Подключение трехфазного двигателя к однофазной сети: 3 схемы конденсаторного запуска с подробным объяснением
Владелец гаража или частного дома часто нуждается в работе станка либо наждака с асинхронным электродвигателем для обработки металлов, древесины. А в наличии имеется только напряжение 220 вольт.
Подключение трехфазного двигателя к однофазной сети в этом случае можно выполнить несколькими способами. Здесь я буду рассматривать три доступные и распространенные схемы конденсаторного запуска.
Все они не раз опробованы на личном опыте.
Сразу предупреждаю опытных электриков, открывших эту статью: материал подготовлен для начинающих мастеров. Поэтому он объемный. Если нет желания все читать, то вот вам краткие советы:
- используйте схему треугольник, предварительно проверив исправность двигателя;
- выбирайте рабочие конденсаторы из расчета 70 микрофарад на 1 киловатт мощности, а пусковые увеличьте в 2-3 раза;
- в процессе наладки откорректируйте емкости по величине нагрузки и нагреву обмоток;
- не забывайте соблюдать меры безопасности с электрическим током и инструментом.
Все остальное рекомендую новичкам внимательно прочитать и осмыслить в той последовательности, как я излагаю.
На своем опыте не раз убеждался, что первоначальная проверка технического состояния оборудования позволяет исключить многие ошибки, экономит общее время работы, значительно предотвращает травмы и аварии.
Трехфазный асинхронный двигатель: на что обратить внимание до его подключения
За небольшим исключением асинхронник нам достается в неизвестном состоянии. Очень редко на него есть свидетельство о проверке и заверенная гарантия от электролаборатории.
Даже в этом случае я рекомендую убедиться в его исправности лично.
Механическое состояние статора и ротора: что может мешать работе двигателя
Неподвижный статор состоит из трех частей: среднего корпуса и двух боковых крышек, стянутых шпильками. Обращайте внимание на зазор между ними, усилие стягивания гайками.
Корпус должен быть плотно сжат. Внутри него на подшипниках вращается ротор. Попробуйте покрутить его от руки. Оцените приложенное усилие: как работают подшипники, нет ли биений.
Без должного опыта мелкие дефекты таким способом не выявить, но случай грубого заклинивания сразу проявится. Послушайте шумы: нет ли при вращении задевания ротором элементов статора.
После включения двигателя на холостой ход и непродолжительной работы еще раз послушайте звуки вращающихся частей.
В идеале лучше разобрать статор, оценить визуально его состояние, промыть загрязненные подшипники ротора и полностью заменить их смазку.
Электрические характеристики статорных обмоток: как проверять схему сборки
Все основные параметры электродвигателя производитель указывает на специальной табличке, прикрепленной к корпусу статора.
Этим заводским характеристикам можно верить только в том случае, если вы уверены, что после завода никто из электриков не изменил схему подключения обмоток и не сделал непроизвольных ошибок. А случаи такие мне попадались.
Да и сама табличка со временем может стереться или потеряться. Поэтому предлагаю разобраться с технологией раскрутки ротора.
Для понимания электротехнических процессов, протекающих внутри статора двигателя, удобно представить его в виде обыкновенного тороидального трансформатора, когда на кольцевом сердечнике магнитопроводе симметрично расположены три равнозначные обмотки.
Схема статора собрана внутри закрытого корпуса, из которого выведены только шесть концов обмоток.
Они маркируются и подключаются на закрытом крышкой клеммнике для сборки по схеме звезды или треугольника типовой перестановкой перемычек.
На правой части картинки показана сборка треугольника. Схему расположения перемычек для звезды публикую ниже.
Электрические методики проверки схемы сборки обмоток
Но не все так однозначно, как может показаться на первый взгляд. Существует целый ряд двигателей с отклонением от этих правил.
Например, производитель может выпускать электродвигатели не универсального использования, а для работы в конкретных условиях с подключением обмоток по схеме звезды.
В этом случае он может собрать три конца обмоток внутри корпуса статора, а наружу вывести только четыре провода для подключения к потенциалам фаз и нуля.
Монтаж этих концов обычно выполняется в районе задней крышки. Для переключения обмоток на треугольник потребуется вскрывать корпус и делать дополнительные выводы.
Это не сложная работа. Но она требует бережного обращения с лаковым покрытием медного провода. При изгибах проволоки возможно его повреждение, что повлечет нарушение изоляции и создаст межвитковое замыкание.
Что делать, если маркировка выводов отсутствует
На старом асинхронном двигателе провода могут быть сняты с клемм, а заводская маркировка утеряна. Попадались и такие экземпляры, когда из корпуса просто торчали наружу шесть концов. Их необходимо вызвонить и промаркировать.
Работу выполняем в два этапа:
- Проверяем принадлежность концов обмоткам.
- Определяем и маркируем каждый вывод.
На первом этапе работаем мультиметром или тестером в режиме омметра. Ставим первый щуп произвольно на один вывод, а вторым — ищем из пяти оставшихся проводов тот, где прибор покажет закороченную цепь. Помечаем оба конца, как принадлежащие к одной обмотке.
С оставшимися четырьмя выводами поступаем аналогично. В итоге мы получаем три пары проводов от каждой обмотки.
Как найти конец и начало обмотки: 2 способа
Можно вести поиск с помощью вольтметра:
- и батарейки;
- или источника пониженного переменного напряжения.
Первый метод основан на том, что импульс тока, поданный на одну из трех обмоток, трансформируется в двух остальных.
Для этого на произвольно выбранный конец К1 подключают минус батарейки, а плюсовым контактом кратковременно касаются второго вывода. По цепи проходит импульсный бросок тока и наводит ЭДС в двух других обмотках.
С помощью вольтметра постоянного тока по отклонению стрелки проверяется полярность наведенного напряжения в каждой обмотке. Началом помечается тот вывод, который соответствует положительному потенциалу (стрелка прибора движется вправо при замыкании и влево при размыкании цепи батарейкой).
После маркировки концов рекомендую сделать контрольную проверку правильности их нанесения подачей импульса на другую обмотку.
Второй способ основан на использовании источника переменного напряжения безопасной величины 12-36 вольт.
Концы двух любых обмоток замыкают в параллель и на них подключают вольтметр. На оставшуюся третью обмотку подают переменное напряжение и смотрят на показание прибора.
Если наведенная ЭДС соответствует поданному напряжению, то эти две обмотки включены в одной полярности. Одинаково помечают их начала и концы. При нулевом показании вольтметра концы одной из обмоток необходимо вывернуть и сделать повторный замер.
Затем одну из промаркированных обмоток, например №3, соединяют с первой и подключают к ним вольтметр. На освободившуюся №2 снова подают переменное напряжение. По величине ЭДС на вольтметре судят о полярности выводов.
После окончания маркировки делают контрольный замер для проверки выполненной работы.
Когда нет под рукой понижающего трансформатора или безопасного блока питания, то опытный электрик с правом самостоятельной работы под напряжением, может воспользоваться обыкновенной лампой накаливания ватт на 60.
Ее используют в качестве делителя напряжения, подключая последовательно к одной обмотке электродвигателя. На собранную цепочку подают 220 вольт, а на двух других измеряют напряжение вольтметром.
Как оценить состояние изоляции обмоток
Отдельная часть блогеров умалчивает о необходимости этой проверки. Они считают, что без нее можно обойтись в большинстве случаев.
Однако до включения двигателя под напряжение я рекомендую:
- взять мегаомметр с выходным напряжением на 1000 вольт;
- проверить им изоляцию между каждой отдельной обмоткой и корпусом, а также между всеми обмотками;
- если она выше 0,5 Мом, то считать стартер исправным. В противном случае придется его ремонтировать. Довольно часто помогает просушка сухим и теплым воздухом.
При сборке двигателя каждая катушка статора мотается медным проводом одной длины и сечения. Поэтому все они имеют строго одинаковое резистивное сопротивление.
Если в обмотке возникло межвитковое замыкание, то его, как правило, можно определить замером мультиметра в режиме омметра. Для этого внимательно анализируйте и сравнивайте активные сопротивления каждой цепочки.
Как проверяют магнитное поле статора на заводе
При подаче напряжения на исправный электродвигатель создается вращающееся магнитное поле. Его визуально оценивают с помощью металлического шарика, который повторяет вращение.
Я не призываю вас повторять такой опыт. Пример этот призван помочь понять, что работа асинхронного двигателя основана на взаимодействии магнитных полей статора и ротора.
Только правильное подключение обмоток обеспечивает вращение шарика или ротора.
Мощность электродвигателя и диаметр провода обмотки
Это две взаимосвязанных величины потому, что поперечное сечение проводника выбирается по способности противостоять нагреву от протекающего по нему току.
Если на двигателе отсутствует табличка, то о его мощности можно судить по двум признакам:
- Диаметру провода обмотки.
- Габаритам сердечника магнитопровода.
После вскрытия крышки статора проанализируйте их визуально.
Подключение трехфазного двигателя к однофазной сети по схеме звезды
Начну с предупреждения: даже опытные электрики во время работы допускают ошибки, которые называются «человеческий фактор». Что уж говорить про домашних мастеров…
Поэтому рекомендую в обязательном порядке подачу напряжения на собранную схему выполнять только через отдельный автоматический выключатель SF, правильно подобранный по нагрузке. Он спасет жизнь и здоровье.
Схема подключения звезды показана на картинке.
Концы обмоток собраны в одну точку горизонтальными перемычками внутри клеммной коробки. На нее никакие внешние провода не подключены.
Фаза (через автоматический выключатель) и ноль бытовой проводки подаются на две разные клеммы начал обмоток. К свободной клемме (на рисунке Н2) подключена параллельная цепочка из двух конденсаторов: Cp — рабочий, Сп — пусковой.
Рабочий конденсатор соединен второй обкладкой жестко с фазным проводом, а пусковой — через дополнительный выключатель SA.
При запуске электродвигателя ротор необходимо раскрутить из состояния покоя. Он преодолевает усилия трения подшипников, противодействия среды. На этот период требуется повысить величину магнитного потока статора.
Делается это за счет увеличения тока через дополнительную цепочку пускового конденсатора. После выхода ротора на рабочий режим его нужно отключить. Иначе пусковой ток перегреет обмотку двигателя.
Выполнять отключение цепочки пуска простым переключателем не всегда удобно. Для автоматизации этого процесса используют схемы с реле или пускателями, работающими по времени.
Среди мастеров самодельщиков пользуется популярностью кнопка пуска от советских стиральных машин активаторного типа. У нее встроено два контакта, один из которых после включения отключается автоматически с задержкой: то, что надо в нашем случае.
Если приглядитесь внимательно на принцип подачи однофазного напряжения, то увидите, что 220 вольт приложены к двум последовательно подключенным обмоткам. Их общее электрическое сопротивление складывается, ослабляя величину протекающего тока.
Схема треугольник: преимущества и недостатки
Подключение электродвигателя по этому способу предполагает использование той же внешней цепочки, что и у звезды. Фаза, ноль и средняя точка нижних обкладок конденсаторов монтируются последовательно на три перемычки клеммной коробки.
За счет переключения выводов обмоток по схеме треугольника подводимое напряжение 220 создает больший ток в каждой обмотке, чем у звезды. Здесь меньшие потери энергии, выше КПД.
Для формирования фазосдвигающей цепочки здесь требуется использовать меньшую емкость рабочих и пусковых конденсаторов.
При включении двигатель он может начать вращение не в ту сторону, которая требуется. Нужно сделать ему реверс.
Для этого достаточно в обеих схемах (звезды или треугольника) поменять местами приходящие от сети провода на клеммной колодке. Ток потечет по обмотке в противоположную сторону. Ротор изменит направление вращения.
Как подобрать конденсаторы: 3 важных критерия
Трехфазный двигатель создает вращающееся магнитное поле статора за счет равномерного прохождения синусоид токов по каждой обмотке, разнесенных в пространстве на 120 градусов.
В однофазной сети такой возможности нет. Если подключить одно напряжение на все 3 обмотки сразу, то вращения не будет — магнитные поля уравновесятся. Поэтому на одну часть схемы подают напряжение, как есть, а на другую сдвигают ток по углу вращения конденсаторами.
Сложение двух магнитных полей создает импульс моментов, раскручивающих ротор.
От характеристик конденсаторов (величины емкости и допустимого напряжения) зависит работоспособность создаваемой схемы.
Для маломощных двигателей с легким запуском на холостом ходу в отдельных случаях допустимо обойтись только рабочими конденсаторами. Всем остальным движкам потребуется пусковой блок.
Обращаю внимание на три важных параметра:
- емкость;
- допустимое рабочее напряжение;
- тип конструкции.
Как подобрать конденсаторы по емкости и напряжению
Существуют эмпиреческие формулы, позволяющие выполнять простой расчет по величине номинального тока и напряжения.
Однако люди в формулах часто путаются. Поэтому при контроле расчета рекомендую учесть, что для мощности в 1 киловатт требуется подбирать емкость на 70 микрофарад для рабочей цепочки. Зависимость линейная. Смело ей пользуйтесь.
Конденсаторы рассчитываются под максимальное значение тока, допустимого по условиям нагрева провода. При этом расходуется много электроэнергии.
Если же электродвигатель преодолевает нагрузки меньшей величины, то емкость конденсаторов желательно снизить. Делают это опытным путем при наладке, замеряя и сравнивая токи в каждой фазе амперметром.
Чаще всего для пуска асинхронного электродвигателя используют металлобумажные конденсаторы.
Они хорошо работают, но обладают низкими номиналами. При сборке в конденсаторную батарею получается довольно габаритная конструкция, что не всегда удобно даже для стационарного станка.
Сейчас
промышленностью выпускаются малогабаритны электролитические конденсаторы, приспособленные для работы с электродвигателями на переменном токе.
Их внутреннее устройство изоляционных материалов приспособлено для работы под разным напряжением. Для рабочей цепочки оно составляет не менее 450 вольт.
У пусковой схемы с условиями кратковременного включения под нагрузку оно уменьшено до 330 за счет снижения толщины диэлектрического слоя. Эти конденсаторы меньше по габаритам.
Это важное условие следует хорошо понимать и применять на практике. Иначе конденсаторы на 330 вольт взорвутся при длительной работе.
Скорее всего для конкретного двигателя одним конденсатором не отделаться. Потребуется собирать батарею, используя последовательное и параллельное соединение их.
При параллельном подключении общая емкость суммируется, а напряжение не меняется.
Последовательное соединение конденсаторов уменьшает общую емкость и делит приложенное напряжение на части между ними.
Какие типы конденсаторов можно использовать
Номинальное напряжение сети 220 вольт — это действующая величина. Ее амплитудное значение составляет 310 вольт. Поэтому минимальный предел для кратковременной работы при запуске выбран 330 V.
Запас напряжения до 450 V для рабочих конденсаторов учитывает броски и импульсы, которые создаются в сети. Занижать его нельзя, а использование емкостей с большим резервом значительно увеличивает габариты батареи, что нерационально.
Для фазосдвигающей цепочки допустимо использовать полярные электролитические конденсаторы, которые созданы для протекания тока только в одну сторону. Схема их включения должна содержать токоограничивающий резистор в несколько Ом.
Без его использования они быстро выходят из строя.
Схема сдвига фаз токов конденсаторами и дросселем: что мне не понравилось
Это третья обещанная в заголовке конструкция, которую я реализовал два десятка лет назад, проверил в работе, а потом забросил. Она позволяет использовать до 90% трехфазной мощности двигателя, но обладает недостатками. О них позже.
Собирал я преобразователь трехфазного напряжения на мощность 1 киловатт.
В его состав входят:
- дроссель с индуктивным сопротивлением на 140 Ом;
- конденсаторная батарея на 80 и 40 микрофарад;
- регулируемый реостат на 140 Ом с мощностью 1000 ватт.
Одна фаза работает обычным способом. Вторая с конденсатором сдвигает ток вперед на 90 градусов по ходу вращения электромагнитного поля, а третья с дросселем формирует его отставание на такой же угол.
В создании фазосдвигающего магнитного момента участвуют токи всех трех фаз статора.
Корпус дросселя пришлось собирать механической конструкцией из дерева на пружинах с резьбовой настройкой воздушного зазора для наладки его характеристик.
Конструкция реостата — это вообще «жесть». Сейчас его можно собрать из мощных сопротивлений, купленных в Китае.
Мне даже приходила мысль использовать водяной реостат.
Но я от нее отказался: уж слишком опасная конструкция. Просто намотал на асбестовой трубе толстую стальную проволоку для проведения эксперимента, положил ее на кирпичи.
Когда запустил двигатель циркулярной пилы, то он работал нормально, выдерживал приложенные нагрузки, нормально распиливал довольно толстые колодки.
Все бы хорошо, но счетчик намотал двойную норму: этот преобразователь берет такую же мощность на себя, как и двигатель. Дроссель и проволока неплохо нагрелись.
Из-за высокого потребления электроэнергии, низкой безопасности, сложной конструкции я не рекомендую такой преобразователь.
Меры безопасности при подключении трехфазного двигателя: напоминание
Сначала я повторюсь с рекомендацией использовать все подключения только через отдельный автоматический выключатель. Это очень важно.
Работы по наладке схемы под напряжением должны выполнять обученные люди. Знание ТБ — обязательное условие.
Использование разделительного трансформатора значительно сокращает риск попасть под действие тока. Поэтому используйте его при любых наладочных работах под напряжением.
Специальный инструмент электрика с диэлектрическими рукоятками не только облегчает работу, но и сохраняет здоровье. Не пренебрегайте им!
В заключение рекомендую посмотреть полезное видео владельца Сергея Герасимчука по подключению трехфазного двигателя к однофазной сети.
Если остались вопросы или заметили неточности, то воспользуйтесь разделом комментариев.
Рейтинг статьи
Рекомендуем прочитать:
Комментарии 26
Alex
В схеме подключения полярных конденсаторов неправильно указана полярность
Alex
«Мелочь», конечно, но такая ошибка — это как саперу назвать не тот цвет провода. Исправьте это.
Алексей
Благодарю, Alex, за подсказку. Действительно ошибка вкралась в схему. Это еще раз подтверждает, что надо быть внимательным во всем. Буду исправлять схему.
Ramzes
Здравствуйте! Хотел бы уточнить.
Исправили на данный момент или нет?
Дело в том что это уже третий вариант подобной схемы, хотелось бы истину =)
Спасибо.
Алексей
Здравствуйте, Ramzes.
благодарю за вопрос. Если вы спрашиваете про коммент от Alex о схеме подключения полярных конденсаторов, то исправил. Там по ошибке плюс не на той стороне нарисован был. Сейчас все нормально. А каких два других варианта вы видели. Дело в том, что иногда ее рисуют так, как я показал правее и зачеркнул накрест красными линиями или без токоограничивающего резистора.
Ramzes
Спасибо за оперативность, Алексей!
В тех других схемах отличия в полярности конденсаторов и диодов, плюс как вы справедливо заметили отсутствие резистора.
electrik.info/main/school/1008-elektroliticheskie-kondensatory.html
skrutka.ru/sk/tekst.php?id=40
Зачастую советуют соединять электрлиты именно минусом, вот и смутили все эти различия.
Вообще в вашей статье нашёл ещё одну интересную вещь. При определении мощности для треугольника по формуле везде где читал ставят коэффициент 4800. И соответственно значение получал запредельно огромное. У меня 2.2квт довольно уверенно работает на 100 мкф. При увеличении появляется гул и тп. По вашим формулам коэффициент именно 2800 что примерно 102 мкф!
Потому и решил пообщаться именно с вами. Склоняясь что ваши форумы актуальны.
Спасибо!
Алексей
Дело в том, что не стоит всегда просто копировать схему, а надо просто представить как она должна работать. Через полярный конденсатор должен течь только постоянный ток и в том направлении, как он создан. Поэтому на нем и обозначают клеммы (+) и (-). Вот когда я первый раз перечерчивал эту схемку, то чисто механически перепутал обозначения и не заметил. Хорошо, что меня подправили.
Теперь о формулах: они все дают чисто ориентировочный результат. На работу двигателя всегда влияет нагрузка, которая прикладывается к валу. Формулы подбираются по максимальной, а на практике это не всегда соблюдается. Очень давно подбирал пусковые и рабочие конденсаторы к циркулярке. Для этого в каждую обмотку врезал амперметр, пытался добиться сбалансированных токов во всех обмотках. Вот тогда и увидел, как они сильно меняются при изменении усилия на валу: в одной резко возрастает, а другой — падает. Приходится всегда после предварительного расчета настраивать какой-то средний режим и останавливаться на нем. В релейной защите это называют наладкой. Все проверяется практикой.
Рустам
Здравствуйте! У меня двигатель на компрессоре, 2,2 kw, вышел из строя конденсатор пусковой, заменил, начало просто кз при включение в сеть. Двигатель 3х фазный на 220вольт. В чем причина может быть? Кроме замены кондетсатора, не чего не было тронуто.
Алексей
Здравствуйте, Рустам.
В работающих электрических схемах все сбалансировано. Если ломается что-то одно, то существует большая вероятность повреждения других деталей.
Причины выхода из строя пускового конденсатора могут быть разные, но скорее всего он перегревался.
Я предлагаю проверить исправность всей схемы, замерить номиналы рабочего и пускового конденсаторов. Особое внимание обратите на состояние обмоток двигателя. Проверьте изоляцию между ними мегаомметром, отсутствие межвиткового замыкания.
Неисправность может возникнуть при неправильном подборе конденсаторов. Все формулы расчета емкости созданы для упрощения их подбора по номинальной нагрузке. При работе усилие на валу двигателя часто не соответствует этой величине. Токи в разных обмотках отличаются. Ведь это не трехфазный равномерный режим, а приближенный к нему.
Поэтому в статье я рекомендую после первого запуска под нагрузкой делать дополнительную наладку пускового и рабочего конденсаторов: измерять токи в каждой обмотке и не допускать их превышения за счет более точного подбора емкости.
Андрей
добрый день
подключил двигатель 380В к сети 220В, вроде все работает, но он сильно нагревается! в чем может быть проблема?
двигатель импортный, из него выходит 4 провода красный, черный, белый и зеленый. видимо зеленый это земля, а остальные это три обмотки собранные по схеме звезда. так мне подсказали)
собирал по схеме звезда. пусковой 250мкФ 300В, рабочий из 100+50мкФ (по факту на всех написано пусковые, в чипидип сказали так можно)
что не так? из-за чего греется. может этот двигатель вообще не предназначен для перевода на 220? или что-то неправильно собрал?
Андрей
ДОбрый день
помогите пожалуйста разобраться
приобрел двигатель 380В, три фазы, импортный, 1500Ватт. из него 4 провода: красный, белый, черный и зеленый, по всей видимости зеленый — земля, остальные обмотки соединенные по схеме звезда. при подключении использовал схему звезда. пусковой 250 мкФ 300В рабочий из 100+50мкФ (по факту все конденсаторы одинаковые, на них написано пусковые, я не разбираюсь, мне продавец в чипидип сказал, что эти конденсаторы так можно использовать)
запустив двигатель оставил его поработать на 1-2 минуты, выключил, он начал греться, после выключения тепло как бы прошло наружу и он стал очень горячим.
в чем проблема?
Алексей
Андрей, извини за задержку с ответом.
Тебе попался профессиональный продавец и он качественно выполнил свою задачу — продал товар. Только вот напряжение конденсаторов 300 вольт — это на грани фола. Они могут взорваться. Причина в том, что, грубо говоря, это постоянная величина, выше которой они не предназначены работать. А они подвергаются в цепи переменного тока действующему напряжению 220 вольт, которое уменьшено от амплитудного значения примерно в 1,41 раза. Более подробно об этом читай в статье формулу электрического напряжения. Другими словами, на конденсатор постоянно будут действовать пики напряжения 220х1,41=310 вольт. Это в лучшем случае. А при достижении в сети верхней нормы 253 вольта еще больше возрастает.
Для работы двигателя надо подбирать конденсаторы, рассчитанные на эксплуатацию в сети минимум 400 вольт.
Второе мое замечание: не зная устройства двигателя и схемы подключения обмоток сразу подавать на него напряжение — довольно рискованное занятие. Надо было его разобрать, провести внутренний осмотр и проследить выводы обмоток.
Будем надеяться, что обмотки не перегреты и остались целыми. Но в любом случае осмотри их.
Третий пункт. В статье писал, что любой трехфазный двигатель в однофазную сеть подключается для выполнения определенной работы (под конкретной нагрузкой). Нет универсальной формулы подбора конденсаторов. Все, что указано в учебниках — на основе опыта по максимальной приложенной мощности. Но после их установки нужна наладка — уточнение токов в каждой обмотке и корректировка номиналов конденсаторов. Иначе схема будет при работе греться.
Когда емкость конденсаторов мала, то они не позволяют двигателю набрать нормальные обороты, если она большая, то по обмоткам протекают повышенные токи, которые перегревают изоляцию. Во время наладки по действующей нагрузке выбирают оптимальный вариант.
Павл
Появилось ещё больше вопросов.
В схеме подключения полярных конденсаторов. Какие диоды нужно поставить как их подобрать?
Какое сопротивление и как его подобрать?
Опишите как эта схема работает и почему там 4 конденсатора нарисованно? Двух мало? Или одного
С одним рабочим конденсатором нельзя? Или с двумя рабочим и пусковым?
Я спрашиваю только про полярные конденсаторные подключения…
Если я правильно понял то левый диод работает с правыми, а правый с левыми конденсаторами в схеме в зависимости от импульса то в одну то в другую сторону, так?
То для чего стоит резистор если сам кондёр является резистором в этой схемме или я ошибаюсь?
Да и для чего этот резистор вообще нужен, без него работать будет?
Как я понял это для разряда конденсатора когда он выключен, чтобы не шарахнкло током, когда полезешь чинить. Но в процессе работы он же тогда нафиг не нужен и будет только создавать лишнею потерю энергии или не так?
Я в этом не шарю по этому и спрашиваю))
Мне надо подключить в 220 вольт 3 двигателя 380вольтнве 4квт,1,5квт и 0,3квт на токарном станке они стоят 1м95. Вот и и думаю как проще это и дешевле это сделать.
Алексей
Павел, здравствуйте.
Все дело в том, что обычный конденсатор способен проводить переменный ток в любую сторону. Конструкция полярного конденсатора не обладает этим свойством. Он создан для работы в цепях постоянного тока и безопасно работает только при определенном направлении электрической энергии: от плюса к минусу. Для этого на нем всегда делается маркировка «+» и «—».
Если ее не соблюдать, то он немного поработает и взорвется. Поэтому его подключают через диод, который запирает одну полуволну синусоиды, а вторую пропускает.
Поскольку полуволн две, то на каждую из них работает своя схема. На картинке просто показан принцип подключения нескольких емкостей.
Резистор называется токоограничивающим потому, что ограничивает ток или по-другому защищает конструкцию конденсаторов от перегрева и повреждения.
Диоды подбирайте так, чтобы они могли свободно выдерживать величину тока, протекающего через них.
Эта схема позволяет безопасно эксплуатировать полярные конденсаторы в цепях переменного тока. Если вы их используете для рабочей цепочки и пусковой, то вам придется ее повторять.
Еще совет: при конденсаторном запуске трехфазный движок может потерять в мощности до 50%. Для каждого двигателя конденсаторы потребуется подбирать после запуска по рабочей нагрузке, ибо иначе возможно излишнее нагревание обмоток.
Имеется еще альтернативный запуск без конденсаторов. Он описан тоже у меня на блоге.Он описан тоже у меня на блоге. Оцените этот вариант подключения.
Подумайте над приобретением частотного преобразователя. Сейчас его можно приобрести относительно не дорого. Он избавит от многих ошибок, которые вы можете допустить, не обладая должным опытом работы.
Павл
Спасибо буду думать
Алексей
Вариант с частотником более дорогой, но надежный. При выборе по мощности для движка 4 кВт его можно использовать и для работы остальных поочередно. КПД самое высокое будет.
Андрей
Я вот не великий электрик, но все же вообще сомневаюсь в работоспособности этой схемы. Почему? Потому что всегда представлял себе конденсатор в виде двух пластин, расположенных на некотором расстоянии друг от друга, к которым припаяны выводы. Чем больше площадь этих пластин и чем меньше расстояние между ними, тем больше емкость конденсатора. Но так как эти пластины не касаются друг друга, то любой конденсатор, вне зависимости от его емкости и конструктивных особенностей, не способен проводить электрический ток. Ток в цепи конденсатора возможен лишь в том случае, когда происходит его заряд от источника напряжения или разряд при подключении его к какому-нибудь потребителю. Время существования этого тока определяется емкостью самого конденсатора и дополнительными элементами цепи, ограничивающими ток.
Так вот к чему это я все: если мы рассмотрим приведенную схему и попытаемся хотя бы фломастером нарисовать направление тока, то будет очевидным, что в тот момент времени, когда у нас «+» приложенного напряжения окажется слева, а «-» справа, то ток потечет через открытый диод VD1, через резистор и конденсаторы С2 и С4. И течь он будет до тех пор, пока эти два конденсатора не зарядятся. Небольшой ток так же пойдет и через конденсаторы С1 и С3, стремящийся их зарядить (с обратной полярностью) до небольшого напряжения, которое возникнет на открытом диоде VD1. Если С2 и С4 не успеют зарядиться до смены полярности приложенного напряжения на противоположную, то этот процесс продолжится в следующий раз. Точно такая же картина будет и с цепью VD2, R и С1 С3, только при обратной полярности приложенного напряжения. В конечном итоге все 4 конденсатора зарядятся до амплитудного значения приложенного напряжения и ток через всю схему в обоих направлениях будет близким к нулю. Ну и, соответственно, вся эта схема на работу двигателя никакого влияния оказывать не будет, пока каким-то образом не будут разряжены конденсаторы. А так как в схеме отсутствуют цепи разряда конденсаторов, то последние будут длительное время представлять опасность даже после отключения от сети.
Если не прав, поправьте.
Алексей
Здравствуйте, Андрей.
В первой части вашего вопроса все правильно. Только учтите, что вы рассматривает случай, когда в цепи протекает чисто постоянный ток. Он действительно не проходит через конденсатор из-за разрыва цепи между пластинами.
Однако мы рассматриваем в статье способы подключения трехфазного двигателя к однофазному питанию, где форма у тока имеет вид синусоиды. Она меняется по величине и направлению. В такой цепи конденсатор уже пропускает ток, обладая емкостным сопротивлением. Советую посмотреть по этому вопросу другую статью этого же сайта. Надеюсь, что она поможет вам разобраться в этом вопросе.
Андрей
Что такое переменный ток и то, что он будет иметь место если, например, подключить обычную электрическую лампочку в розетку через конденсатор, я себе прекрасно представляю. И даже скажу более, что его величина будет тем больше, чем больше будет емкость конденсатора.
Вопрос был несколько в другом. В приведенной схеме, как по мне, оба конденсатора за несколько полупериодов зарядятся до амплитудного значения и будут в таком состоянии находится до тех пор, пока не разрядятся за счет естественных токов утечки. При этом вся эта схема ни какого дальнейшего влияния на работу электродвигателя (в отличии от использования обычного неполярного конденсатора, который постоянно перезаряжается с одной полярности на другую) уже оказывать не сможет ибо общий ток в цепи будет равен нулю. Потому она сможет лишь «толкнуть» двигатель в правильном направлении при полностью разряженных конденсаторах и на этом ее функция будет завершена. Чтобы эта схема смогла полноценно функционировать, ее необходимо дополнить цепями разряда конденсаторов, которые бы вступали в работу при смене полярности приложенного напряжения.
Надеюсь, свою мысль изложил правильно.
Алексей
Андрей, мы подключаем трехфазный двигатель, который состоит из трех статорных обмоток к однофазной схеме питания.
Если рассматривать стандартную схему работы, то к каждой его обмотке подводится свое синусоидальное напряжение, сдвинутое на 120 градусов относительно других. Они формируют аналогично сдвинутые токи в этих обмотках, которые создают три магнитных потока, совместно вращающих ротор.
Весь это процесс хорошо наблюдается снятием векторной диаграммы токов и напряжений при работающем двигателе. Просто подключаем ВАФ к проводам и делаем замеры.
При однофазной схеме питания мы имеем всего одно напряжение. От него требуется создать 3 разных тока в обмотках, сдвинутые по углу на 120 градусов. Эту задачу отлично выполняет современный инвертор, но там сложная электронная схема и стоит она довольно дорого.
Бюджетным вариантом сдвига синусоиды тока относительно напряжения является использование емкости и индуктивности. При подключении конденсатора ток опережает напряжение, а дросселя — отстает. В обоих случаях угол между век торами будет не 120 градусов, а всего лишь 90.
Недостающие 30 градусов создают потери энергии. Но с этим приходится мириться.
Конденсаторная схема запуска трехфазного двигателя в однофазной сети основана как на изменении направления тока в обмотках перекоммутацией в стандартной схеме начал и концов обмоток, так и сдвигом токов за счет их пропускания через емкость от подключенного конденсатора. Этих схем разработано очень много. В статье я просто привел наиболее популярные и приемлемые.
На вопрос, как происходит заряд конденсатора от каждого положительного и отрицательного полупериода гармоники и формируется разряд (да и особенностей работы полярных и неполярных конденсаторов в таком цикле) мне сложно ответить. Извини, я простой практик. Но у меня есть друзья, которые не только преподают электротехнику в институте, но и занимаются репетиторством. Могу перенаправить им твой вопрос и попросить ответить тебе. Спрашивать?
Андрей
Алексей, я ни коим образом не хочу уличить Вас в неквалифицированном подходе при освещении данного материала, а уж, тем более, в неграмотности или в не владении предметом. В Вашей квалификации я совершенно не сомневаюсь, так как Ваш глубокий уровень знаний очевиден.
Я вел речь лишь о конкретной схеме замещения обычного неполярного конденсатора, состоящей из пяти деталей: двух диодов, двух электролитических конденсаторов и резистора, приведенной Вами в данной статье. И не более того.
По поводу спрашивать или нет, считаю, что конечно же надо спросить. Дело в том, что если вдруг окажется, что мои рассуждения верны, то данную схему рекомендовать для повторения в том виде, в каком она представлена, нельзя. Тем более, в рамках этого весьма серьезного сайта.
Жаль, что у меня в данный момент нет под рукой ни двигателя, ни всех необходимых деталей, чтобы можно было убедиться на практике и сделать определенные выводы. Ну и, разумеется, утвердительное заявление по результатам эксперимента. Потому предлагаю пообщаться с теми, кто, возможно, уже имеет опыт применения данной схемы в качестве фазосдвигающего конденсатора. Думаю, это будет не только интересно, но и полезно!
Как подключить трехфазный электродвигатель в сеть 220 В своими силами: подробная схема
Трехфазные асинхронные двигатели совершенно заслужено являются самыми массовыми в мире, благодаря тому, что они очень надежны, требуют минимального технического обслуживания, просты в изготовлении и не требуют при подключении каких-либо сложных и дорогостоящих устройств, если не требуется регулировка скорости вращения. Большинство станков в мире приводятся в действие именно трёхфазными асинхронными двигателями, они также приводят в действие насосы, электроприводы различных полезных и нужных механизмов.
Но как быть тем, кто в личном домовладении не имеет трехфазного электроснабжения, а в большинство случаев это именно так. Как быть, если хочется в домашней мастерской поставить стационарную циркулярную пилу, электрофуганок или токарный станок? Хочется порадовать читателей нашего портала, что выход из этого затруднительного положения есть, причем достаточно просто реализуемый. В этой статье мы намерены рассказать, как подключить трехфазный двигатель в сеть 220 В.
Как подключить трехфазный электродвигатель в сеть 220 В
Принципы работы трехфазных асинхронных двигателей
Рассмотрим кратко принцип работы асинхронного двигателя в своих «родных» трехфазных сетях 380 В. Это очень поможет впоследствии адаптировать двигатель для работы в других, «не родных» условиях – однофазных сетях 220 В.
Устройство асинхронного двигателя
Большинство производимых в мире трехфазных двигателей – это асинхронные двигатели с короткозамкнутым ротором (АДКЗ), которые не имеют никакой электрической контактной связи статора и ротора. В этом их основное преимущество, так как щетки и коллекторы, – самое слабое место любого электродвигателя, они подвержены интенсивному износу, требуют технического обслуживания и периодической замены.
Рассмотрим устройство АДКЗ. Двигатель в разрезе показан на рисунке.
Трехфазный асинхронный двигатель с короткозамкнутым ротором в разрезе
В литом корпусе (7) собран весь механизм электродвигателя, включающий две главные части – неподвижный статор и подвижный ротор. В статоре имеется сердечник (3), который набран из листов специальной электротехнической стали (сплава железа и кремния), которая обладает хорошими магнитными свойствами. Сердечник набран из листов по причине того, что в условиях переменного магнитного поля в проводниках могут возникнуть вихревые токи Фуко, которые в статоре нам абсолютно не нужны. Дополнительно каждый лист сердечника еще покрыт с обеих сторон специальным лаком, чтобы вообще свести на нет протекание токов. Нам от сердечника нужны только магнитные его свойства, а не свойства проводника электрического тока.
В пазах сердечника уложена обмотка (2), выполненная из медного эмалированного провода. Если быть точным, то обмоток в трехфазном асинхронном двигателе как минимум три – по одной на каждую фазу. Причем уложены это обмотки в пазы сердечника с определенным порядком – каждая расположена так, что находится под угловым расстоянием в 120° к другой. Концы обмоток выведены в клеммную коробку (на рисунке она расположена в нижней части двигателя).
Ротор помещен внутрь сердечника статора и свободно вращается на валу (1). Зазор между статором и ротором для повышения КПД стараются сделать минимальным – от полумиллиметра до 3 мм. Сердечник ротора (5) также набран из электротехнической стали и в нем тоже имеются пазы, но они предназначены не для обмотки из провода, а для короткозамкнутых проводников, которые расположены в пространстве так, что напоминают беличье колесо (4), за что и получили свое название.
Белки могут гордиться тем, что в их честь назвали одну из главных деталей двигателя
Беличье колесо состоит из продольных проводников, которые связаны и механически, и электрически с торцевыми кольцами Обычно беличье колесо изготавливают путем заливки в пазы сердечника расплавленного алюминия, а заодно еще формуют монолитом и кольца, и крыльчатки вентиляторов (6). В АДКЗ большой мощности в качестве проводников клетки применяют медные стержни, сваренные с торцевыми медными кольцами.
Что такое трехфазный ток
Для того чтобы понять какие силы заставляют вращаться ротор АДКЗ, надо рассмотреть что такое трехфазная система электроснабжения, тогда все встанет на свои места. Мы все привыкли к обычной однофазной системе, когда в розетке есть только два или три контакта, один из которых фаза (L), второй рабочий ноль (N), а третий защитный ноль (PE). Среднеквадратичное фазное напряжение в однофазной системе (напряжение между фазой и нулем) равно 220 В. Напряжение (а при подключении нагрузки и ток) в однофазных сетях изменяются по синусоидальному закону.
График переменного синусоидального напряжения.
Из приведенного графика амплитудно-временной характеристики видно, что амплитудное значение напряжения не 220 В, а 310 В. Чтобы у читателей не было никаких «непоняток» и сомнений, авторы считают своим долгом сообщить, что 220 В – это не амплитудное значение, а среднеквадратичное или действующее. Он равно U=Umax/√2=310/1,414≈220 В. Для чего это делается? Только для удобства расчетов. За эталон принимают постоянное напряжение, по его способности произвести какую-то работу. Можно сказать, что синусоидальное напряжение с амплитудным значением в 310 В за определенный промежуток времени произведет такую же работу, которое бы сделало постоянное напряжение 220 В за тот же промежуток времени.
Надо сразу сказать, что практически вся генерируемая электрическая энергия в мире трехфазная. Просто с однофазной энергией проще управляться в быту, большинству потребителей электроэнергии достаточно и одной фазы для работы, да и однофазные проводки гораздо дешевле. Поэтому из трехфазной системы «выдергивается» один фазный и нулевой проводник и направляются к потребителям – квартирам или домам. Это хорошо видно в подъездных щитах, где видно, как с одной фазы провод идет в одну квартиру, с другой во вторую, с третьей в третью. Это так же хорошо видно на столбах, от которых линии идут к частным домовладениям.
Трехфазное напряжение, в отличие от однофазного, имеет не один фазный провод, а три: фаза A, фаза B и фаза C. Фазы еще могут обозначать L1, L2, L3. Кроме фазных проводов, естественно, присутствует еще общий для всех фаз рабочий ноль (N) и защитный ноль (PE). Рассмотрим амплитудно-временную характеристику трехфазного напряжения.
Амплитудно временная характеристика и векторная диаграмма трехфазного тока
Из графиков видно, что трехфазное напряжение – это совокупность трех однофазных, с амплитудой 310 В и среднеквадратичным значением фазного (между фазой и рабочим нулем) напряжения в 220 В, причем фазы смещены относительно друг друга с угловым расстоянием 2*π/3 или 120°. Разность потенциалов между двумя фазами называют линейным напряжением и оно равно 380 В, так как векторная сумма двух напряжений будет Uл=2*Uф*sin(60°)=2*220*√3/2=220*√3=220*1,73=380,6 В, где Uл – линейное напряжение между двумя фазами, а Uф – фазное напряжение между фазой и нулем.
Трехфазный ток легко генерировать передавать к месту назначения и в дальнейшем преобразовывать в любой нужный вид энергии. В том числе и в механическую энергию вращения АДКЗ.
Как работает трехфазный асинхронный двигатель
Если подать переменное трехфазное напряжение на обмотки статора, то через них начнут протекать токи. Они, в свою очередь, вызовут магнитные потоки, также изменяющиеся по синусоидальному закону и также сдвинутые по фазе на 2*π/3=120°. Учитывая, что обмотки статора расположены в пространстве на таком же угловом расстоянии – 120°, внутри сердечника статора образуется вращающееся магнитное поле.
Изменение сдвинутых по фазе на 120 градусов токи обмоток статора создают вращающееся магнитной поле
Это постоянно изменяющееся поле пересекает «беличье колесо» ротора и вызывает в нем ЭДС (электродвижущую силу), которая также будет пропорциональна скорости изменения магнитного потока, что на математическом языке означает производную от магнитного потока по времени. Так как магнитный поток изменяется по синусоидальному закону, значит, ЭДС будет изменяться по закону косинуса, ведь (sinx)’=cosx. Из школьного курса математики известно, что косинус «опережает» синус на π/2=90°, то есть, когда косинус достигает максимума, синус его достигнет через π/2 — через четверть периода.
Под воздействием ЭДС в роторе, а, точнее, в беличьем колесе возникнут большие токи, учитывая, что проводники замкнуты накоротко и имеют низкое электрическое сопротивление. Эти токи образуют свое магнитное поле, которое распространяется по сердечнику ротора и начинает взаимодействовать с полем статора. Разноименные полюса, как известно, притягиваются, а одноименные отталкиваются друг от друга. Возникающие силы создают момент заставляющий ротор вращаться.
Магнитное поле статора вращается с определенной частотой, которая зависит от питающей сети и количества пар полюсов обмоток. Рассчитывается частота по следующей формуле:
n1=f1*60/p, где
- f1 – частота переменного тока.
- p – число пар полюсов обмоток статора.
С частотой переменного тока все понятно – она в наших сетях электроснабжения составляет 50 Гц. Число пар полюсов отражает, сколько пар полюсов имеется на обмотке или обмотках, принадлежащих одной фазе. Если к каждой фазе подключается одна обмотка, отстоящая на 120° от других, то число пар полюсов будет равно единице. Если одной к одной фазе подключаются две обмотки, тогда число пар полюсов будет равно двум и так далее. Соответственно и меняется угловое расстояние между обмотками. Например, при числе пар полюсов равным двум, в статоре размещается обмотка фазы A, которая занимает сектор не 120°, а 60°. Затем за ней следует обмотка фазы B, занимающая такой же сектор, а затем и фазы C. Далее чередование повторяется. При увеличении пар полюсов соответственно уменьшаются сектора обмоток. Такие меры позволяют уменьшить частоту вращения магнитного поля статора и соответственно ротора.
Приведем пример. Допустим, трехфазный двигатель имеет одну пару полюсов и подключен к трехфазной сети частотой 50 Гц. Тогда магнитное поле статора будет вращаться с частотой n1=50*60/1=3000 об/мин. Если увеличить количество пар полюсов – во столько же раз уменьшится частота вращения. Чтобы поднять обороты двигателя, надо увеличить частоту переменного тока, питающего обмотки. Чтобы изменить направление вращения ротора, надо поменять местами две фазы на обмотках
Следует отметить, что частота вращения ротора всегда отстает от частоты вращения магнитного поля статора, поэтому двигатель и называется асинхронным. Почему это происходит? Представим, что ротор вращается с той же скоростью, что и магнитное поле статора. Тогда беличье колесо не будет «пронизывать» переменное магнитное поле, а оно будет для ротора постоянным. Соответственно не будет наводиться ЭДС и перестанут протекать токи, не будет взаимодействия магнитных потоков и исчезнет момент, приводящий ротор в движение. Именно поэтому ротор находится «в постоянном стремлении» догнать статор, но никогда не догонит, так как исчезнет энергия, заставляющая вращаться вал двигателя.
Разницу частот вращения магнитного поля статора и вала ротора называют частотой скольжения, и она рассчитывается по формуле:
∆n=n1-n2, где
- n1 – частота вращения магнитного поля статора.
- n2 – частота вращения ротора.
Скольжением называется отношение частоты скольжения к частоте вращения магнитного поля статора, оно рассчитывается по формуле: S=∆n/n1=(n1—n2)/ n1.
Способы подключения обмоток асинхронных двигателей
Большинство АДКЗ имеет три обмотки, каждая из которых соответствует своей фазе и имеет начало и конец. Системы обозначения обмоток могут быть разными. В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначают цифрой 1 начало обмотки и цифрой 2 – ее конец, то есть обмотка U имеет два вывода U1 и U2, обмотка V–V1 и V2, а обмотка W – W1 и W2.
Однако еще до сих пор в эксплуатации находятся асинхронные двигатели, сделанные во времена СССР и имеющие старую систему маркировки. В них начала обмоток обозначаются C1, C2, C3, о концы C4, C5, C6. Значит, первая обмотка имеет выводы C1 и C4, вторая C2 и C5, а третья C3 и C6. Соответствие старых и новых систем обозначений представлено на рисунке.
Старые и новые обозначения обмоток двигателей
Рассмотрим, как могут соединяться обмотки в АДКЗ.
Соединение звездой
При таком соединении все концы обмоток объединяют в одной точке, а к их началам подключают фазы. На принципиальной схеме такой способ подключения действительно напоминает звезду, за что и получил название.
Подключение обмоток асинхронного двигателя звездой
При соединении звездой к каждой обмотке в отдельности приложено фазной напряжение в 220 В, а к двум обмоткам, соединенных последовательно линейное напряжение 380 В. Главное преимущество такого способа подключения – это небольшие токи запуска, так как линейное напряжение приложено к двум обмоткам, а не к одной. Это позволяет двигателю «мягко» стартовать, но мощность его будет ограничена, так как протекающие токи в обмотках будут меньше, чем при другом способе подключения.
Соединение треугольником
При таком соединении обмотки объединяют в треугольник, когда начало одной обмотки соединяется с концом следующей – и так по кругу. Если линейное напряжение в трехфазной сети 380 В, то через обмотки будут протекать токи гораздо больших величин, чем при соединении звездой. Поэтому мощность электродвигателя будет выше.
Подключение обмоток асинхронного двигателя треугольником
При соединении треугольником в момент запуска АДКЗ потребляет большие пусковые токи, которые могут в 7—8 раз превышать номинальные и способны вызвать перегрузку сети, поэтому на практике инженеры нашли компромисс – запуск двигателя и его раскручивание до номинальных оборотов производится по схеме звезда, а затем происходит автоматическое переключение на треугольник.
Как определить, по какой схеме подключены обмотки двигателя?
Прежде чем подключать трехфазный двигатель к однофазной сети 220 В, необходимо выяснить по какой схеме подключены обмотки и при каком рабочем напряжении может работать АДКЗ. Для этого необходимо изучить табличку с техническими характеристиками – «шильдик», который должен быть на каждом двигателе.
На такой табличке — «шильдике», можно узнать много полезной информации
На табличке имеется вся необходимая информация, которая поможет подключить двигатель к однофазной сети. На представленном шильдике видно, что двигатель имеет мощность 0,25 кВт и количество оборотов 1370 об/мин, что говорит о наличии двух пар полюсов обмоток. Значок ∆/Y означает, что обмотки можно соединить как треугольником, так и звездой, причем следующий показатель 220/380 В свидетельствует о том, что при соединении треугольником напряжение питающей сети должно быть 220 В, а при соединении звездой – 380 В. Если такой двигатель подключить в сеть 380 В треугольником, то обмотки его сгорят.
За подключение такого двигателя в сеть 220 В лучше не браться
На следующем шильдике можно увидеть, что такой двигатель можно подключить только звездой и только в сеть 380 В. Скорее всего в клеммной коробке у такого АДКЗ будет только три вывода. Опытные электрики смогут подключить и такой двигатель к сети 220 В, но для этого надо будет вскрывать заднюю крышку, чтобы добраться до выводов обмоток, затем найти начало и конец каждой обмотки и произвести необходимую коммутацию. Задача сильно усложняется, поэтому авторы не рекомендуют подключать такие двигатели к сети 220 В, тем более что большинство современных АДКЗ могут подключаться по-разному.
На каждом двигателе есть клеммная коробка, расположенная чаще всего сверху. В этой коробке есть входы для питающих кабелей, а сверху она закрыта крышкой, которую необходимо снять при помощи отвертки.
Как говорят электрики и паталогоанатомы: «Вскрытие покажет»
Под крышкой можно увидеть шесть клемм, каждая из которых соответствует или началу, или концу обмотки. Помимо этого клеммы соединяются перемычками, и по их расположению можно определить, по какой схеме подключены обмотки.
Вскрытие клеммной коробки показало, что у «пациента» очевидная «звездная болезнь»
На фото «вскрытой» коробки видно, что провода, ведущие к обмоткам подписаны и перемычками соединены в одну точку концы всех обмоток – V2, U2, W2. Это свидетельствует о том, что имеет место соединение звездой. С первого взгляда может показаться, что концы обмоток расположены в логичном порядке V2, U2, W2, а начала «перепутаны» — W1, V1, U1. Однако, это сделано с определенной целью. Для этого рассмотрим клеммную коробку АДКЗ с подключенными обмотками по схеме треугольник.
Такое положение перемычек говорит о том, что обмотки подключены треугольником. Вместо одной перемычки применен отрезок розового провода
На рисунке видно, что положение перемычек меняется – соединяются начала и концы обмоток, причем клеммы расположены так, что те же перемычки используются для перекоммутации. Тогда становится понятно почему «перепутаны» клеммы – так легче перебрасывать перемычки. На фотографии видно, что клеммы W2 и U1 соединены отрезком провода, но в базовой комплектации новых двигателей всегда присутствуют именно три перемычки.
Если после «вскрытия» клеммной коробки обнаруживается такая картина, как на фотографии, то это означает, что двигатель предназначен для звезды и трехфазной сети 380 В.
Такому двигателю лучше возвращаться в свою «родную стихию» — в цепи трехфазного переменного тока
Видео: Отличный фильм про трехфазные синхронные двигатели, который еще не успели раскрасить
Как подключить трехфазный электродвигатель в сеть 220 В
Подключить трехфазный двигатель в однофазную сеть 220 В можно, но при этом надо быть готовым пожертвовать значительным снижением его мощности – в лучшем случае она составит 70% от паспортной, но для большинства целей это вполне приемлемо.
Основной проблемой подключения является создание вращающегося магнитного поля, которое наводит ЭДС в короткозамкнутом роторе. В трехфазных сетях реализовать это просто. При генерации трехфазной электроэнергии в обмотках статора наводится ЭДС из-за того, что внутри сердечника вращается намагниченный ротор, который приводится в движение энергией падающей воды на ГЭС или паровой турбиной на ГЭС и АЭС. Он создает вращающееся магнитное поле. В двигателях происходит обратное преобразование – изменяющееся магнитное поле приводит во вращение ротор.
В однофазных сетях получить вращающееся магнитное поле сложнее — надо прибегнуть к некоторым «хитростям». Для этого надо сдвинуть фазы в обмотках по отношению друг к другу. В идеальном случае нужно сделать так, что фазы будут сдвинуты по отношению друг к другу на 120°, но на практике это трудно реализовать, так как такие устройства имеют сложные схемы, стоят достаточно дорого и их изготовление и настройка требуют определенной квалификации. Поэтому в большинстве случаев применяют простые схемы, при этом несколько жертвуя мощностью.
Сдвиг фаз при помощи конденсаторов
Электрический конденсатор известен своим уникальным свойством не пропускать постоянный ток, но пропускать переменный. Зависимость токов, протекающих через конденсатор, от приложенного напряжения показана на графике.
Ток в конденсаторе всегда будет «лидировать» на четверть периода
Как только к конденсатору прикладывают возрастающее по синусоиде напряжение, он сразу «накидывается» на него и начинает заряжаться, так как изначально был разряжен. Ток в этот момент будет максимальным, но по мере заряда он будет уменьшаться и достигнет минимума в тот момент, когда напряжение достигнет своего пика.
Как только напряжение будет уменьшаться, конденсатор среагирует на это и будет начинать разряжаться, но ток при этом будет идти в обратном направлении, по мере разряда он будет увеличиваться (со знаком минус) до тех пор, пока уменьшается напряжение. К моменту, когда напряжение равно нулю ток достигает своего максимума.
Когда напряжение начинает расти со знаком минус, то идет перезаряд конденсатора и ток постепенно приближается от своего отрицательного максимума к нулю. По мере уменьшения отрицательного напряжения и стремлении его к нулю идет разряд конденсатора с увеличением тока через него. Далее, цикл повторяется заново.
Из графика видно, что за один период переменного синусоидального напряжения, конденсатор два раза заряжается и два раза разряжается. Ток, протекающий через конденсатор, опережает напряжение на четверть периода, то есть — 2*π/4=π/2=90°. Вот таким простым путем можно получить фазовый сдвиг в обмотках асинхронного двигателя. Сдвиг фаз в 90° не является идеальным в 120°, но вполне достаточен для того, чтобы на роторе появился необходимый вращательный момент.
Сдвиг фаз также можно получить, применив катушку индуктивности. В этом случае все произойдет наоборот – напряжение будет опережать ток на 90°. Но на практике применяют больше емкостной сдвиг фаз из-за более простой реализации и меньших потерь.
Схемы подключения трехфазных двигателей в однофазную сеть
Существует очень много вариантов подключения АДКЗ, но мы рассмотрим только наиболее часто используемые и наиболее просто реализуемые. Как было рассмотрено ранее, для сдвига фазы достаточно подключить параллельно какой-либо из обмоток конденсатор. Обозначение Cр говорит о том, что это рабочий конденсатор.
Так подключают рабочий конденсатор
Следует отметить, что соединение обмоток в треугольник предпочтительней, так как с такого АДКЗ можно «снять» полезной мощности больше, чем со звезды. Но существуют двигатели, предназначенные для работы в сетях с напряжением 127/220 В. О чем обязательно должна быть информация на шильдике.
Очень редкий представитель в большом семействе асинхронных двигателей
Если читателям встретится такой двигатель, то — это можно считать удачей, так как его можно включать в сеть 220 В по схеме звезда, а это обеспечит и плавный пуск, и до 90% от паспортной номинальной мощности. Промышленностью выпускаются АДКЗ специально предназначенные для работы в сетях 220 В, которые могут называть конденсаторными двигателями.
Как двигатель не называй — он все равно асинхронный с короткозамкнутым ротором
Следует обратить внимание, что на шильдике указано рабочее напряжение 220 В и параметры рабочего конденсатора 90 мкФ (микрофарад, 1 мкФ=10 -6 Ф) и напряжение 250 В. Можно с уверенностью сказать, что этот двигатель фактически является трехфазным, но адаптированный для однофазного напряжения.
Для облегчения пуска мощных АДКЗ в сетях 220 В кроме рабочего применяют еще и пусковой конденсатор, который включается на непродолжительное время. После старта и набора номинальных оборотов пусковой конденсатор отключают, и вращение ротора поддерживает только рабочий конденсатор.
Пусковой конденсатор «дает пинка» при старте двигателя
Пусковой конденсатор – Cп, подключают параллельно рабочему Cр . Из электротехники известно, что при параллельном соединении емкости конденсаторов складываются. Для его «активации» применяют кнопочный выключатель SB, удерживаемый несколько секунд. Емкость пускового конденсатора обычно минимум в два с половиной раза выше, чем рабочего, причем сохранять заряд он может достаточно долго. При случайном прикосновении к его выводам можно получить довольно сильно ощутимый разряд через тело. Для того чтобы разрядить Cп применяют резистор, подключенный параллельно. Тогда после отключения пускового конденсатора от сети, будет происходить его разряд через резистор. Его выбирают с достаточно большим сопротивлением 300 кОм—1 мОм и рассеиваемой мощностью не менее 2 Вт.
Расчет емкости рабочего и пускового конденсатора
Для уверенного запуска и устойчивой работы АДКЗ в сетях 220 В следует наиболее точно подобрать емкости рабочего и пускового конденсаторов. При недостаточной емкости Cр на роторе будет создаваться недостаточный момент для подключения какой-либо механической нагрузки, а избыточная емкость может привести к протеканию слишком высоких токов, что в результате может привести к межвитковому замыканию обмоток, которое «лечится» только очень дорогостоящей перемоткой.
Как же рассчитать необходимую емкость и рабочее напряжение пускового и рабочего конденсаторов. Приведем эти данные в таблице.
Схема | Что рассчитывается | Формула | Что необходимо для расчетов |
---|---|---|---|
![]() | Емкость рабочего конденсатора для подключения обмоток звездой – Cр, мкФ | Cр=2800*I/U; I=P/(√3*U*η*cosϕ); Cр=(2800/√3)*P/(U^2*n* cosϕ)=1616,6*P/(U^2*n* cosϕ) | Для всех: I – ток в амперах, A; U – напряжение в сети, В; P – мощность электродвигателя; η – КПД двигателя выраженное в величинах от 0 до 1 (если на шильдике двигателя оно указано в процентах, то этот показатель надо разделить на 100); cosϕ – коэффициент мощности (косинус угла между вектором напряжения и тока), он всегда указывается в паспорте и на шильдике. |
Емкость пускового конденсатора для подключения обмоток звездой – Cп, мкФ | Cп=(2—3)*Cр≈2,5*Cр | ||
![]() | Емкость рабочего конденсатора для подключения обмоток треугольником – Cр, мкФ | Cр=4800*I/U; I=P/(√3*U*η*cosϕ); Cр=(4800/√3)*P/(U^2*n* cosϕ)=2771,3*P/(U^2*n* cosϕ) | |
Емкость пускового конденсатора для подключения обмоток треугольником – Cп, мкФ | Cп=(2—3)*Cр≈2,5*Cр |
Приведенных формул в таблице вполне достаточно для того, чтобы рассчитать необходимую емкость конденсаторов. В паспортах и на шильдиках может указываться КПД или рабочий ток. В зависимости от этого можно вычислить необходимые параметры. В любом случае тех данных будет достаточно. Для удобства наших читателей, можно воспользоваться калькулятором, который быстро рассчитает необходимую рабочую и пусковую емкость.
Калькулятор: Расчет емкости рабочего и пускового конденсатора для асинхронных двигателей с короткозамкнутым ротором
Рассчитанную емкость конденсатора лучше не увеличивать, так как это может привести к перегреву обмоток двигателя. После того как двигатель будет запущен под рассчитанной нагрузкой, можно измерить рабочий ток и скорректировать емкость, рассчитав ее по зависимости ее от напряжения и тока. Скорее всего, она окажется ниже. На электродвигателях мощностью менее 500 Вт пусковой конденсатор может вообще не понадобиться, все зависит от того есть ли механическая нагрузка на валу ротора. Например, запуск циркулярной пилы, электрофуганка, наждака, — происходит без нагрузки, а погружного насоса – сразу под нагрузкой.
При выборе конденсаторов необходимо учитывать, что в момент запуска на них может воздействовать более высокое напряжение, чем номинальное. Поэтому, если двигатель будет работать в сети 220 В, то конденсатор должен быть с номинальным напряжением не менее, чем 1,5*220=360 В, а лучше 400—450 В. Также необходимо учитывать то, что рабочий конденсатор задействован во все время работы двигателя, а пусковой – только во время запуска. В чем отличие и сходство пусковых и рабочих конденсаторов показано в следующей таблице.
Рабочий конденсатор | Пусковой конденсатор | |
---|---|---|
Изображение | ![]() | ![]() |
Применение | В электрических схемах асинхронных двигателей | В электрических схемах асинхронных двигателей |
Как подключается | Последовательно с одной из обмоток трехфазного двигателя или со вспомогательной обмоткой однофазного двигателя | Параллельно рабочему конденсатору |
Используется в качестве | Элемента, сдвигающего фазу в одной из обмоток трёхфазного двигателя, подключенного к однофазной сети | Элемента, сдвигающего фазу в обмотке трехфазного двигателя |
Назначение | Получение вращающегося магнитного поля, необходимого для вращения ротора двигателя | Получение вращающегося магнитного поля, создающего повышенный момент вращения, необходимого для запуска ротора двигателя |
На какое время подключается | На все время работы электродвигателя | На момент старта и набора номинальных оборотов |
Емкости рабочих конденсаторов обычно составляют десятки, а то и сотни микрофарад. Естественно, что чем больше емкость и выше рабочее напряжение, тем объемнее будет конденсатор. Рассмотрим в следующей таблице, какие конденсаторы могут применяться в качестве рабочих и пусковых.
Металлобумажные конденсаторы МБГО, МБГТ, МГБЧ, МГБП | Полипропиленовые пленочные конденсаторы CBB60 (аналог К78-17), CBB65 | Пусковые конденсаторы CD60 | |
---|---|---|---|
Изображение | ![]() | ![]() | ![]() |
Технология изготовления | Нанесение металлизированной пленки на конденсаторную бумагу, являющуюся диэлектриком | Нанесение металлизированной пленки на тонкую полипропиленовую ленту | Алюминиевая фольга и электролит. В качестве диэлектрика используется диоксид алюминия |
Рабочее напряжение, В | 160, 200, 300, 400, 600, 1000 В | 450, 630 В | 220—450 В |
Диапазон емкостей, мкФ | 0,1—20 мкФ | 1—150 мкФ | 50—1500 мкФ |
Материал и форма корпуса | Металлический прямоугольный герметичный корпус | Пластиковый цилиндрический корпус, у CBB65 металлический цилиндрический взрывозащищенный корпус | Цилиндрический металлический взрывозащищенный корпус, покрытый пленкой из термостойкого поливинилхлорида |
Где применяются | В качестве рабочих конденсаторов асинхронных двигателей | В качестве рабочих и пусковых конденсаторов асинхронных двигателей | В качестве пусковых конденсаторов. |
Достоинства | Небольшая цена | Небольшие габариты, малый разброс характеристик, долговечность | Высокая емкость при небольших габаритных размерах |
Недостатки | Большие габариты, высокие потери, быстрое старение при повышенных температурах | Цена выше, чем у металлобумажных конденсаторов | Не рекомендуется применять в качестве рабочих конденсаторов |
Последовательное и параллельное соединение конденсаторов
Бывает такая необходимость, когда под рукой нет емкости с нужным номиналом. Чаще всего ее не хватает и, «как назло», есть россыпь конденсаторов другой емкости. Выход из этой ситуации очень простой – если соединить конденсаторы параллельно, то результирующая емкость будет равна сумме все емкостей конденсаторов. Следует отметить, что при таком соединении все конденсаторы желательно использовать с одним рабочим напряжением, так как напряжение на их электродах будет одинаковым. Например, надо собрать конденсаторную батарею 50 мкФ с напряжением 400 В. Для этого можно подобрать 5 конденсаторов по 10 мкФ типа МГБО и все они должны иметь такое же напряжение. Если хотя бы один из конденсаторов будет иметь напряжение ниже, например 160 В, то он через непродолжительное время выйдет из строя.
Последовательное и параллельное соединение конденсаторов
Параллельное соединение делают наиболее часто. Раньше, когда были недоступны металлополипропиленовые конденсаторы использовались металлобумажные, которые соединяли параллельно и помещали в специальные ящики. На мощных станках такие батареи были довольно внушительных размеров. Современные конденсаторы позволяют обойтись без громоздких ящиков и могут размещаться прямо на корпусе электродвигателя.
При последовательном соединении результирующая емкость не будет являться суммой, а будет вычисляться по формуле: C=C1*C2/(C1+C2), где C1, C2 – емкости конденсаторов, подключенных последовательно. Очевидно, что результирующая емкость будет всегда меньше самой наименьшей из всех, подключенных последовательно, так как если умножить обе части выражения 1/С=1/С1+1/С2+…+1/Сi на C1, то получим C1/C=1+C1/C2+…C1/Ci, что красноречиво свидетельствует о том, что отношение любой из емкости к общей будет всегда больше единицы. На языке математики это означает, что любая из емкостей больше результирующей.
С первого взгляда может показаться, что последовательное соединение конденсаторов ничего по своей сути не дает, ведь каждый микрофарад емкости стоит денег и в лучшем случае, если подключить две емкости по 40 мкФ, то результирующая будет всего-то 20 мкФ. Но, как видно из вышеприведенной схемы, приложенное напряжение распределяется по конденсаторам, поэтому если, например, подключить каждый из них с рабочим напряжением 250 В, то к ним смело можно прикладывать 500 В. А чем выше номинальное рабочее напряжение конденсатора, тем дороже он стоит. Поэтому последовательное соединение конденсаторов тоже иногда может принести практическую пользу.
Для удобства предлагаем читателям нашего портала воспользоваться калькулятором, который рассчитывает емкость двух последовательно соединенных конденсаторов.
Калькулятор: Расчет результирующей емкости двух последовательно соединенных конденсаторов
Применение электролитических конденсаторов в качестве пусковых
В электротехнике и электронике широко применяются электролитические конденсаторы, которые специалисты называю «электролиты». Их главной особенностью является то, что в качестве одного из электродов используется электролит (кислота или щелочь), которым пропитана специальная бумага. Другой электрод представляет собой алюминиевую фольгу, на которой есть тонкий слой диоксида алюминия Al2O3. Благодаря этому емкость электролитических конденсаторов при равных габаритах гораздо выше, чем у других.
Оборотной стороной медали электролитических конденсаторов является обеспечение условия полярности их подключения в цепях постоянного или пульсирующего тока. При неправильном подключении или появлении на электродах электролитического конденсатора переменного напряжения начинается ускоренный процесс деградации, повышение токов утечки, что приводит к сильному нагреву. В итоге давление внутри конденсатора растет и это может привести к взрыву. Не зря в верхней части корпуса электролита имеются специальные насечки – так называемый клапан, который при сильном повышении давления просто разрывается, но это будет контролируемый взрыв.
С теми электролитическими конденсаторами, которые не соблюдали полярность может случиться и такое
Описанные ранее в таблице пусковые конденсаторы CD60 являются электролитическими, но неполярными, которые способны работать в цепях переменного тока. Это достигается тем, что в них используется два электрода из алюминиевой фольги, покрытые оксидной пленкой, а бумага с электролитом находится посередине между ними. Естественно, что габариты (как и цена) таких конденсаторов в 1,5—2 раза выше, чем у обычных электролитов, но зато их можно включать в цепь переменного тока.
Пусковой конденсатор CD60
Неполярный электролитический конденсатор можно получить из двух полярных, только необходимо их последовательно и встречно соединить между собой положительными электродами, а отрицательными подключать в сеть. Тогда результирующая емкость будет рассчитываться по калькулятору. Например, если необходимо получить неполярный электролит емкостью в 100 мкФ и напряжением 500 В, то надо встречно подключить два конденсатора по 200 мкФ и напряжением не менее 250 В. Вот как раз здесь последовательное соединение конденсаторов может помочь.
На практике часто применяют подключение электролитических конденсаторов через диоды. Принципиальная схема такого подключения представлена на рисунке.
Диоды не позволяют конденсаторам потреблять «запретные плоды»
Известно, что диод пропускает электрический ток только в одном направлении – от анода к катоду. Получается, что положительные полупериоды будут пропускаться только к плюсу конденсатора, а отрицательные только к минусу. Это обеспечит работу конденсатора в штатном режиме. Для разряда пусковых конденсаторов параллельно им подключены резисторы мощностью не менее 2 Вт. После пуска и разгона двигателя пусковые конденсаторы отключаются и быстро разряжаются через резисторы. В такой схеме есть существенный недостаток – если «пробивает» диод, то конденсатор начинает работать как кипятильник электролита. Поэтому рекомендуется убирать конденсаторы в безопасное место или помещать в коробку или контейнер.
Авторы статьи рекомендуют применять электролитические конденсаторы – как неполярные, так и полярные только в цепях пуска и разгона асинхронных двигателей. В качестве рабочих их лучше не применять.
Видео: Неполярные электролитические конденсаторы
Выбор принципиальной схемы подключения
Одних пусковых и рабочих конденсаторов для подключения трехфазного электродвигателя к сети 220 В будет недостаточно. Вначале надо определиться по какой схеме будет подключаться двигатель, и какие коммутационные аппараты будут нужны для правильного пуска и остановки.
Вариантов подключения трехфазных двигателей в сеть 220 В существует очень много, но в рамках статьи предлагается рассмотреть только два наиболее часто используемых и надежных. Принципиальные схемы представлены на рисунке.
Такие схемы реально работают
Принципиальная схема, изображенная справа, показывает подключение АДКЗ по схеме звезда. Как уже отмечалось ранее, такой вид подключения целесообразно использовать в однофазных сетях 220 В только для тех двигателей, которые предназначены для рабочих напряжений 127/220 В при схемах ∆/Y. Левая схема показывает подключение асинхронного двигателя по схеме треугольник. В этой схеме применены для пуска электролитические конденсаторы C1 и C2, подключенные совместно с диодами VD1 и VD2. Объясним назначение всех элементов схем.
- И одна и другая схема подключается к сети 220 В через разъемы XP1 и XP
- Для защиты от сильных перегрузок по току или от токов короткого замыкания в схемах применены плавкие предохранители FU1 и FU Они могут быть заменены на двухполюсный автоматический выключатель с номиналом 10 или 16 Ампер, в зависимости от мощности АДКЗ. Автомат лучше брать с характеристикой срабатывания C или на мощных станках даже D.
- SA1 – это переключатель, который служит для реверса двигателя. Меняя его положение можно изменять направление вращения. В некоторых механизмах, например, подъемных, эта очень может пригодиться. В двигателях мощностью до 1 кВт можно вполне применять переключатель тумблерный типа ТВ-1-2 или клавишный на ток до 5 А.
- SB1, SB1.2, SB1.3 – это контакты пускателя нажимного кнопочного ПНВС-10У2. Этот аппарат имеет три пары контактов: SB1.1 и SB1.3 – это контакты, которые при нажатии на кнопку «Пуск» фиксируются во включенном положении (они на корпусе пускателя находятся слева и справа), а контакт SB1.2, находящийся в центре, замыкается только при нажатии на кнопку «Пуск». Это очень удобно при запуске и разгоне двигателя, удерживая кнопку 1—3 секунды, двигатель стартует и набирает обороты при помощи пусковых конденсаторов, а затем кнопка отпускается, и двигатель продолжает работать без них. Для двигателей до 0,6 кВт применяют пускатели ПНВС-10, а для более мощных ПНВС-12.
- KM и KM1 на схеме слева – это реле тока и его контакты соответственно. Оно также может применяться в схемах подключения АДКЗ. При возрастании тока до величин, превышающих номинальные, срабатывает реле KM и замыкает контакты KM1.1, подключающие пусковые конденсаторы C1 и C2. При убывании тока до номинальных величин реле KM отключается и размыкает контакты KM1.1. Возрастание рабочего тока происходит чаще всего тогда, когда резко возрастает механическая нагрузка на валу ротора АДКЗ. В качестве реле тока можно использовать модульное РТ-40У.
- На левой схеме конденсатор C3 рабочий, а C1 и C2 – пусковые. На правой схеме C1 – пусковой, а C2 – рабочий. Резисторы R1 мощностью 2 Вт нужны для разряда пусковых конденсаторов.
Предлагаемые схемы успешно работают уже не один десяток лет и доказали свою жизнеспособность, поэтому и рекомендованы читателям нашего портала к использованию.
Необходимые инструменты и комплектующие
Для того, чтобы подключить электродвигатель потребуется не такой уж и большой набор электротехнического и монтажного инструмента.
Изображение | Наименование | Назначение |
---|---|---|
![]() | Набор изолированных отверток различных размеров и типов шлицев | Для электромонтажных и монтажных работ. |
![]() | Пассатижи различных размеров | Для электромонтажных работ. |
![]() | Кусачки | Для резки проводов. |
![]() | Стриппер | Для снятия изоляции с проводов, а также резки проводов или обжима клемм (зависит от модели стриппера). |
![]() | Отвертка-индикатор | Для контроля наличия фазы в цепи. |
![]() | Мультиметр | Для измерения напряжения, силы тока, проверки конденсаторов и резисторов, контроля целостности обмоток электродвигателя. |
![]() | Токовые клещи | Для измерения силы тока у работающего АДКЗ. Помогает при подборе рабочего и пускового конденсатора. Применение необязательно, но желательно. |
![]() | Набор диэлектрических ключей | Для монтажа проводов и перемычек в клеммных коробках двигателей. |
![]() | Электродрель с набором сверел по дереву и металлу | Для монтажных работ |
![]() | Молоток слесарный | Для монтажных работ |
![]() | Кернер | Для кернения отверстий под сверление. |
![]() | Заклепочник ручной | Для крепления рабочих и пусковых конденсаторов к корпусу АДКЗ. Применение необязательно, так как можно крепить и на винты, но заклепки предпочтительнее из-за возможности самораскручивания винтов при вибрации двигателя. |
![]() | Паяльник 60 Вт | Для пайки на клеммах конденсаторов. |
![]() | Кримпер ручной | Для обжима наконечников и клемм. |
Прежде всего, перед монтажными работами нужно подумать о том, где будет смонтирован асинхронный двигатель. В зависимости от возложенных задач основание может быть металлическим, текстолитовым, деревянным и другим. Также на этом основании должны будут смонтированы нажимной пускатель, рабочие и пусковые емкости, при необходимости токовые реле и другие аппараты коммутации контроля и защиты.
Электролитические конденсаторы необходимо убрать в отдельный ящик, чтобы при возможном их взрыве брызги электролита не поразили людей. Если оборудование будет смонтировано на столе или верстаке, то можно конденсаторы «спрятать», закрепив их на нижней поверхности столешницы.
Один изспособов спрятать конденсаторы «от греха подальше»
Для монтажа асинхронного двигателя и подключения его в сеть 220 В понадобятся следующие комплектующие:
Изображение | Наименование | Описание |
---|---|---|
![]() | Пластиковый бокс на 4 места наружного монтажа | Для размещения автоматического выключателя и токового реле АДКЗ. |
![]() | Металлическая перфорированная монтажная лента | Для крепления оборудования к основанию |
![]() | Саморезы по дереву и металлу | Для крепления оборудования |
![]() | Заклепки вытяжные 3*6 или 3*8 | Для крепления рабочих конденсаторов к корпусу электродвигателя |
![]() | Автоматический выключатель C10 или C16 | При мощности АДКЗ до 2 кВт применяют автомат на 10 А (C10). При мощности более 2 кВт – на 16 А (C16). |
![]() | Модульное токовое реле РТ-40У | Для контроля тока в фазосдвигающей обмотке двигателя. РТ-40У имеет три диапазона измерения тока (0,1—1 А, 0,5—5 А, 3—30 А), регулируемый порог срабатывания (10—100%), регулируемое время задержки срабатывания (0,2—20 с) и может коммутировать силовую нагрузку до 16 А, 250 В. Применяется опционально. |
![]() | Кнопочный выключатель (пост кнопочный) нажимного действия ПНВС-10 или ПНВС-12 | Для включения асинхронного двигателя в сеть и его отключения, а также для обеспечения запуска. Для двигателей до 6 кВт номинальной мощности применяют ПНВС-10, а для АДКЗ с P=0,6—2,2 кВт – ПНВС-12. |
![]() | Переключатель тумблерного типа ТВ-1-1 или ТВ-1-2 | Для обеспечения реверса электродвигателя. Номинальный ток переключателя должен соответствовать мощности АДКЗ. |
![]() | Провод монтажный ПВ-3 (ПУгВ) площадью поперечного сечения 1,5 или 2,5 кв. мм | Для подключения оборудования. При мощности АДКЗ до 2,2 кВт достаточно ПВ-3 1,5 в, мм, а для большей – 2,5 кв. мм. |
![]() | Наконечники штыревые втулочные изолированные НШВИ для проводов 1,5 и 2,5 кв. мм. | Для оконцевания опрессовкой монтажного провода ПВ-3 при подключении в клеммы автоматических выключателей или токовых реле. |
![]() | Виброустойчивые кольцевые изолированные наконечники ВНКИ | Для оконцевания опрессовкой монтажных или питающих проводов при подключении в клеммы оборудования с винтами или шпильками. В зависимости от диаметра винтов или шпилек подбираются ВНКИ 2,5-4, ВНКИ 2,5-5, ВНКИ 2,5-6. |
![]() | Виброустойчивые плоские разъёмы типа «мама» с ПВХ-манжетой ВРПИ-М | Для оконцевания опрессовкой монтажных проводов при подключении рабочих или пусковых конденсаторов, имеющих соответствующие разъемы типа «папа». Наконечник ВРПИ-М-2,5 подходит для одключения провода1,5 и 2,5 кв. мм. |
![]() | Трубка термоусадочная | Для изоляции клемм конденсаторов после подключения |
Подключение трехфазного двигателя в однофазную сеть 220 В
После подготовки всех необходимых комплектующих необходимо убедиться в том, что работа будет производиться только при снятом напряжении. Должна только быть возможность для подключения освещения и электроинструментов. На рабочем месте надо приготовить все инструменты и подготовить коробку или ведро, куда будет сбрасываться мусор.
Основные этапы работ по подключению АДКЗ представим в виде таблицы:
Изображение | Описание этапов монтажа |
---|---|
![]() | Прежде всего надо проверить целостность обмоток двигателя. Для этого снимается крышка клеммной коробки, убираются все перемычки, мультиметр ставится на измерение сопротивления в омах. Должны прозваниваться только начала и концы каждой из обмоток в отдельности. Никаких электрических связей между разными обмотками и между обмотками и корпусом двигателя быть не должно. |
![]() | Мультиметром проверяется целостность пусковых и рабочих конденсаторов. Перед проверкой необходимо разрядить конденсатор, закоротив его выводы. Мультиметр для измерения конденсаторов ставится на измерение в мегаомах, которое должно быть не менее 2 Мом по прошествии некоторого времени, пока емкость заряжается. Если прибор имеет функцию измерения емкости, то задача упрощается. |
![]() | Проверяется целостность диодов и резисторов, если они используются в схемах пусковых конденсаторов. Диоды должны пропускать постоянный ток только в одном направлении, а резисторы в обоих. Выставив нужный предел, можно измерить сопротивление резисторов. |
![]() | Трехфазный асинхронный двигатель крепится к основанию. Следует учесть, что такие двигатели имеют немалый вес и при работе могут вибрировать., поэтому основание должно быть прочным, массивным и устойчивым. Крепление может быть болтами или гайками с шайбами на шпильках через виброгасящие прокладки или стойки. |
![]() | Закрепляется в намеченных местах оборудование коммутации и защиты – бокс для автоматического выключателя и токового реле, кнопочный пускатель ПНВС-10 или ПНВС-12, тумблер реверса двигателя. |
![]() | Для крепления тумблера реверса ТВ-1-2 иногда целесообразно использовать крышку клеммной коробки двигателя. Для этого необходимо вначале примерить тумблер в коробке, чтоб он не мешал подключению клемм. После этого дрелью сверлится отверстие диаметром 12,1 мм и тумблер закрепляется на крышке гайкой. |
![]() | Рабочие конденсаторы могут крепиться отдельно от электродвигателя в коробках, боксах, ящиках – все зависит от требуемой емкости. Но современные металлопропиленовые конденсаторы могут крепиться непосредственно к ребрам корпуса АДКЗ при помощи металлической монтажной ленты. Для этого оборачивают конденсатор лентой и отрезают нужный размер, оставляя ушки для крепления. |
![]() | Затем сверлят (при необходимости) отверстие в хомуте из металлической ленты. На корпусе асинхронного электродвигателя могут быть монтажные отверстия, но если их нет, то их можно просверлить, предварительно выполнив кернение. |
![]() | Крепление конденсатора металлической полосой к корпусу двигателя предпочтительней делать заклепками, учитывая вибрацию при работе. |
![]() | Хорошим решением является крепление рабочего и пускового конденсаторов в безопасном месте: под столом, верстаком. При этом впоследствии все равно желательно прикрыть конденсаторы защитным кожухом. |
![]() | После закрепления всех деталей начинается коммутация, руководствуясь принципиальной схемой. Перемычки в клеммной коробке ставятся в положении звезда – для двигателей с рабочим напряжением 127/220 В. |
![]() | Для двигателей с рабочим напряжением 380/220 В и схемами подключения Y/∆, перемычки переставляются для схемы треугольник. |
![]() | Рабочие и пусковые конденсаторы могут иметь выводы в виде проводов, клемм под пайку и плоских клемм «папа» под разъемы. Металлобумажные конденсаторы имеют всегда соединение под пайку, металлополипропиленовые и неполярные электролитические – в виде проводов или плоских клемм. Предпочтительней всего выбирать конденсаторы с плоскими клеммами «папа» — это сильно облегчает монтаж и демонтаж при замене. |
![]() | Отмеряются и обрезаются нужные отрезки провода с учетом трасс их совместной или одиночной прокладки. Концы очищаются от изоляции стриппером на длину 10—11 мм. |
![]() | Для подключения к клеммнику двигателя провода окоцовываются и обжимаются наконечниками ВНКИ соответствующего размера под клемму и провод при помощи кримпера. |
![]() | Все провода, идущие на клеммник АДКЗ оконцовываются, затем продеваются через кабельный ввод и накидываются на клеммы. На шпильки клемм накидываются шайбы и гайки, но пока не затягиваются. Никакой из проводов не должен идти в натяг, а должна быть предусмотрена возможность повторной оконцовки. Если кабельный ввод снабжен зажимным сальником, то после протяжки проводов его можно зажать. |
![]() | Для подключения клемм конденсаторов, концы проводов оконцовываются клеммами ВРПИ-М при помощи кримпера. |
![]() | После подключения клеммы ВРПИ-М к конденсатору, контакт изолируют при помощи термоусадочной трубки соответствующего диаметра, которая надевается на провод перед подключением. Также можно использовать изолированные клеммы. |
![]() | К тумблеру реверса ТВ-1-2 провода припаиваются и изолируются термоусадочными трубками. Аналогично провода припаиваются и к металлобумажным конденсаторам, если они используются. |
![]() | Для подключения ПНВС-10 или ПНВС-12 можно использовать либо наконечники НШВИ (НШВИ (2)), либо НВИ, которые очень удобно подключать под винтовые клеммы без их разборки. Применение подобных наконечников в клеммных коробках двигателя недопустимо. |
![]() | Для подключения автоматических модульных выключателей или токовых реле наиболее целесообразно использовать наконечники НШВИ (НШВИ (2)), которые также обжимаются кримпером. |
![]() | К болту заземления на двигателе обязательно подключается оконцованный наконечником ВНКИ провод защитного нуля (PE) желто-зеленого цвета. Этот болт может находиться как в клеммной коробке, так и снаружи на корпусе. Он обозначается специальным знаком. |
![]() | После проверки всех соединений и сверки с принципиальной электрической схемой, затягиваются клеммы асинхронного двигателя при помощи диэлектрического ключа. Также затягиваются винтовые клеммы автоматического выключателя, токового реле и пускателя ПНВС-10 или ПНВС-12. На вход автоматического выключателя подключается провод со штепсельной вилкой. |
![]() | На вход схемы подается напряжение. При помощи кнопки «Пуск» на ПНВС делается первый пробный запуск двигателя. Если все расчеты корректны и монтаж сделан правильно, то двигатель сразу должен запуститься. |
Если двигатель уверенно запустился, то — это вовсе не означает, что он будет уверенно работать и дальше, поэтому следует его вначале проверить в режиме холостого хода, а потом под нагрузкой.
- Если даже в режиме холостого хода двигатель начинает сильно нагреваться, то надо попробовать уменьшить емкость рабочего конденсатора.
- Если двигатель при нажатии кнопки «Пуск» гудит, но не стартует, то надо попробовать ему помочь это сделать, крутанув вал. Если такая мера помогла ротору начать вращаться, то можно попробовать увеличить немного емкость пускового конденсатора.
- Если под планируемой штатной нагрузкой двигатель останавливается, то увеличивают емкость рабочего конденсатора или применяют реле тока, которое подключает «на помощь» пусковые конденсаторы. Однако, следует помнить, что двигатель не сможет выдать мощности больше, чем паспортная.
Самым корректным способом подбора емкости пускового конденсатора будет измерение рабочего тока под нагрузкой и вычисление ее по зависимости от напряжения и тока. Ранее эта формула была приведена в таблице. После того как двигатель полностью настроен, еще раз подтягивают все клеммы и закрывают все места подключения крышками. Провода, если они идут группой, можно проложить совместно в гофротрубе или поместить их в термоусадочную трубку.
Заключение
Подводя итоги статьи, авторы еще раз напоминают читателям, что подключение трехфазного двигателя в сеть 220 В вполне осуществимо, причем собственными силами. И, хотя приходится жертвовать потерей мощности, но открываются безграничные возможности использования различных полезных механизмов. Трехфазные асинхронные двигатели обладают исключительной надежностью, до сих пор работают «ветераны», выпущенные еще в 50-х годах XX века.
Авторы статьи рекомендуют читателям портала перед первым пуском не производить окончательный монтаж всех узлов, а собрать схему на стенде. Если испытания пройдут успешно, то можно уже смонтировать все так, как задумано. И не стоит пренебрегать теми советами, которые были даны в этой статье, так как в ней учтен многолетний опыт и применен научный подход.
Как подключить трехфазный двигатель 380 в однофазную сеть 220
Всякий асинхронный трехфазный двигатель рассчитан на два номинальных напряжения
трехфазной сети 380 /220 — 220/127 и т. д. Наиболее часто встречаются двигатели 380/220В.
Переключение двигателя с одного напряжения на другое производится подключением обмоток «на звезду» — для 380 В или на «треугольник» — на 220 В. Если у двигателя имеется колодка
подключения, имеющая 6 выводов с установленными перемычками, следует обратить внимание в каком порядке установлены перемычки. Если у двигателя отсутствует колодка и имеются 6 выводов
-обычно они собраны в пучки по 3 вывода. В одном пучке собраны начала обмоток, в другом концы
(начала обмоток на схеме обозначены точкой).
В данном случае «начало» и «конец» — понятия условные, важно лишь чтобы направления намоток
совпадали, т. е. на примере «звезды» нулевой точкой могут быть как начала, так и концы обмоток, а
в «треугольнике» — обмотки должны быть соединены последовательно, т. е. конец одной с началом
следующей. Для правильного подключения на «треугольник» нужно определить выводы каждой
обмотки, разложить их попарно и подключить по след. схеме:
Если развернуть эту схему, то будет видно, что катушки подключены «треугольником».
Если у двигателя имеется только 3 вывода, следует разобрать двигатель: снять крышку со
стороны колодки и в обмотках найти соединение трёх обмоточных проводов (все остальные
провода соединены по 2). Соединение трёх проводов является нулевой точкой звезды. Эти 3
провода следует разорвать, припаять к ним выводные провода и объединить их в один пучок. Таким
образом мы имеем уже 6 проводов, которые нужно соединить по схеме треугольника.
Трехфазный двигатель вполне успешно может работать и в однофазной сети, но ждать от
него чудес при работе с конденсаторами не приходится. Мощность в самом лучшем случае будет не
более 70% от номинала, пусковой момент сильно зависит от пусковой емкости, сложность подбора
рабочей емкости при изменяющейся нагрузке. Трехфазный двигатель в однофазной сети это
компромис, но во многих случаях это является единственным выходом.
Существуют формулы для рассчета емкости рабочего конденсатора, но я считаю их не корректными по следующим причинам:
- Рассчет производится на номинальную мощность, а двигатель редко работает в таком
режиме и при недогрузке двигатель будет греться из-за лишней емкости рабочего конденсатора и
как следствие увеличенного тока в обмотке. - Номинальная емкость конденсатора указаная на его корпусе отличается от фактической +
/- 20%, что тоже указано не конденсаторе. А если измерять емкость отдельного конденсатора, она
может быть в два раза большей или на половину меньшей. Поэтому я предлагаю подбирать емкость
к конкретному двигателю и под конкретную нагрузку, измеряя ток в каждой точке треугольника,
стараясь максимально выравнять подбором емкости. Поскольку однофазная сеть имеет
напряжение 220 В, то двигатель следует подключать по схеме «треугольник». Для запуска
ненагруженного двигателя можно обойтись только рабочим конденсатором.
Направление вращения двигателя зависит от подключения конденсатора (точка а) к точке б или в.
Практически ориентировочную ёмкость конденсатора можно определить по сл. формуле:
Cмкф = P Вт /10, где C – ёмкость конденсатора в микрофарадах, P – номинальная мощность
двигателя в ваттах. Для начала достаточно, а точная подгонка должна производиться после
нагрузки двигателя конкретной работой. Рабочее напряжение конденсатора должно быть выше
напряжения сети, но практика показывает, что успешно работают старые советские бумажные
конденсаторы рассчитаные на 160В. А их найти значительно легче, даже в мусоре.
У меня мотор на сверлилке работает с такими конденсаторами, расположеными для защиты от хлопка в заземленной коробке от пускателя не помню сколько лет и пока все цело. Но к такому подходу я не призываю, просто информация для размышления. Кроме того, если включить 160-ти вольтовые конденсаторы последовательно, вдвое потеряем в емкости зато рабочее напряжение
увеличится вдвое 320В и из пар таких конденсаторов можно собрать батарею нужной емкости.
Включение двигателей с оборотами выше 1500 об/мин, либо нагруженных в момент пуска, затруднено. В таких случаях следует применить пусковой конденсатор, ёмкость которого зависит от нагрузки двигателя, подбирается экспериментально и ориентировочно может быть от равной
рабочему конденсатору до в 1,5 – 2 раза большей. В дальнейшем, для понятности, все что относится к работе будет зеленого цвета, все что относится к пуску будет красного, что к
торможению синего.
Включать пусковой конденсатор в простейшем случае можно при помощи нефиксированной кнопки.
Для автоматизации пуска двигателя можно применить реле тока. Для двигателей мощностью до 500 Вт подойдёт реле тока от стиральной машины или холодильника с небольшой переделкой. Т. к. конденсатор остаётся заряженным и в момент повторного запуска двигателя, между контактами возникает довольно сильная дуга и серебряные контакты свариваются, не отключая пусковой конденсатор после пуска двигателя. Чтобы этого не происходило, следует контактную пластинку пускового реле изготовить из графитовой или угольной щётки (но не из медно- графитовой, т. к. она тоже залипает). Также необходимо отключить тепловую защиту этого реле, если мощность двигателя превышает номинальную мощность реле.
Если мощность двигателя выше 500 Вт, до 1,1кВт можно перемотать обмотку пускового реле более толстым проводом и с меньшим количеством витков с таким расчётом, чтобы реле отключалось сразу же при выходе двигателя на номинальные обороты.
Для более мощного двигателя можно изготовить самодельное реле тока, увеличив размеры оригинального.
Большинство трехфазных двигателей мощностью до трех кВт хорошо работают и в однофазной сети за исключением двигателей с двойной беличьей клеткой, из наших это серия МА,
с ними лучше не связываться, в однофазной сети они не работают.
Трехфазный двигатель практические схемы включения на 220
Обобщающая схема включения
С1- пусковой, С2- рабочий, К1- нефиксирующаяся кнопка, диод и резистор- система
торможения.
Работает схема следующим образом: при переводе переключателя в положение 3 и нажатии на кнопку К1 происходит пуск двигателя, после отпускания кнопки остается только рабочий
конденсатор и двигатель работает на полезную нагрузку. При переводе переключателя в положение 1, на обмотку двигателя подается постоянный ток и двигатель тормозится, после остановки
необходимо перевести переключатель в положениие 2, иначе двигатель сгорит, поэтому переключатель должен быть специальным и фиксироваться только в положении 3 и 2, а положение
1 должно быть включено только при удержании.
При мощности двигателя до 300Вт и необходимости быстрого торможения, гасяший резистор можно не применять, при большей
мощности сопротивление резистора подбирается по желаемому времени торможения, но не должно быть меньше сопротивления обмотки двигателя.
Эта схема похожа на первую, но торможение здесь происходит за счет энергии запасенной в электролитическом конденсаторе С1 и время торможения будет зависить от его емкости. Как и в
любой схеме пусковую кнопку можно заменить на реле тока. При включении переключателя в сеть двигатель запускается и происходит заряд конденсатора С1 через VD1 и R1. Сопротивление R1
подбирается в зависимости от мощности диода, емкости конденсатора и времени работы двигателя
до начала торможения.
Если время работы двигателя между пуском и торможением превышает 1 минуту, можно использовать диод КД226Г и резистор 7кОм не менее 4Вт. рабочее напряжение
конденсатора не менее 350В Для быстрого торможения хорошо подходит конденсатор от фотовспышки, фотовспышек много, а нужды в них больше нет. При выключении переключатель
переходит в положение замыкающее конденсатор на обмотку двигателя и происходит торможение постоянным током. Используется обычный переключатель на два положения.
Схема реверсивного включения и торможения
Эта схема развитие предыдущей, здесь автоматически происходит запуск при помощи токового реле и торможение электролитическим конденсатором, а также реверсивное включение.
Отличие этой схемы: сдвоеный трехпозиционный переключатель и пусковое реле. Выкидывая из этой схемы лишние элементы, каждый из которых имеет свой цвет, можно собрать схему нужную
для конкретных целей. При желании можно перейти на кнопочное включение, для этого понадобятся один или два автоматических пускателя с катушкой на 220В Используется сдвоеный
переключатель на три положения.
Еще одна не совсем обычная схема автоматического включения.
Как и в других схемах здесь есть система торможения, но ее при ненадобности легко выкинуть. В этой схеме включения две обмотки соединены паралельно, а третья через систему
пуска и вспомогательный конденсатор, емкость которого примерно в два раза меньше необходимого при включении треугольником. Для изменения направления вращения нужно поменять местами
начало и конец вспомогательной обмотки, обозначеной красной и зеленой точками. Запуск происходит за счет зарядки конденсатора С3 и продолжительность запуска зависит от емкости
конденсатора, а емкость должна быть достаточно велика, чтобы двигатель успел выйти на номинальные обороты.
Емкость можно брать с запасом, так как после заряда конденсатор не
оказывает заметного действия на работу двигателя. Резистор R2 нужен для разрядки конденсатора и тем самым подготовки его для следующего пуска, подойдет 30 кОм 2Вт. Диоды Д245 — 248
подойдут любому двигателю. Для двигателей меньшей мощности соответственно уменьшится и мощность диодов, и емкость конденсатора. Хоть и затруднительно сделать реверсивное включение по данной схеме, но при желании и это можно. Потребуется сложный переключатель или пусковые
автоматы.
Использование электролитических конденсаторов в качестве пусковых и рабочих.
Стоимость неполярных конденсаторов достаточно высока, да и не везде их можно найти.
Поэтому, если их нет, можно применить электролитические конденсаторы, включенные по схеме не
намного сложнее. Емкость их достаточно велика при небольшом объеме, они не дефицитны и не дороги. Но нужно учесть вновь возникшие факторы. Рабочее напряжение должно быть не менее
350 Вольт, включаться они могут только парами, как указано на схеме черным цветом, а в таком случае емкость уменьшается вдвое. И если двигателю для работы нужно 100 мкФ, то конденсаторы
С1 и С2 должны быть по 200мкФ.
У электролитических конденсаторов большой допуск по емкости, поэтому лучше собрать батарею конденсаторов (обозначена зеленым цветом), легче будет подбирать фактическую емкость
нужную двигателю и кроме того у электролитов очень тонкие выводы, а ток при большой емкости может достигать значительных величин и выводы могут греться, а при внутреннем обрыве вызвать
взрыв конденсатора. Поэтому вся батарея конденсаторов должна находиться в закрытой коробке, особенно во время экспериментов. Диоды должны быть с запасом по напряжению и по току,
необходимому для работы. До 2кВт вполне подойдут Д 245 — 248. При пробое диода сгорает (взрывается) конденсатор. Взрыв конечно сказано громко, пластмассовая коробка вполне защитит от
разлета деталей конденсатора и от блестящего серпантина тоже. Ну вот, страшилки рассказаны, теперь немного конструкции.
Как видно из схемы, минусы всех конденсаторов соединены вместе и, стало быть, конденсаторы старой конструкции с минусом на корпусе можно просто плотно перемотать
изолентой и поместить в пластмассовую коробку соответствующих размеров. Диоды нужно расположить на изоляционной пластинке и при большой мощности поставить их на небольшие
радиаторы, а если мощность не велика и диоды не греются, то их можно поместить в ту же коробку.
Включенные по такой схеме электролитические конденсаторы, вполне успешно работают как пусковыми так и рабочими.
Включение пускового конденсатора при помощи реле тока.
Из теории известно, что пусковой ток в несколько раз превышает номинальный ток рабочего двигателя, поэтому включение пускового конденсатора при включении трехфазного двигателя в
однофазную сеть, можно осуществить автоматически, — при помощи реле тока.
Для двигателей до 0,5 кВт подойдёт пусковое реле от холодильника, стиральной машины типа РП-1, с небольшой переделкой. Подвижные контакты надо заменить на графитовую или угольную пластинку, выточенную из щётки коллекторного двигателя, по размерам оригинала. Т. к. при повторном включении, ток заряженного конденсатора даёт большую искру на контактах, и
стандартные контакты свариваются между собой. При применении графита, такого явления не наблюдалось. (Кроме того, следует отключить термореле).
Для двигателей до 1 кВт можно перемотать РП-1 проводом Ф1,2мм до заполнения катушки 40-45 витков.
Для более мощных двигателей следует изготовить реле тока по аналогии с РП-1, большего размера.
Моточный провод реле должен соответствовать номинальному току двигателя, из расчёта 5А / 1мм?.
Колличество витков следует подобрать экспериментально, для чёткого включения реле при запуске и отключения после запуска. Лучше намотать больше витков и отматывать до достижения
четкого отключения после пуска.
1- медные стержни из проволоки Ф2-2,5мм запрессованы в чуть меньшие отверстия
или на клею провода к ним просто припаяны 2-диск из графитовой щетки Ф на 1,5мм меньше Ф корпуса, толщина 1,5-2мм 3- корпус 4- обмотка 5- якорек
Корпус реле можно изготовить из текстолита, гетинакса, эбонита и т. п. Стержень — алюминиевая проволока, магнитный якорь — циллиндр из малоуглеродистой стали выточен в форме стакана.
Чтобы понятнее была конструкция самодельного реле, можно разобрать реле РП-1 и изготовить аналог, пропорционально увеличив детали. Примерный размер корпуса Ф30мм h 60мм.
Якорек и контактный диск должны свободно перемещаться по стержню. Пружина не должна быть слишком сильной.
Включение и реверсирование трехфазного асинхронного двигателя (380/220) в однофазную сеть одним переключателем
Множество представленных в Интернете схем реверсирования необоснованно усложнены и имеют неоправданно большое количество переключателей.
Предлагается простая схема включения и реверсирования одним переключателем.
Подойдёт практически любой переключатель имеющий 3 фиксированных положения, соответствующий мощности двигателя.
При необходимости – данная схема облегчает автоматизацию включения – выключения и реверсирования двигателя.
При необходимости пускового конденсатора (включение нагруженного или высокооборотистого двигателя), его можно подключать при помощи пусковой кнопки или реле тока.
Изменение оборотов трехфазного асинхронного двигателя (380/220) включённого в однофазную сеть
Чтобы не применять дорогой и сложный коллекторный двигатель в механизмах требующих изменения оборотов двигателя, можно обойтись асинхронным трёхфазным двигателем, введя в
фазовый провод реостат или простейший регулятор мощности.
Переделка двигателя заключается в изменении якоря двигателя.
По образцу якоря, установленного в двигателе изготавливается «массивный якорь» из магнитомягкой малоуглеродистой стали или из серого чугуна (СЧ). (Чугунный работает лучше.)
Из старого якоря можно выпрессовать вал и насадить на него массивный якорь.
Подключение трехфазного двигателя-советы специалистов
Статьи об энергетике
Те, кто на постоянной основе работает с электрикой, знают, что трехфазные двигатели являются более удобными, чем однофазные на 220 Вт. Если в обычном гараже при этом есть питающий кабель на 3 фазы, то разумней выгодней всего поставить станок на 380 Вт.
Особенности двигателя
Перед тем, как подключить трехфазный двигатель, стоит разобраться с его конструктивными особенностями. В основе устройства две крупные детали: подвижный ротор и статический статор.
У второй части есть выемка, куда ложится обмотка. При ее расположении продумывают все моменты, чтобы она не мешала остальным деталям. Угловое расстояние при этом оставляют примерно в 120 градусов. Благодаря обмотке появляется две пары полюсов. От их количества меняется частота вращения ротора, а также его мощность и КПД.
Когда происходит подключение трехфазного двигателя, по обмоткам идет ток. За счет этого появляется магнитное поле, которое контактирует с обмоткой и приводит элемент в действие. За счет этих процессов появляется усилие, оно запускает подвижную часть, влияя на нее через разные промежутки времени.
Если схема подключения электродвигателя предполагает наличие только одной фазы и при этом не проводится дополнительная подготовка, то ток пройдет через одну обмотку. Силы воздействия окажется недостаточно для смещения ротора и поддерживания оборотов. По этой причине используют разные виды конденсаторов, которые поддерживают 3х-фазный двигатель на стабильной динамике.
Определение схемы
Если не разобраться с тем, как соединяются между собой фазы обмоток, то включить устройство не удастся. В электродвигателях на 3 фазы соединение происходит в треугольник или звезду, иногда эти методы комбинируют между собой.
Все основные параметры устройства указаны на шильде, поэтому по ней чаще всего определяют возможности мотора. Помимо технических параметров там есть номинал рабочего напряжения. Среди обозначений есть параметры подключения двигателя на 220/380 В. Многое здесь зависит от производителя, иногда указывают обозначения сразу для треугольника и звезды, это предпочтительный вариант.
Шильд есть не на всех двигателях, иногда подключение электродвигателя на 380 В невозможно только потому, что информация с таблички стерлась. В этом случае схему узнают после открытия блока. Когда под крышкой находятся 6 выводов с клеммными соединениями, тип обмотки определить проще всего. Модели с тремя выводами и внутренним способом подключения доставляют больше проблем. Тут для получения информации придется полностью разобрать мотор.
Как подключить электродвигатель с 380 на 220 В?
Схема подключения трехфазного двигателя зависит от конструкции устройства, требуемых характеристик, имеющихся нагрузок. Обычно для этого используют конденсаторы, но определить их количество удается не всем, поэтому мы перечислим несколько доступных вариантов.
Конденсаторы
Для запуска устройства потребуется пусковой и рабочий конденсатор. Первый используется редко, поскольку за счет емкости увеличивается напряжение в обмотке и создается большое усилие.
На рисунке показано, что создается однофазное напряжение, которое концентрируется между несколькими конечными элементами. Двигатель соединяется с двумя обмотками, а третья проходит через переключатели, которые воздействуют на конденсаторы.
Включение двигателя с 380 на 220 В происходит в несколько этапов:
- После запуска устройства контакты SA1 и SA2 двигаются, поэтому по обмотке проходит ток.
- Если отпустить кнопку пуска, то другой контакт замкнется. Фаза сместится на конденсатор С1. Первый контакт разомкнется и С2 перестанет работать.
- Характеристики вернутся к номинальным значениям и двигатель заработает в обычном темпе.
В этом случае ротор вращается только в одну сторону, если используется сеть на 220 В. Для реверсивных движений придется поработать над точками подключения или выбрать другой метод.
Пускатель
При создании высокой пусковой и рабочей нагрузки лучше использовать контактор. Он защитит двигатель на 380 В от поломки и при этом зафиксирует требуемые показатели.
Включение происходит после нажатия пусковой кнопки. Она замыкает цепь и напряжение идет на основной конденсатор. Когда ток идет по катушке, то контакты К 1.1 и К 1.2 замыкаются. Первая пара используется для отключения электролинии, а вторая влияет на пусковую кнопку. После этого она отключается и цепь размыкается.
Реверс
В некоторых ситуациях используется не только прямое, но и обратное вращение двигателя, чтобы при подключении сохранялась последовательность смены напряжения. Некоторые вручную влияют на деталь, но это подходит только для единичных случаев. Когда менять направление требуется по несколько раз в час, проще всего предусмотреть автоматический реверс.
Для этого используется коммутатор с несколькими контактами, которые имеют обратную логику. Схему подбирают в зависимости от технических особенностей устройства. Некоторые используют для этого поворотный переключатель или тумблер, который ставят на место пусковой кнопки.
Схема остается такой же, как при включении конденсаторов. Разница заключается только в наличии двух положений у переключателя (SA). В дном из них напряжение передается с фазы на конденсатор, а во втором оно переходит от проводника. При использовании тумблера происходит чередование обмоток, за счет этого быстро появляется противоположное направление.
Без конденсаторов
Некоторые предпочитают подключать двигатель без каких-либо емкостных элементов. Для этого просто разводят полупроводниковые ключи транзистором, чтобы мощность оставалась стабильной.
После этого напряжение подключается к двум точкам мотора. Затем напряжение идет на третью точку и переходит на времязадающую цепочку. Интервал сдвига регулирует магазин сопротивления обычным бегунком, затем конденсатор пропускает сигнал на симистор. Если работа проходит на высоких оборотах, то используется два симистора и несколько времязадающих элементов.
Независимо от выбранного метода пусковая кнопка иногда перестает работать. Проблемы с ней возникают в 70% случаев, но для их решения достаточно почистить контакты, поскольку они подгорают при появлении высокого напряжения.