с примерами

С целью визуализации магнитного поля его изображают с помощью линий магнитной индукции (силовые линии поля) (d):

Электромагнитное поле - основные понятия, формулы и определения с примерами

Линия индукции магнитного поля — линия, касательная к каждой точке которой совпадает с вектором магнитной индукции в этой точке.

Линии индукции магнитного поля замкнутые, они не имеют ни начала, ни конца.

Поле, силовые линии которого являются замкнутыми, называют вихревым.

Применение силы Ампера в электроизмерительных приборах

Известно, что существуют различные системы электроизмерительных приборов — амперметра, вольтметра и ваттметра. Это магнитоэлектрические, электромагнитные и электродинамические системы. Принцип работы всех этих систем основан на действии магнитного поля на проводник с током.

Принцип работы приборов магнитоэлектрической системы основан на взаимодействии магнитного поля постоянного магнита с магнитным полем, возникающим вследствие прохождения измеряемого тока через проводящую рамку (е).

Принцип работы прибора электромагнитной системы основан на взаимодействии магнитного поля, возникающего в результате прохождения измеряемого тока через неподвижную катушку, с подвижным стальным сердечником, помещенным в это поле (f).

Принцип действия прибора электродинамической системы основан на взаимодействии магнитных полей токов, протекающих по неподвижной и подвижной катушкам (или системам катушек) (g).

Электромагнитное поле - основные понятия, формулы и определения с примерами

Магнитный поток и явление электромагнитной индукции

После проведения многочисленных опытов М. Фарадей в 1831 году установил, что изменения магнитного поля приводят к возникновению электрического тока в замкнутом проводящем контуре.

Явление возникновения электрического тока в замкнутом проводящем контуре, помещенном в изменяющееся магнитное поле, называют электромагнитной индукцией, а возникающий ток — индукционным током.

Возникновение переменного магнитного поля всегда сопровождается созданием в окружающем пространстве вихревого электрического поля.

Вихревое электрическое поле отличается от электростатического:

  • a) электростатическое поле создается неподвижным электрическим зарядом, а вихревое электрическое поле создается переменным магнитным полем;
  • b) линии напряженности электростатического поля не замкнуты: они начинаются на положительных зарядах и заканчиваются на отрицательных зарядах. Линии напряженности вихревого электрического поля не имеют ни начала, ни конца — эти линии замкнуты.

В 1833 году русский физик Э. Ленц установил общее правило определения направления индукционного тока, так называемое правило Ленца:

Индукционный ток принимает такое направление, что созданное им магнитное поле противодействует тому изменению внешнего магнитного поля, которое стало причиной возникновения тока.

При усилении внешнего магнитного поля магнитное поле индукционного тока ослабляет это изменение — вектор индукции магнитного поля индукционного тока направлен против вектора индукции внешнего магнитного поля (1).

При ослаблении внешнего магнитного поля магнитное поле индукционного тока препятствует изменению, то есть стремится к тому, чтобы это поле не ослабло. Вектор индукции магнитного поля индукционного тока направлен так же, как и вектор индукции внешнего магнитного поля (2).
Электромагнитное поле - основные понятия, формулы и определения с примерами

Магнитный поток

Электромагнитное поле - основные понятия, формулы и определения с примерами

Если поместить замкнутый контур (рамку) в однородное магнитное поле, то через площадь S, ограниченную этим контуром, проходит определенное количество линий магнитной индукции (с). Величину, прямо пропорциональную числу этих линий индукции, называют потоком магнитной индукции, или просто магнитным потоком.

Поток магнитной индукции (Ф) — скалярная физическая величина, равная произведению модуля вектора магнитной индукции, площади контура и косинуса угла между вектором магнитной индукции и нормалью к площади контура:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Магнитный поток относится к скалярным величинам, которые могут принимать положительные, отрицательные значения, а также равняться нулю:

  • — если угол между вектором индукции и нормалью к плоскости контура острый, то магнитный поток принимает положительные значения, а если этот угол тупой — отрицательные;
  • — если вектор индукции перпендикулярен плоскости контура, то есть параллелен нормали к плоскости, то Электромагнитное поле - основные понятия, формулы и определения с примерамитогда магнитный поток, пронизывающий плоскость контура, принимает максимальное значение:

Электромагнитное поле - основные понятия, формулы и определения с примерами

  • — если вектор индукции параллелен поверхности, то есть перпендикулярен нормали, то Электромагнитное поле - основные понятия, формулы и определения с примерамитогда магнитный поток не проходит через плоскость контура, то есть он равен нулю: Электромагнитное поле - основные понятия, формулы и определения с примерамиЗначит, линии магнитной индукции не пронизывают поверхность контура.

Единицей измерения магнитного потока в СИ является вебер (1 Вб):Электромагнитное поле - основные понятия, формулы и определения с примерами

1 Вебер — магнитный поток, пронизывающий поверхность площадью 1 м 2 , ограниченную проводящим контуром, расположенным в магнитном поле с индукцией 1 Тл перпендикулярно линиям индукции поля.

Явление электромагнитной индукции

В 1831 году английский ученый Майкл Фарадей (1791-1867) открыл явление электромагнитной индукции и показал существование взаимосвязи между электрическим и магнитным полем.

Вы знаете, что при введении в катушку, соединенную с гальванометром, постоянного магнита, и выведении его из катушки в витках катушки возникает индукционный ток. А если магнит неподвижен внутри катушки или совершает вращательное движение внутри катушки, то ток не возникает. Значит, причиной возникновения индукционного тока является изменение магнитного потока, пронизывающего контур (d и е).

Электромагнитное поле - основные понятия, формулы и определения с примерами

Возникновение электрического тока в проводящем контуре в результате изменений магнитного потока, пронизывающего площадь, ограниченную этим контуром, называют явлением электромагнитной индукции.

Направление индукционного тока зависит от того, увеличивается или уменьшается пронизывающий контур магнитный поток.

1. Магнитный поток увеличивается Электромагнитное поле - основные понятия, формулы и определения с примерами Электромагнитное поле - основные понятия, формулы и определения с примерамиЭто случай, когда магнит приближается к контуру. В результате магнитный поток растет, индукционный ток, возникающий в контуре при изменении внешнего поля, создает свое собственное магнитное поле. Это вновь созданное поле отталкивает приближающийся к катушке магнит. Значит, вектор индукции Электромагнитное поле - основные понятия, формулы и определения с примерамивнешнего поля, создавшего ток в контуре, направлен против вектора Электромагнитное поле - основные понятия, формулы и определения с примерамисобственного магнитного поля контура с током (см. d). В этом случае магнит и контур отталкиваются одноименными магнитными полюсами. Для круговых токов можно применять правило правого буравчика и легко определить, как направлен индукционный ток — его направление совпадает с направлением вращения стрелки часов.

Правило правого буравчика для кругового тока

Правило правого буравчика для кругового тока: при вращении рукоятки буравчика по направлению кругового тока направление его поступательного движения совпадает с направлением вектора индукции магнитного поля внутри кругового тока (f).

Электромагнитное поле - основные понятия, формулы и определения с примерами

2. Магнитный поток уменьшается Электромагнитное поле - основные понятия, формулы и определения с примерамиЭто случай, когда магнит выводится из катушки. В результате магнитный поток уменьшается. Возникающий в контуре индукционный ток принимает такое направление, при котором вектор индукции Электромагнитное поле - основные понятия, формулы и определения с примерамиего собственного магнитного ноля направлен так же, как и вектор индукции внешнего магнитного поля Электромагнитное поле - основные понятия, формулы и определения с примерами. В этом случае магнит и контур притягиваются, как магниты, противоположными полюсами (см. е). На основе правила правого буравчика устанавливается, что индукционный ток направлен против направления вращения стрелки часов.

Итак, возникающий в замкнутом проводящем контуре индукционный ток всегда направлен так, что его собственное магнитное поле препятствует тем изменениям внешнего магнитного поля, которые стали причиной возникновения этого тока.

Это правило Ленца, позволяющее определить направление индукционного тока.

Закон электромагнитном индукции

Упорядоченное движение заряженных частиц называется электрическим током.

Для существования непрерывного электрического тока в проводнике необходимо выполнение следующих условий: наличие в проводнике заряженных частиц (носителей заряда), способных свободно перемещаться по проводнику; действие электрической силы, способной перемещать эти частицы в определенном направлении; проводник (цепь, состоящая из проводников), по которому проходит электрический ток, должен быть замкнутым.

За направление электрического тока условно принято направление вектора напряженности электрического поля внутри проводника.

За направление электрического тока принято направление движения положительных зарядов (против направления движения свободных электронов).

Зависимость силы тока в данном проводнике от напряжения на его концах проводника и от его сопротивления выражается законом Ома для участка цепи постоянного тока.

Сила тока на участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Индукционный ток, как и любой другой, создается электрическим полем.

Существование переменного магнитного поля всегда сопровождается появлением в окружающем пространстве вихревого электрического поля. Именно вихревое электрическое поле (а не переменное магнитное) действует на свободные электроны в замкнутом контуре и способствует возникновению индукционного тока в нем.

Вихревое электрическое поле существенно отличается от электростатического:

  • а) Электростатическое поле создается покоящимися зарядами, а вихревое электрическое переменным магнитным полем;
  • b) Линии напряженности электростатического поля не замкнуты: они начинаются на положительных зарядах и заканчиваются на отрицательных зарядах. Линии напряженности вихревого электрического поля не имеют ни начала, ни конца, они замкнуты как линии индукции магнитного поля.

Одним из современных видов общественного транспорта является поезд на воздушной подушке, движущийся в подвешенном состоянии левитации -без непосредственного контакта с дорогой. Вместо колес шасси этого поезда, называемого МагЛев, оснащено электромагнитной опорой и направляющими магнитами. Железная дорога состоит из проводящего рельса Т-образной формы, оснащенного электромагнитом, создающим мощный индукционный ток. Такой поезд, испытания которого проводились в Японии вблизи города Фудзияма, показал рекордную скорость 603 Электромагнитное поле - основные понятия, формулы и определения с примерамиНа рисунке показана упрощенная схема МагЛева (а).

Электромагнитное поле - основные понятия, формулы и определения с примерами

Вихревое электрическое поле и ЭДС индукции

Причиной возникновения индукционного тока в замкнутом проводящем контуре является возникновение вихревого электрического поля вокруг переменного магнитного ноля, которое, действуя на свободные электроны в контуре, приводит их в упорядоченное движение -создает индукционный электрический ток. Работа вихревого электрического поля по перемещению положительного единичного заряда по замкнутому проводнику характеризуется физической величиной, называемой электродвижущей силой индукции (ЭДС индукции).

Электродвижущая сила индукции — скалярная физическая величина, равная отношению работы, совершенной вихревым электрическим полем при перемещении положительного единичного заряда вдоль замкнутого контура, к величине этого заряда:

Электромагнитное поле - основные понятия, формулы и определения с примерами

В проведенном исследовании явления электромагнитной индукции вы определили, что значение возникшего в замкнутом контуре индукционного тока пропорционально скорости изменения магнитного потока, проходящего через поверхность, ограниченную этим контуром. Значит, и электродвижущая сила индукции, создающая индукционный ток в проводящем контуре, зависит от скорости изменения внешнего магнитного потока.

Если за очень малый промежуток времени Электромагнитное поле - основные понятия, формулы и определения с примерамимагнитный поток изменяется на Электромагнитное поле - основные понятия, формулы и определения с примерамито отношение Электромагнитное поле - основные понятия, формулы и определения с примерамиявляется скоростью изменения магнитного потока.

Закон электромагнитной индукции

На основе вышесказанного можно выразить закон электромагнитной индукции:

ЭДС индукции, возникающая в замкнутом проводящем контуре, прямо пропорциональна скорости изменения магнитного потока, проходящего через ограниченную этим контуром поверхность:Электромагнитное поле - основные понятия, формулы и определения с примерами

Знак минус в выражении (2) указывает на то, что магнитный поток индукционного тока препятствует изменению внешнего магнитного потока, породившего индукционный ток.

Если контур состоит из N числа витков, го выражение (2) принимает вид:Электромагнитное поле - основные понятия, формулы и определения с примерами

Здесь Электромагнитное поле - основные понятия, формулы и определения с примерами— ЭДС индукции, единицей ее измерения является вольт (1 В):Электромагнитное поле - основные понятия, формулы и определения с примерами

Сила индукционного тока, возникающего в замкнутом проводящем контуре, определяется согласно закону Ома для участка цепи:Электромагнитное поле - основные понятия, формулы и определения с примерами

Здесь R — сопротивление контура.

ЭДС индукции в движущихся в магнитном поле проводниках. При движении проводника в магнитном поле находящиеся внутри него свободные заряженные частицы движутся вместе с ним. По этой причине на каждую частицу действует сила Лоренца. В результате свободные заряды, перемещаясь внутри проводника, совершают упорядоченное движение — в проводнике возникает ЭДС индукции.

Возникающая ЭДС индукции зависит от скорости проводника, длины части проводника, находящейся в поле, и модуля вектора магнитной индукции. Это легко доказывается на основе закона электромагнитной индукции.

Электромагнитное поле - основные понятия, формулы и определения с примерами

Представим, что проводник длиной Электромагнитное поле - основные понятия, формулы и определения с примерамипереместился в магнитном поле индукцией Электромагнитное поле - основные понятия, формулы и определения с примерамина Электромагнитное поле - основные понятия, формулы и определения с примерамив направлении, перпендикулярном вектору индукции (b). ЭДС индукции, возникающая при этом в проводнике: Электромагнитное поле - основные понятия, формулы и определения с примерами

Здесь принято во внимание, что Электромагнитное поле - основные понятия, формулы и определения с примерамии Электромагнитное поле - основные понятия, формулы и определения с примерами(см. b). Если вектор скорости составляет угол Электромагнитное поле - основные понятия, формулы и определения с примерамис вектором магнитной индукции, то ЭДС индукции определяется так:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Направление индукционного тока в проводнике, движущегося в магнитном иоле, удобно определять правилом правой руки:

Правую руку следует держать в магнитном поле так, чтобы вектор Электромагнитное поле - основные понятия, формулы и определения с примерами входил в ладонь, а отогнутый на 90° большой палец показывал направление движения проводника, тогда четыре вытянутых пальца укажут направление индукционного тока.

Кстати:

Принцип работы электронных счетчиков потребления, используемых в быту, основан на применении закона электромагнитной индукции. Например, в электронных счетчиках потребления воды в проводящем электрический ток потоке жидкости возникает ЭДС индукции, пропорциональная скорости жидкости. Индукционный ток в электронной части прибора преобразуется в цифровой сигнал.

Электромагнитное поле - основные понятия, формулы и определения с примерами

ЭДС самоиндукции и энергия магнитного поля

Инертность — одно из важнейших свойств тела (происходит от латинского слова «inertia» — бездеятельность, ленивость).

Инертность — это свойство тел, выражающееся в том, что на изменение скорости тела всегда требуется определенное время. Явление сохранения телом состояния покоя или прямолинейного равномерного движения при отсутствии действия на тело других тел (когда действующие на тело силы уравновешивают друг друга) называется инерцией.

Мера инертности тела — его масса.

Энергия, которой обладает тело вследствие своего движения, называется кинетической энергией. Кинетическая энергия тела зависит от массы тела и модуля его скорости (не от направления):Электромагнитное поле - основные понятия, формулы и определения с примерами

Так как магнитные свойства разных веществ различны, то индукция магнитного поля, созданного в них одним и тем же источником поля, будет различна. Магнитные свойства веществ характеризуются величиной, называемой магнитной проницаемостью вещества.

Магнитная проницаемость вещества показывает, во сколько раз модуль индукции однородного магнитного поля В в веществе отличается от индукции этого магнитного поля в вакууме Во:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Здесь Электромагнитное поле - основные понятия, формулы и определения с примерами (мю) — магнитная проницаемость вещества. Это безразмерная величина.

Прохождение электрического тока через газ при отсутствии внешнего воздействия называется самостоятельным разрядом. Одним из видов самостоятельного газового разряда является искровой разряд.

Искровой разряд возникает в воздухе при высоком напряжении между электродами и наблюдается в виде светящихся узких каналов зигзагообразной формы. Температура в канале разряда может достигать 10 ООО °С, сила тока до 5000 А, напряжение до 10 4 В.

Кстати:

Наверно, каждый из вас наблюдал появление кратковременной искры при вынимании вилки прибора в рабочем режиме из электрической розетки. Это значит, что в воздухе между вилкой прибора и электрической розеткой возник самостоятельный разряд с напряжением несколько тысяч вольт. Такая искра иногда приводит к выводу из строя вилки или розетки.

Электромагнитное поле - основные понятия, формулы и определения с примерами

ЭДС самоиндукции

Электрический ток, существующий в любом замкнутом контуре, создает собственное магнитное поле (находится в собственном магнитном поле). При изменении силы тока в контуре одновременно происходит изменение магнитного потока, создаваемого этим током. Изменение магнитного потока приводит к возникновению вихревого электрического поля, и в результате в этом контуре возникает ЭДС индукции.

Явление возникновения ЭДС индукции в замкнутом проводящем контуре в результате изменения силы тока в нем называют самоиндукцией.

При увеличении силы тока в замкнутом контуре от нуля до определенного значения увеличивается и проходящий через этот контур магнитный поток. Возникающая в контуре в результате увеличения магнитного потока ЭДС самоиндукции создает индукционный ток, направленный против проходящего по контуру основного тока — индукционный ток замедляет рост основного тока и достижение им максимального значения — на увеличение силы тока до максимального значения уходит определенное время (кривая OA, b).
Электромагнитное поле - основные понятия, формулы и определения с примерами

При размыкании цепи сила тока уменьшается от максимального значения до нуля, вместе с этим уменьшается магнитный поток. Уменьшение магнитного потока приводит к возникновению в контуре ЭДС самоиндукции, которая в свою очередь создает в этом контуре индукционный ток, направленный, согласно правилу Ленца, так же, как и основной ток, и замедляющий его уменьшение (кривая ВС, b).

Из вышесказанного становится ясно, что возникающий в контуре собственный магнитный поток прямо пропорционален силе проходящего через контур тока — Электромагнитное поле - основные понятия, формулы и определения с примерамиили:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Здесь L является коэффициентом пропорциональности (между Электромагнитное поле - основные понятия, формулы и определения с примерамии Электромагнитное поле - основные понятия, формулы и определения с примерами) и называется индуктивностью контура (катушки).

Индуктивность зависит от геометрических размеров контура (катушки), от магнитной проницаемости среды внутри него, от числа витков. Она не зависит от силы тока в контуре и магнитного потока.

Индуктивность — скалярная величина, единица ее измерения в СИ названа генри (1 Гн), в честь американского ученого Джозефа Генри:

Электромагнитное поле - основные понятия, формулы и определения с примерами

1 Гн — индуктивность такого контура (катушки), в которой при силе тока 1 А через контур проходит собственный магнитный поток 1 Вб.

Если учесть выражение (1) в законе электромагнитной индукции, то получим, что ЭДС самоиндукции прямо пропорциональна скорости изменения силы тока, проходящего через контур:Электромагнитное поле - основные понятия, формулы и определения с примерами

Здесь Электромагнитное поле - основные понятия, формулы и определения с примерами— ЭДС самоиндукции, Электромагнитное поле - основные понятия, формулы и определения с примерами— скорость изменения силы тока в контуре.

Энергия магнитного поля

Согласно закону сохранения энергии, работа, совершенная при создании ЭДС индукции, будет равна энергии магнитного поля, создавшего его. Для определения этой энергии удобно воспользоваться схожестью явления самоиндукции с явлением инерции. Так, индуктивность L играет такую же роль при изменениях силы тока Электромагнитное поле - основные понятия, формулы и определения с примерамив электромагнитных процессах, какую играет масса Электромагнитное поле - основные понятия, формулы и определения с примерами— при изменениях скорости Электромагнитное поле - основные понятия, формулы и определения с примерамив механических процессах. Тогда для энергии магнитного поля, создаваемого контуром в электромагнитных явлениях, можно принять выражение, аналогичное выражению кинетической энергии тела в механических явлениях:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Если в этом выражении учесть формулу (1), получим ещё две формулы для энергии магнитного поля:

Электромагнитное поле - основные понятия, формулы и определения с примерами

Из теоретических вычислений получено, что плотность энергии магнитного поля прямо пропорциональна квадрату магнитной индукции и обратно пропорциональна магнитным свойствам среды:Электромагнитное поле - основные понятия, формулы и определения с примерами

Здесь Электромагнитное поле - основные понятия, формулы и определения с примерами— магнитная постоянная: Электромагнитное поле - основные понятия, формулы и определения с примерами

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Ещё раз о том, что собою представляет электрический ток.

Многие прежние представления учёных оказывались ошибочными после того, как открывались новые подробности устройства механизма Природы. Например, вплоть до середины 19 века в науке доминировало представление о двух видах «электрического флюида», создающего в телах электрические заряды противоположного знака — положительные и отрицательные.

Именно через «конфликт» между двумя разными «электрическими флюидами», который, как предполагалось, возникает при их встречном движении по проводнику, при замыкании положительного и отрицательного выводов «Вольтова столба», датский учёный Ганс Эрстед описал в 1820 году своё эпохальное открытие влияния электрического тока на магнитную стрелку.

Это влияние электрического тока на магнитную стрелку, как подметил Эрстед, обусловлено образованием вихревого движения особой материи вокруг провода, по которому протекает электрический ток.

Впоследствии английский физик Майкл Фарадей, заменивший в этом опыте Эрстеда магнитную стрелку на железные опилки, назвал наблюдаемое с их помощью явление «магнитным полем», имеющим вихревой характер.

Когда были открыты электроны, субатомные частицы, обычно движущиеся по своим орбиталям вокруг ядер атомов вещества, но способные также легко уходить в «свободные полёт», учёным стало ясно, что электрический ток в проводниках создают именно «свободные электроны», когда они упорядоченно движутся под действием внешней силы.

Соответственно, с открытием в 1897 году английским физиком Джозефом Томсоном свободных электронов стало окончательно ясно, что такие явления электростатики как заряжание тел положительным электричеством или заряжание тел отрицательным электричеством, происходят в тех случаях, когда с поверхности электрически нейтральных тел каким-либо путём снимаются свободные электроны или наоборот они переносятся на их поверхность.

Примеры образования разноимённых электростатических зарядов в телах с помощью трения.

Примеры образования разноимённых электростатических зарядов в телах с помощью трения.

Примеры образования разноимённых электростатических зарядов в телах с помощью трения.

При внешнем фотоэффекте, открытом в 1887 году немецким физиком Генрихом Герцем и детально изученном русским физиком Александром Столетовым в 1888-1889 годах, происходит выбивание свободных электронов с поверхности этих тел падающим на эти тела светом высоких энергий (ультрафиолетом, рентгеновскими лучами, гамма-излучением). Тела, теряющие таким образом свободные электроны, одновременно с этим теряют свой электрический заряд, становясь электрически нейтральными или даже положительно заряженными.

Все эти эффекты говорят нам о том, что сами по себе свободные электроны не могут покидать тела, даже если они являются электрически заряженными.

Чтобы свободный электрон ушёл за пределы поверхности того или иного тела, он должен получить определённой величины энергетический импульс, сообщающий ему дополнительную энергию, достаточную для отрыва от поверхности тела. Такую энергию выхода за пределы вещества свободные электроны получают не только при фотоэффекте и электризации тел механическим путём, но также и при сильном нагревании тел.

Однако, если нет ни того, ни другого, ни третьего, свободные электроны не покидают тел. В этой связи возникает закономерный вопрос: как ведут себя свободные электроны в тех или иных телах, когда никакие внешние силы на них не действуют?

Простейшие опыты по электростатике показывают, что заряженные тела одного знака, отталкиваются друг от друга, а разноимённые — притягиваются.

На этих рисунках представлены электрические заряды и силовых линии электрических полей.

На этих рисунках представлены электрические заряды и силовых линии электрических полей.

На этих рисунках представлены электрические заряды и силовых линии электрических полей.

Свободные электроны — это заряды одного знака. Соответственно, они всегда стремятся держаться подальше от других свободных электронов, находящихся внутри тех же тел.

А если таких свободных электронов в теле миллиарды штук, и за пределы этих тел, (даже находясь на их поверхности!) они выйти не могут, как газ не может выйти из закупоренной ёмкости, что тогда?

Кстати, среднее значение концентрации электронов в каждом кубическом сантиметре металла составляет примерно 10 в 23 степени.

Надо думать, что столь огромное количество свободных электронов подобно молекулам воздуха создаёт в проводниках своего рода «электронный газ», который может находиться как в состоянии давления, так и в состоянии разрежения, а также в состоянии равновесия с положительным зарядом атомных ядер вещества. В последнем случае тело является электрически нейтральным.

Средневековые учёные интуитивно так и понимали природу электричества, связывая его с представлением об «электрическом флюиде». Вот только они не могли догадаться, что тело приобретает положительный заряд при снижении внутреннего давления в «электронном газе», за счёт снятия с поверхности тела части свободных электронов, а отрицательный заряд тело приобретает, когда происходит повышение давления «электронного газа», за счёт переноса на поверхность тела дополнительных свободных электронов. Таким образом оба знака заряда (плюс и минус) создаёт в телах «электронный газ», находящийся в состоянии повышенного или пониженного давления.

Соответственно, чтобы нейтрализовать электрический заряд, находящийся на поверхности тела, необходимо сделать так, чтобы электроны могли перейти оттуда, где есть их переизбыток, туда, где имеется их дефицит.

То обстоятельство, что электростатические заряды, находящиеся на поверхности заряженных тел (электростатика), а также электрический ток, протекающий по проводникам (электродинамика), создают эффекты, выходящие далеко за пределы этих тел, дало учёным повод предположить существование материальных полей взаимодействия — электрического и магнитного.

На этом рисунке электрическое поле представлено сиреневым цветом, а вихревое магнитное поле — синим. Провод, по которому проходит электрический ток, и с которым связаны эти явления, здесь не показан, но его наличие надо обязательно иметь ввиду, так как без участия и упорядоченного движения свободных электронов существование электрического и магнитного полей невозможно, кто бы и что бы ни говорил. (Подробно я поясню это позже).

Со временем учёным стало понятно, что силовое электрическое поле, через которое со скоростью света передаётся силовое взаимодействие между электронами, представляет собой особый, отличный от вещества вид материи, способный заполнять собой в веществе всё межатомное и внутриатомное пространство. Поэтому объяснение сущности электрического, магнитного и суммарного электромагнитного поля в учебниках физики не обходится без упоминания «особой формы материи».

Пример: «Электрическое ( электростатическое) поле — особая форма материи, передающее воздействие одного электрического заряда на другой электрический заряд в соответствии с законом Кулона». (Справочник по физике, автор Хорошавин С.Г.).

Скорость передачи силового взаимодействия между электронами и другими субатомными частицами, ограниченная скоростью

300 тысяч км/сек, по всей видимости, определяется исключительно электромеханической упругостью и плотностью этого межатомного и внутриатомного материального «наполнителя».

Причём самим электронам свойственно двигаться внутри электропроводящих тел под воздействием внешней силы со скоростью всего несколько миллиметров в секунду.

Как согласуется между собой крайне медленная скорость упорядоченного движения электронов в проводе с очень быстрой скоростью распространения по проводу силового электрического поля?

Зная о том, что свободные электроны образуют в металлах «электронный газ», и о том, что пространство между электронами плотно заполнено «особой материей, отличной от вещества», из которой формируются электрическое и магнитное поля, мы можем движение электрического тока по проводам уподобить потоку жидкости в гидравлической системе.

В обоих системах (электрической и гидравлической) с наивысшей скоростью передаётся по замкнутой цепи давление воды и напряжение электрического поля. Для воды эта скорость равна

1500 м/сек, для электрического поля она равна

300 тыс. км/сек. Если отследить в воде, которая под давлением движется по трубе, скорость отдельных капель или молекул, то окажется, что её величина составляет лишь единицы метров в секунду. Аналогично обстоит дело и с движущимися в потоке свободными электронами, который мы называем электрическим током. Электроны движутся в потоке ещё медленнее, чем молекулы воды, зато электрическое напряжение (аналог давления в воде) распространяется по проводам с гигантской скоростью.

Теперь, когда мы имеем некоторое представление о процессах, протекающих в электрических проводах, мы можем более детально представить, что такое электрический ток.

Когда в обмотке электрического генератора, вырабатывающего электроэнергию, свободные электроны сдвигаются с места под воздействием магнитного поля изменяющейся силы и перемещаются в ту или иную сторону вдоль провода, пусть даже и на микроскопическое расстояние.

. они толкают и деформируют своими электрическими полями электрические поля соседних электронов, те также сдвигаются со своего места на микроскопическую величину в направлении действия силы и в свою очередь своими электрическими полями толкают и деформируют электрические поля других соседних электронов. Так происходит движение вширь и вдоль провода объёмной упругой волны электрического поля, которая за счёт свойств «особой материи», отличной от вещества, распространяется со скоростью света.

Напомню читателю на всякий случай: «Электрическое (электростатическое) поле — особая форма материи, передающее воздействие одного электрического заряда на другой электрический заряд в соответствии с законом Кулона». (Справочник по физике, автор Хорошавин С.Г.).

Учитывая то, что свободные электроны своей совокупностью образуют в телах «электронный газ», не покидающий пределы наружной поверхности проводника, то упругая объёмная волна напряжения (давления) электрического поля, передающая силовое взаимодейстсвие между электронами, распространяется по проводнику (внутри «электронного газа») как по трубчатому волноводу, и за его пределы она не выходит.

Движение по проводу этой упругой волны электрического напряжения (электродвижущей силы, ЭДС) лучше всего объясняет рисунок американского инженера Николы Тесла, с помощью которого он также объяснил, как можно передавать электрическую энергию на любые расстояния всего по одному проводнику, нагруженному на свободном конце электростатической ёмкостью.

Обратите внимание на то, как работает на конце проводника электростатическая ёмкость в виде токопроводящей сферы, на наружной поверхности которой плотность электрических зарядов может то увеличиваться, то уменьшаться. Её аналогом в гидравлической системе является эластичная (резиновая) ёмкость, наружный размер которой может то увеличиваться, то уменьшаться.

За счёт нагнетания на поверхность уединённой электростатической ёмкости электрических зарядов или за счёт снятия с её поверхности электрических зарядов и возможно организовать передачу электроэнергии по одиночному проводнику.

Этот же принцип и этот же эффект «эластичной ёмкости», возникающий при движении электрических зарядов по поверхности проводников под действием Кулоновских сил, используется в радиотехнике для возбуждения в пространстве, окружающем проводник, радиоизлучений.

Ниже патент, выданный инженеру Н.Тесла в США 20 марта 1900 года, на систему для передачи электрической энергии без проводов, причём это дополнение к его раннему патенту от 1897 года:

Слева передающая установка, справа приёмная установка, использующие электростатические ёмкости на свободных концах проводников, излучающих электрическую энергию в пространство и принимающих её из пространства. Правда, сам Тесла, придумал эти установки для передачи электрической энергии не через пространство, а через землю. В этом случае, говорил он, можно передавать энергию на любые расстояния с весьма малыми потерями.

Что касается так называемого «магнитного поля», которое всегда является вихревым по характеру, то учёным было изначально ясно, что оно образуется только при движении электрического тока.

В любой современной энциклопедии можно прочесть следующее утверждение: «Магнитное поле — это поле, действующее как на движущиеся электрические заряды, так и на тела, обладающие магнитным моментом, независимо от состояния их движения. Магнитное поле можно назвать особым видом материи, посредством которой осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом. Вместе, магнитное и электрическое поля образуют электромагнитное поле». Источник: https://ru.wikipedia.org/wiki/Магнитное_поле

Как видим, и в случае с магнитным полем мы тоже имеем дело с материей, отличной от вещества. Только, если в случае с электрическим полем мы имеем в телах «электронный газ», находящийся под давлением (когда тела заряжены отрицательно) или в состоянии разрежения (когда тела заряжены положительно), то в случае с магнитным полем мы имеем вихревое движение этой же тончайшей материи, отличной от вещества, причём это вихревое движение тончайшей материи может охватывать области, простирающиеся на некоторое расстояние за пределы проводника.

То обстоятельство, что неподвижные электростатические заряды не создают магнитные поля, их создают только движущиеся упорядоченно электрические заряды, указывает нам направление поиска первопричины возникновения магнитных полей вокруг проводов с током.

В любой энциклопедии можно прочесть следующую информацию: «Магнитное поле создаётся (порождается) током заряженных частиц, или изменяющимся во времени электрическим полем, или собственными магнитными моментами частиц (последние для единообразия картины могут быть формальным образом сведены к электрическим токам)».

Поскольку всё большое состоит из малого, нам нетрудно понять, что большие магнитные поля образуются из слияния малых вихревых магнитных полей, постоянно присутствующих вокруг электронов по причине того, что они обладают собственными магнитными моментами.

Картина суммарного магнитного поля, возникающего вокруг многовитковой проволочной катушки при протекании по ней тока:

Справка из энциклопедического словаря: «Магнитный момент элементарных частиц (электронов, протонов, нейтронов и других частиц), как показала квантовая механика, обусловлен существованием у них собственного механического момента — спина. Спин (от англ. spin, буквально — вращение, вращать(-ся)) — собственный момент импульса элементарных частиц)».

Таким образом мы приходим к пониманию, что магнитное поле как микрообъект существует вокруг электронов всегда, по причине того, что они обладают вращением, спином.

Как макрообъект магнитное поле возникает вокруг тел только тогда, когда большое количество электронов под действием внешней силы (ЭДС) приходит в упорядоченное поступательное движение, при этом их оси вращения (магнитные полюса электронов) занимают в пространстве одинаковое положение. В этом случае и происходит слияние миниатюрных вихрей каждого отдельно взятого электрона в один большой вихрь, окружающий тело, по котором течёт электрический ток.

Если всё это понятно, и ничто не вызывает возражений, то можно перейти к подведению некоторых итогов.

Первый и главный вывод: ни электрическое поле, ни вихревое магнитное поле не может существовать в отрыве от электрических зарядов.

ЭПИЛОГ

Как я написал в самом начале этой статьи, многие прежние представления учёных оказывались ошибочными после того, как открывались новые подробности устройства механизма Природы.

Когда английский учёный Майкл Фарадей открыл явление электромагнитной индукции, это случилось 29 августа 1831 года, он просто увидел, что электродвижущая сила (ЭДС), возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Причём величина ЭДС не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле.

Спустя почти 30 лет, в 1860-х годах, шотландский учёный Джеймс Максвелл, который разумеется не знал и даже не догадывался о существовании электронов, они были открыты только в 1897 году, высказал смелую гипотезу об электромагнитной природе света. Впоследствии подтвердилось, что свет и все другие излучения (инфракрасное, ультрафиолетовое, рентгеновское) действительно порождаются движением электронов, вот только не факт, что свет распространяющийся в физическом вакууме (в безвоздушном пространстве) имеет электромагнитную природу!

Возможно, что в случае со светом, радиоволнами и прочими излучениями, порождаемыми движением электронов в вакуумных приборах или на поверхности проводников, мы имеем дело с иными формами материи, нежели изученные нами электрические и магнитные поля.

Иллюстрация ниже показывает устройство и принцип работы рентгеновской трубки, в которой жёсткое рентгеновское излучение порождается за счёт резкого торможения свободных электронов, предварительно ускоренных в сильном электрическом поле. Причём сами свободные электроны, при резком торможении которых рождаются рентгеновские лучи, за пределы рентгеновской трубки не вылетают.

Почему я так обозначил проблему современной физики?

Смотрите как подаётся история, связанная с Д.К.Максвеллом и с его «Электромагнитной теорией света» полуторавековой давности:

«. Оказалось, что не только ток, но и изменяющееся со временем электрическое поле порождает магнитное поле. В свою очередь, в силу закона Фарадея, изменяющееся магнитное поле снова порождает электрическое. В результате, в пустом пространстве может распространяться электромагнитная волна. Из уравнений Максвелла следовало, что её скорость равна скорости света, поэтому Максвелл сделал вывод об электромагнитной природе света. »

Максвеллу было простительно сделать в 1860-х годах предположение о том, что не только магнитное поле является вихревым, но и электрическое поле тоже может быть вихревым, и что оба они могут существовать в отрыве от электронов, он ведь ничего не знал об электронах и даже не подозревал об их существовании.

Но мы то уже знаем и про электроны, и про свойства создаваемых ими полей, и мы понимаем, что существование электрического и магнитного полей в отрыве электронов невозможно!

Давайте рассмотрим случай, представленный на рисунке ниже. Так в учебниках современной физики рассказывается об образовании внутри замкнутого металлического кольца вихревого электрического поля.

В показанном на этом рисунке случае, изменяемый рукой оператора магнитный поток, пронизывая замкнутое металлическое кольцо, непосредственно воздействует на свободные электроны, и строго по закону электромагнитной индукции, вызывает их сдвиг в направлении, указанном тонкой стрелкой синего цвета.

В замкнутом металлическом кольце под воздействием изменяющегося магнитного потока свободные электроны сдвигаются фактически все одновременно, следовательно имеющиеся расстояния между ними, обусловленные действием Кулоновских сил не меняются. А значит, электродвижущая сила (ЭДС) в этом случае не возникает! Еинд = О. То есть, вихревого электрического поля, которое должно характеризоваться величиной напряжённости, нет! А вот если бы металлическое кольцо не было замкнутым, то под воздействием изменяющегося магнитного поля мы бы имели скопление свободных электронов на одном его конце, недостаток свободных электронов на другом его конце, и в дополнение к этому мы бы имели некоторую напряжённость электрического поля между наведёнными зарядами.

К сожалению, несмотря на такие очевидные вещи, современная мировая наука отказывается признавать ошибочность теории Д.К.Максвелла, построенной на предположении, что электрические и магнитные поля могут существовать в отрыве от электрических зарядов. До сих пор заявляется, что оба эти поля могут существовать даже в вакууме, в котором отсутствуют малейшие признаки какого-либо вещества.

В школах и ВУЗах учителя до сих пор преподают учащимся, что для образования вихревого электрического поля «проводник вообще не нужен! Проводник является всего лишь индикатором того, что здесь есть электрическое поле! Если убрать проводник и оставить меняющееся магнитное поле, то электрическое поле всё-равно возникает в пространстве. Причём линии этого поля, силовые линии, направлены вот так, они замкнуты. Такое поле, линии которого замкнуты, называется вихревым.

Когда оно появляется? При изменении магнитного поля. Итак, пишем вывод: При изменении магнитного поля в пространстве, в нём возникает вихревое электрическое поле. Проводник при этом не нужен! Без всякого проводника. В пустоте, в вакууме возникает вихревое электрическое поле. » Источник: https://youtu.be/FAqvdIPttjo

Я же хочу сказать следующее:

То обстоятельство, что скорость распространения электрического поля в проводах равна скорости света в вакууме, позволяет высказать предположение, что и в проводах, и в вакууме (безвоздушном пространстве) имеет место распространение упругих волн в одной и той же тончайшей среде, которая отлична от вещества.

Причём, если электрическое поле распространяется в проводах со скоростью света как упругая продольная волна, то и в вакууме (безвоздушном пространстве) волна света тоже представляет собой упругую продольную волну, движущуюся наступательно.

При этом в реальной волне света равно как и в радиоволне нет места как вихревому магнитному полю, так и вихревому электрическому полю!

Пытаться объяснять явление поляризации света (равно как и явление поляризации радиоволн) с помощью поперечных колебаний магнитного и электрического полей, якобы существующих в отрыве от свободных электронов, было большой ошибкой учёных 19 века.

Создание в ХХ веке квантовой физики дало подсказку, но ею никто из академиков не спешит воспользоваться, что явление поляризации света можно легко объяснить вращением частиц света («фотонов») вокруг своей оси.

Обычный свет после прохождения через поляризатор становится поляризованным, и это обстоятельство заставило учёных придумать поперечные электромагнитные волны.

Хотя, казалось бы, что может быть проще и яснее?! При пропускании неполяризованного света через поляризатор тормозятся все фотоны, оси которых не совпадают с главной осью поляризатора, но те фотоны, у которых оси совпадают с главной осью поляризатора, проходят сквозь него свободно. Так из неполяризованного света получается поляризованный свет. Это исчерпывающее объяснение. И не надо никому рассказывать волшебные сказки про «поперечные колебания вихревых полей, электрического и магнитного в абсолютной пустоте»!

Фотоны — это возбужденные частицы всё той же материи, отличной от вещества, в которой возникают хорошо известные нам электрические и магнитные поля.

Причём гипотетические «поперечные колебания вихревых полей», о которых рассказывает современная физика, нельзя ни нарисовать, ни представить в здравом воображении! А то, что подаётся в учебниках физики под видом радиоволны, является несуразицей, в которой отсутствует даже намёк на то, что поля, электрическое и магнитное, колеблющиеся поперёк направления распространения радиоволны в пространстве, являются вихревыми, как того требует «Электромагнитная теория света» Д.К.Максвелла:

Где здесь хоть намёк на то, что в радиоволне имеет место движение/колебание именно вихревого магнитного поля и именно вихревого электрического поля?!

Реальная картина радиоволны, имеющей продольную компоненту и состоящей из «фотонов», может быть, например, такой:

Если я достаточно ясно всё объяснил, мне остаётся лишь надеется, что процесс ревизии мировой физической науки и переписывания учебников физики первыми начнут российские учёные.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *