Глава 3. Как устроен атом и вообще весь мир
Да, друзья мои, атом делим! Эту радостную новость я вам сообщаю сразу.
Атом тоже являет собой составную конструкцию. Получается, что детальки тоже устроены из деталек, только более мелких. Почему же греки называли атом неделимым? Мы уже знаем ответ: потому что деление мельчайшей крошки вещества – атома – приводит к тому, что вещество перестает существовать в своем привычном виде! Как перестает существовать автомобиль, если его разобрать на отдельные части – колеса, поршни, гайки, рычаги…
Все в мире сделано, как мы уже выяснили, из примерно сотни атомов (химических элементов). А сами атомы? Они состоят всего из трех деталек, только в разных сочетаниях.
В это трудно поверить, но все многообразие окружающей нас природы – звезды, планеты, мама с папой, хлеб, собака, воздух – это всего лишь разные наборы трех частичек, которые сначала складываются в атомы, а уж затем атомы составляют молекулы, строящие мир. Но в основе мира – всего три частицы. Частицы эти называются элементарными.
Опять возникает это слово «элементарные»!
Простейшие химические вещества, которые занесены в таблицу Менделеева, называют химическими элементами. И частицы, из которых сделаны эти элементы, тоже называются элементарными.
А имена у них есть?
Протон, Нейтрон, Электрон. Вся святая троица.
Но прежде, чем рассказать про них подробнее, я отвечу на закономерный вопрос, который должен был снова у вас возникнуть: а из чего сделаны элементарные частицы? Может, они тоже из каких-то еще более мелких деталюшек состоят?
Не вдаваясь в ненужные подробности, отвечу так: нет! Не состоят!
– Позвольте! – скажет мне какой-нибудь умный ребенок, поправляя пальчиком круглые очки. – Позвольте! Весь мой опыт говорит о том, что если по чему-то сильно стукнуть, оно развалится на части. Чашка на осколки, молекула на атомы, атомы – на эти ваши элементарные частицы. А если стукнуть по частицам, на что они развалятся, гражданин хороший?
– Какой умный мальчик! – отвечу я с некоторой робостью. – Проник в самую суть вещей! Стукнуть, говорит, надо. Именно так и поступают физики, когда изучают частицы! Они разгоняют их в специальных ускорителях и стукают друг об друга. А чем их еще стукнуть, чтобы разломать, если они – самые маленькие в мире? Вот их друг об друга и стукают.
И как вы думаете, что получается?
Элементарные частицы не разваливаются на составляющие, а превращаются в другие элементарные частицы. Причем эти превращения, которые называют ядерными реакциями, зависят от скорости, до которой разогнали частицы. То есть от той энергии, которую частицам сообщили. Дело в том, что энергия (скорость) может превращаться в вещество, в массу. И более того – при глубоком рассмотрении оказывается, что это одно и то же – энергия и масса, представляете! Мир един. Но об этом мы поговорим позже.
А сейчас познакомимся поближе с элементарными частицами. Они ужасно милые! (Вообще говоря, элементарных частиц довольно много. Но главных, из которых сделано все вещество в мире, всего три, как уже было сказано. Ими мы и займемся, а остальной вселенский мусор оставим взрослым физикам.)
Давайте с электрона. Он самый маленький, а маленьких обижать нельзя.
Итак, под свет прожекторов на сцену нашего внимания, раскланиваясь, выходит электрон. Что мы можем о нем сказать? Какого он цвета? Он шершавый? Он влажный, твердый, газообразный? Он теплоемкий?
Нет! Все те свойства, к которым мы привыкли в нашем большом мире (он называется макромир), не имеют никакого отношения к миру элементарных частиц (микромиру). Нет в микромире ни цвета, ни запаха, ни шершавости, ни твердости. Это все свойства макромира. Все эти свойства складываются из множества частиц, это макросвойства. А по отдельности частицы этих свойств не имеют.
А что же они имеют?
Ну, что есть у того же электрона? Ведь какие-то свойства у него должны быть! Иначе бы его не существовало! Ведь существовать – это значит проявлять себя как-то, то есть иметь свойства!
Да, некоторые свойства у электрона есть. У него есть масса. Про нее мы уже говорили – электрон очень легонький, самый легонький из всей троицы.
Электрон в 1820 раз легче протона. Для сравнения: если протон – это танк, то электрон – это одна канистра с топливом. Если протон – человек, то электрон – это авторучка в его кармане. Вот такая разница в массе.
Заметили, кстати, новый физический термин необыкновенной сложности – «масса»? Я его как бы между делом ввел. Надеюсь, не огорчил.
Что это такое? Масса – это просто количество вещества. Чем тело тяжелее, тем оно массивнее. Папа массивнее ребенка. Танк массивнее автомобиля. Солнце массивнее Земли.
Массу не нужно путать с весом. Хотя многие взрослые путают. Даже генералы и начальники. А, может, и сам президент. Между тем это совершенно разные вещи! Вес – это сила, с которой Земля притягивает массу. Сила, с которой массивное тело давит на опору, на которой лежит, или растягивает подвес, на котором висит. В космосе, в невесомости никакого веса нет, потому невесомость так и называется. Но все равно даже в невесомости толстый космонавт гораздо массивнее щуплого. И если они оттолкнутся друг от друга, то полетят в разные стороны с разными скоростями – толстый медленно, а щуплый быстро! Потому что количество вещества в их телах разное, в толстом вещества много, а в худом кот наплакал.
Вес и масса физиками даже измеряются в разных единицах – масса в килограммах, а сила в особых единицах – ньютонах. Массу определяют с помощью весов, а силу с помощью специальных приборов – ньютонометров. Усекли?
Массу ученые люди еще называют мерой инертности тела. Действительно, массивное тело очень инертное, чтобы его разогнать, нужно много усилий потратить. А легкое тело и разогнать легче, его инертность мала.
Электрон очень легок. Его масса составляет столь мизерную величину, что ее написание потребует от меня особой внимательности – чтобы в нулях не ошибиться:
0,0000000000000000000000000009 грамма – вот сколько весит электрон.
А еще у электрона есть размер. Он тоже крохотный:
0,00000000000000001 миллиметра – вот какого электрон диаметра.
Электрон можно представить себе, как маленький шарик, который вращается вокруг своей оси. Этакая малюсенькая планетка.
Причем, как вы понимаете, электрончик может вращаться или в одну сторону, или в другую, как это показано на рисунке ниже. И это тоже одно из свойств электрона – левое вращение или правое. По-научному вращение электрона называют спином. Не спиной, поскольку никакой спины у шарика нет, а спином. Спин – это собственное вращение электрона, от английского слова «spin» (вращение).
Если в винтовочном стволе правая нарезка, то вылетевшая из ствола пуля будет иметь вращение вправо. А если левая – влево. Теперь представьте, что мы стреляем в мишень, свободно закрепленную в центре и могущую вращаться. В этом случае пули с правым вращением, впиваясь в мишень, будут передавать ей свое вращение, постепенно раскручивая в ту же сторону – примерно как отвертка крутит винт.
Если мы не знаем, в какую сторону крутятся вылетающие из ствола пули, можно поставить опыт, стреляя по крутящейся мишени. В какую сторону она завертится, в такую и пули крутятся.
Но спин – это сущая ерунда по сравнению с последним и самым загадочным свойством электрона. Свойство это называется зарядом. Но заряд не в том смысле, что электрон чем-то заряжен, как винтовка патроном, потому что патрон из винтовки можно вынуть. А этот загадочный заряд из электрона вынуть нельзя. Он ему присущ, он его часть. Он – главное его свойство. Электрон, собственно говоря, и есть заряд!
Что же такое заряд?
Этого никто не знает. Но зато мы знаем, как загадочный заряд проявляет себя. И вы сейчас это узнаете.
Давным давно люди заметили, что если кусочек янтаря натереть шерстяной тканью, он начнет притягивать маленькие кусочки бумажки. Янтарь – это окаменевшая сосновая смола. Наверняка у вашей мамы есть янтарные безделушки – кулончик или сережки. Безделушки надо приспособить к делу! Возьмите кулон, тщательно выковыряйте из оправы желтоватый янтарь (маме он больше не понадобится), возьмите шерстяной носок, нарвите бумагу на крохотные кусочки. После чего, потерев янтарь, попробуйте притянуть им бумажные клочки.
Надеюсь, вам не влетит за смелые исследования.
На указанное явление впервые обратили внимание те же древние греки, весьма вдумчивый народец. По-гречески янтарь – «электрон». И вы, наверное, уже догадались, что за притягивание бумажек отвечают электроны, раз эти частички физиками были названы в честь янтаря.
Действительно, в этом простом эксперименте человечество впервые столкнулось с действием электрических сил, которые обусловлены электрическим зарядом.
Теперь-то мы к электричеству привыкли. Теперь мы без него жить не можем. Теперь у нас кругом розетки, которые больно бьют током догадливых детей, додумавшихся сунуть туда свой тонкий пальчик. Теперь нас просто окружает электричество, без коего и шагу не ступить. Стиральные машины, лифты, лампы, холодильники, троллейбусы и электрички, радиоприемники и телевизоры, заводы и фабрики – все работает на электричестве. Линии электропередач передают потребителям электрический ток, который вырабатывается электростанциями.
А что такое электрический ток?
Нет ничего проще! Поток электронов – вот что такое электроток. Как река – это течение триллионов и биллионов молекул воды по руслу, так и электрический ток – это течение миллиардов электронов по металлическому проводу. Все металлы очень хорошо проводят ток. Это отличительное свойство металлов, на которое ученые давно обратили внимание. Сегодня в кристаллической решетке металла мы умеем организовывать организованное течение мириадов элементарных частичек под названием электроны. Греки добывали чуть-чуть электричества, натирая шерстью янтарь. У нас же теперь – целые электростанции, которые занимаются производством электроэнергии. Уйму тока дают!
Короче говоря, заряд электрона – это некое свойство, которое характеризуется… чем? Ясно, чем характеризуется масса. Инертностью! Чем массивнее тело, тем труднее его разгонять. Попробовали потолкать – ого! тяжеленное! А заряд как обнаружить?
А заряд проявляет себя тем, что он притягивается к другому заряду – противоположному.
Существуют два вида зарядов – положительный и отрицательный. Ничего положительного и отрицательного в бытовом смысле в них нет, они не хорошие и не плохие, просто их так назвали когда-то да и все. Обозначают положительный заряд знаком плюс – «+», а отрицательный знаком минус – «-». Эти знаки вы тыщу раз видели на разных батарейках. А если не видели, сходите да посмотрите. Мне кажется, лучше всего попробовать выломать батарейку из папиных часов с помощью молотка и отвертки.
Электрон является носителем отрицательного заряда, а протон – положительного. Разноименные заряды притягиваются друг к другу, одноименные отталкиваются. Это прекрасно видно на рисунке.
Вот так мы и к протону незаметно перешли. Посмотрим-ка на него внимательно.
Если электрон маленький, легонький и электроотрицательный (минус), то протон большой, тяжелый и электроположительный (плюс). Полная противоположность! При этом протон и электрон притягиваются друг к другу.
А почему, собственно говоря, разноименные заряды притягиваются? И почему одноименные отталкиваются?
Этого никто не знает. Но это так! Уж такое это свойство – электрический заряд. Именно так оно себя проявляет. Понять, почему именно так, на современном этапе развития науки нельзя, можно только привыкнуть. Привычка вполне заменят понимание. Можно сказать, что привычка и есть понимание. Привык – и вроде как понимаешь.
Электрон и протон – на вид очень разные ребята. И масса, и размер у них разные. А вот заряд одинаковый – заряд протона в точности равен заряду электрона, только знак имеет противоположный.
Что еще сказать о протоне? По сравнению с электроном он просто гигант! Если вы забыли, я напомню – протон в 1820 раз тяжелее электрона. И по размерам, соответственно, больше.
Поскольку плюс и минус притягиваются, протон и электрон притягиваются друг к другу и могут образовать пару, напоминающую звездную систему. Только в звездной системе планета кружится вокруг светила, а тут электрон будет кружиться вокруг протона.
Самая простая подобного рода система состоит из одного протона, вокруг которого крутится один электрон.
Аналогичные, казалось бы, системы. Только одна из них (звездная) существует в макромире, а другая (атомная) в микромире. Но разница, тем не менее, есть. И состоит она, главным образом в том, что планета и звезда электронейтральны, то есть не обладают зарядом (никто еще не догадался потереть Солнце шерстяной тряпочкой). А электрон и протон обладают зарядом, то есть их притягивает друг к другу электрический заряд. А планету к звезде притягивает сила всемирного тяготения, которая действует на все массивные тела. Та самая, которая бросает вас на землю, когда вы спотыкаетесь и падаете. Та самая, которая неудержимо влечет вниз любимую мамину чашку, которую вы взяли без разрешения и уронили. Почему она на пол-то летит, свинья такая?
Все тела, имеющие массу, притягиваются друг к другу. И чем больше масса, тем сильнее.
Вообще-то говоря, электрон и протон тоже имеют массу и потому притягиваются друг к другу без всякого заряда. Но их массы такие крошечные, что не смогли бы устроить между ними устойчивую связь без помощи зарядов.
А знаете, что это такое у нас получилось – ну, когда один электрон мы запустили крутиться вокруг одного протона?
Это атом водорода.
Самый легкий химический элемент. Самое простое вещество на свете. Номер первый в таблице Менделеева. Всего-навсего один протон и один электрон – и вот мы уже имеем газ водород. Вообще-то, строго говоря, в атомарном состоянии водород как газ не встречается. Он существует в виде молекулы из двух атомов водорода – Н2. Два атома водорода сцепляются вместе и образуют молекулу газа по имени водород. Но это уже мелочи. Главное, что нам удалось собрать всего из двух элементарных частиц первое химическое вещество. Для этого даже третья элементарная частица не понадобилась – нейтрон.
Нейтрон – парень скромный. Он не обладает таким ярким характером, как протон, хотя они очень похожи. У нейтрона почти такая же масса, как у протона, и практически такой же размер. Но заряда у нейтрона нет. Он нейтральный.
А на фиг он тогда нужен?
И вправду, мы вон вполне удачно собрали первое, правда, пока самое простое вещество всего из двух элементарных частичек. Так зачем нужен нейтрон?
Разгадку этой загадки я открою чуть позже. А пока скажу обтекаемо: природе нейтрон зачем-то понадобился. И уже в следующем химическом элементе он присутствует.
Давайте попробуем собрать что-нибудь посложнее водорода!
Как? Простая логика подсказывает: если у нас в простейшем веществе две частички, надо добавить еще одну – третью. Вот вокруг нашего Солнца вращается около десятка планет. И поскольку атом напоминает планетную систему, давайте запустим вокруг протона еще несколько электронов.
Это будет сложновато! Я ведь не зря выше сказал, что заряды протона и электрона равны. Положительный заряд протона уже скомпенсирован отрицательным зарядом электрона, который кружится вокруг него. У протона уже силенки не хватит притянуть и удержать еще один электрон.
К тому же надо вот на что внимание обратить – атом водорода электронейтрален, то есть минусовый заряд электрона компенсируется в нем плюсовым зарядом протона. Потому и говорят, что для внешнего наблюдателя атом нейтрален. Все вещество, которое нас окружает, электронейтрально. А если случайно на нем накопится заряд, как на синтетической кофте, которую снимают через голову, или на янтаре, когда его шерстью потрешь, то вещество начнет притягивать мелкие предметы, потрескивать и даже искрить. Потрите резиновый воздушный шарик о голову, и он начнет волосы притягивать. Но это редкость, обычно вещество у нас в руках не искрит, не трещит, никуда ничего не притягивает и вообще ведет себя прилично. Нейтрально.
Поэтому если нам надо создать вещество, поимеем в виду, что оно должно быть электронейтрально, то есть число плюсиков в его атоме должно быть равно числу минусиков.
Значит, чтобы собрать что-то посложнее водорода, нужно в дополнение ко второму электрону на орбите всобачить ему в центр (в ядро) еще один протон. Потому что один протон два электрона не удержит, заряда не хватит. А два протона запросто удержат два электрона. И тогда все уравновесится – в ядре атома будет два плюсовых заряда от двух протонов, а вокруг будут крутиться два электрона с двумя минусовыми зарядиками. И в целом атом останется электронейтральным.
И таким образом что у нас получилось?
У нас почти получился гелий – вещество номер 2 в таблице Менделеева. До настоящего гелия ему не хватает только двух нейтронов в ядре. Добавим их, и получится гелий.
Природа устроила так, что количеству протонов в ядре атома приблизительно соответствует количество нейтронов. То есть если мы будем сооружать атом, например, с 10 протонами в ядре и 10 электронами на орбитах, то нам придется вдуть в ядро еще с десяток нейтронов. Балласт.
Поскольку протоны и нейтроны очень похожи (за исключением заряда), их часто называют одним словом – нуклоны. Ядро атома состоит из нуклонов, а вокруг кружатся в бесконечном вальсе электроны. Прелестно!
Ну, вот, собственно, и все! Вся природа у нас в кармане! Теперь нами понят ее главный принцип.
Как собрать следующий, третий по счету химический элемент в таблице Менделеева? Очень просто. Берем три протона, три нейтрона и три электрона. Нуклоны скатываем, как снежок, в одно ядро, вокруг запускаем три штучки электрончиков – и получаем литий. Литий – это уже не газ. Это уже легкий металл. Самый легкий металл на свете.
Вы, надеюсь, уже нашли водород, гелий и литий в таблице Менделеева…
А теперь поступим так. Найдите-ка в таблице наше родное и всеми горячо любимое золото. Стойте. Лучше, чтобы вы не листали книгу туда-сюда, я просто сам перенесу из таблицы Менделеева клеточку с золотом сюда. И расположу ее чуть ниже золотых слитков.
Мы видим тут значок золота – Au (аурум) – и две цифры. Верхняя – это порядковый номер элемента в таблице Менделеева. У золота № 79. Почему такой?
Отчего золото оказалось в периодической таблице элементов под номером 79?
Не знаете? А могли бы и догадаться! Вспомните, как мы строили первые три простейшие вещества. У первого, водорода – один протон и один электрон. У второго, гелия – по два. У третьего, лития – по три. Уловили закономерность? Порядковый номер – это количество протонов в ядре атома и электронов на орбите, вот и все! Если элемент стоит в таблице Менделеева пятым, то это только потому, что у него пять протонов в ядре, а вокруг кружатся 5 электронов.
А вторая цифра, которая внизу, что значит? Выглядит она страшно, но пугаться не стоит. Это атомная масса. Только выражена она не в килограммах или граммах, а в атомных единицах, где гирькой служит нуклон. 1 нуклон – это одна единица массы. Два нуклона – две единицы атомной массы. Крайне просто.
Иногда еще атомную массу называют атомным весом.
Мы знаем, что вес и масса – разные вещи, но так сложилось в науке, что атомный вес является синонимом атомной массы. Примем это как данность. Жалко что ли? Мы же говорим «чайник закипел», хотя кипит вовсе не чайник, а вода в чайнике.
Так вот, каков атомный вес водорода? Одна атомная единица! Потому что в его ядре один нуклон. А у гелия? Четыре! Потому что в ядре гелия четыре нуклона – две гирьки протонов, а еще и две гирьки нейтронов. (Электроны при определении атомного веса не учитываются из-за чрезвычайной легкости.)
Проще говоря, атомная масса, которая указана возле каждого элемента в таблице Менделеева до запятой – это общее количество нуклонов (протонов и нейтронов) в его ядре.
Посмотрите, в ядре атома золота 196 частиц. Протонов там, как мы уже выяснили, 79 штук. Все остальное – нейтроны. Возьмите калькулятор и посчитайте… Не хотите? Ну, ладно, я за вас посчитаю:
Получается, у золота 117 нейтронов в атоме.
Внимательный детский глаз может, еще раз оглядев клеточку золота, вырезанную из менделеевской таблицы, послать сигнал в хитрый детский мозг, и мозг озаботится ненужным вопросом:
– Дяденька писатель! А что там еще за цифры стоят после запятой? Ну, после 196?
Ох, не хотел я вам этого говорить, дети, хотел утаить, но раз к стенке приперли, придется расколоться.
Это очень трудно, друзья мои! Не каждый взрослый об этом знает! А вы поймете за одну минуту.
В обычном нормальном атоме золота, как мы уже выяснили, 117 нейтронов и 79 протонов. Но иногда встречаются атомы-уродцы. Довольно редко. У них есть лишние нейтроны. Как иногда у людей бывает по шесть пальцев на руках. Нечастое явление.
Предположим, на тысячу нормальных атомов приходится один дефектный. И если в норме в атоме золота 117 нейтронов, то иногда встречаются «вспухшие» уродливые атомы, в которых 118 нейтронов. Все помидорчики как помидорчики, а у одного помидора какой-то уродский вырост на боку. Ничего, мы и такой съедим.
Атомы-уродцы называют изотопами. Именно из-за них, кособоких паразитов средний вес всех атомов отличается от целого числа. Что понятно: если у нас из десяти атомов все десять имеют атомный вес в 6 единиц, то и средний атомный вес будет равен ровно шести:
А вот если один из десяти атомов имеет вес в 7 единиц, средний вес изменится:
(6+6+6+6+6+7+6+6+6+6): 10 = 6, 1
Видите, после запятой появилась циферка, которая говорит о том, что не «все шестерки одинаковы».
Если вы внимательно посмотрите на атомные веса элементов в таблице Менделеева, то увидите, что все они не являются целыми числами. Значит, каждое элементарное вещество имеет уродливые атомы. Даже водород. Хотя, казалось бы, проще водорода ничего быть не может – один протон, вокруг которого крутится один электрон, вот и весь атом. Эта не какой-нибудь свинец, у которого в ядре больше двух сотен нуклонов, а вокруг этого огромного ядра кружится больше восьмидесяти электронов!
Однако все же бывают атомы водорода, в ядре которых, кроме протона, есть еще и нейтрон. Один. А порой и два! Такой водород называют тяжелым. Потому что его атом тяжелее обычного.
На рисунке ниже нарисованы атомы нормального водорода и редкие уродики, а также написано, как эти уродики называются.
Но так как атомы-уродцы встречаются редко, говорить мы о них пока прекращаем. Я рассказал вам про изотопы лишь затем, чтобы объяснить наличие циферок после запятой. Вы на эти циферки просто внимания не обращайте да и все.
Вы теперь и так знаете слишком много! Вы представляете, по каким принципам строится вещество. Берите любой атом из таблицы Менделеева и рассказывайте про него маме или даже папе. Задавайте контрольные вопросы. Проверяйте усвоенный материал.
А пока взрослые морщат лоб и мычат в свое оправдание что-то типа «я, конечно, в школе учи-и-ил, но забы-ы-ыл», мы с вами возьмем сейчас тот же хлор и натрий, из которого ранее соль поваренную делали, и посмотрим, что тут к чему.
Натрий. Легкий металл. Как он сделан? Его номер 11-й. Значит, 11 протонов и 11 электронов. Атомный вес натрия – 22. То есть в ядре 22 нуклона.
22 нуклона минус 11 протонов = 11 нейтронов. Все. Атом натрия готов.
Теперь хлор надо собрать по инструкции дяденьки Менделеева.
У хлора номер 17. То есть 17 протонов и 17 электронов. Атомный вес (число нуклонов в ядре) – 35.
35 – 17 = 18 нейтронов. Все, собрали хлор.
Теперь соединяем два этих атома – хлора и натрия, – зацепив один за другой колечками самых дальних электронных орбит, и получаем сложное вещество – молекулу поваренной соли.
Так строятся все вещества – сцепляясь дальними орбитами электронов. При этом дальние электрончики, которые крутились на этих орбитах, становятся как бы общими для обоих ядер.
Все, можно стереть пот со лба. Мы освоили химию и физику элементарных частиц. Слава Менделееву! Науке слава!
Теперь осталась одна маленькая деталь, которую нужно знать каждому приличному ребенку. Один маленький штрих, который завершит картину мироздания, сделав ее в ваших блестящих глазах более полной и блестящей.
Итак, мы знаем, что практически все окружающее нас вещество электронейтрально. Если вы дотрагиваетесь до шкафа, он не бьет вас током. Потому что в веществе шкафа количество положительных зарядов равно количеству отрицательных. Его атомы электронейтральны.
Но что будет, если атом потеряет один или два электрона? Вот такой рассеянный атом. Может такое быть? Может! Какое-нибудь сильное воздействие может парочку электрончиков у атома оторвать.
Вы скажете (подсмотрев в таблицу Менделеева):
– Ха! Даже если такое случится, невелика потеря! Вокруг ядра атома могут крутиться под сотню электронов! Например, у радия их 88. Некисло так! Подумаешь, пару потеряет…
Однако потеря даже одного отрицательного заряда означает избыток заряда положительного. Если атом теряет электрон, значит у него остается один «лишний», нескомпенсированный протон. И атом в целом таким образом приобретает положительный заряд +1.
А если атом теряет два электрона, то он приобретает заряд +2.
Бывает и наоборот – когда к атому присоседится какой-нибудь приблудный лишний электрон. В этом случае атом получает один отрицательный заряд —1.
Такие заряженные атомы называются ионами.
Когда происходит подобное? Из-за чего атомы могут, например, терять электроны?
Это бывает при высоких температурах, то есть тогда, когда атомы газа имеют большую энергию и скорости, носятся, как сумасшедшие, сталкиваются друг с другом. Мы ведь с вами помним, что частота и скорость соударений и есть температура. В обычном воздухе скорость соударений молекул невелика. А вот на Солнце раскаленный газ имеет температуру в тысячи (на поверхности Солнца) и даже десятки миллионов градусов (внутри нашего светила). Я сказал «на Солнце»? Это немного неточно. Скорее, «в Солнце». Потому что Солнце представляет собой раскаленный газовый шар. В основном оно состоит из водорода с небольшой примесью гелия.
Так вот в этих условиях скорость соударения атомов водорода такова, что «крышу срывает» у атомов на всю катушку. Атомы разрушаются, электроны слетают со своих орбит и начинают метаться одни, так же, как и протоны. Получается хаотическая электронно-протонная смесь или, иначе говоря, ионизированная плазма.
Плазма – горячая смесь ионов. Огонь – это тоже плазма. Только в обычном пламени костра или свечи содержание ионов не такое большое, как на Солнце, потому что температура ниже.
Я загрузил вас новыми словами – «ионы», «плазма». Но зато теперь вы можете похвастаться тем, что знаете целых четыре состояния вещества!
Первое – твердое. Атомы и молекулы в таком веществе крепко держатся друг за друга, никуда не бегают, а только чуть-чуть дрожат и топчутся на одном месте, образуя кристаллическую решетку.
Второе состояние вещества – жидкое. Здесь уже энергетика частичек вещества такова, что они ломают кристаллическую структуру, рушат тесные ряды и начинают хаотически бродить, будучи не в силах удержаться в твердой структуре. Растекаются. Но еще не разлетаются друг от друга.
Разлетаться они начнут в третьем состоянии вещества – газообразном, которое наступит при дальнейшем нагреве, то есть дальнейшей накачке вещества энергией. Тогда скорость атомов станет уже такой, что силы их притяжения не смогут сдерживать энергичность расшалившихся атомов. Они просто разлетятся друг от друга и рассеются в пространстве.
Если же газ собрать в каком-то закрытом объеме или просто удерживать мощной силой гравитации (как на Солнце) и продолжать нагревать, то энергетика атомов станет уже такой огромной, что при столкновении друг с другом будут разрушаться уже сами атомы – с них начнет срывать электронные шубы. И останутся только ионы, ионизированный газ – плазма. При этом газ начнет светиться, что говорит о его высокой температуре.
Строение атома
Уже в древности философы задумывались, из чего же состоит природа вокруг них. Демокрит первым из античных ученых предположил, что все в мире состоит из крошечных неделимых частиц. Эту частицу он назвал атом, что в переводе с греческого означает «неделимый».
К сожалению, возможности ученых в те времена были весьма ограничены. Каких-либо приборов, позволяющих исследовать строение вещества, у них не было. Но значение Демокрита в зарождении атомистики невозможно сбросить со счетов истории.
Атомно-молекулярное учение. Строение атома
Практически до середины XVIII века, пока М.В. Ломоносов не принес в химию количественные эксперименты, учение об атомах оставалось лишь прерогативой философских размышлений. Михаил Васильевич считал, что лишь знание физических законов поможет правильно истолковать результаты химических опытов.
В своих исследованиях ученый выделил в веществе крупные частицы — «корпускулы», и мелкие — «элементы», или как мы называем их сейчас — атомы.
Ломоносов считал, что каждая молекула по своему составу идентична всему веществу, а также, что различные по химическому строению элементы имеют и разные по составу молекулы. Ученый предполагал, что вещества имеют особенности не только из-за отличий в составе молекул, но и благодаря различному расположению атомов в молекуле.
Следующий шаг в изучении атомов сделал английский естествоиспытатель Джон Дальтон. Проводя различные эксперименты с растворением газов в жидкостях, ученый открыл главное физическое качество атомов: эти мельчайшие частицы имеют вес. Но поскольку атом до сих пор никто не видел, Дальтон назвал вес частицы относительным. Он установил, что самым легким элементом является водород и предложил его вес принять за единицу.
Открытие Дальтона стало прорывом в химии. Ведь теперь к любому химическому соединению можно было подойти с измерительным прибором. Это исследование позволило приблизиться к современной записи химических формул и уравнений. И именно Дальтон придумал первые обозначения для известных химических элементов.
До конца XIX века, несмотря на все старания ученых, химическое строение атома по-прежнему оставалось лишь гипотезой.Ученым не хватало оборудования, чтобы постичь тайну мельчайшей частицы.
Открытие Дальтона дало толчок дальнейшим опытам, в ходе которых ученые вычислили относительную атомную массу разнообразных химических элементов, что позволило их классифицировать, а Д.И.Менделееву – сформулировать периодический закон и представить научному миру Периодическую систему химических элементов.
Протоны и нейтроны
Обнаружение катодных лучей немецким ученым-физиком Юлиусом Плюккером в 1859 году и создание прототипа электронной трубки Ульямом Круксом в 1879 году положили новый виток исследованиям в атомистике.
Однако потребовалось еще несколько десятков лет, чтобы строение атомов химических элементов приоткрыло свои тайны. на заре XX века в одном журнале появились две публикации, которые пытались объяснить структуру атома. Одна из публикаций принадлежала английскому ученому Д.Д. Томсону, автором другой был японский физик Хантаро Нагаока.
Нагаока описал в статье так называемую «сатурнианскую» модель атома. Он думал, что атом по своей структуре напоминает планету Сатурн. В его центре находится массивное ядро с положительным зарядом, а электроны с отрицательными зарядами передвигаются вокруг ядра по орбитам. .
При создании своей атомной структуры Нагаока использовал разработанную Максвеллом в 1856 году теорию устойчивости колец Сатурна. Японский ученый был убежден, что опираясь на «сатурнианскую» модель ядра в будущих исследованиях, можно прояснить все основные свойства материи.
Исследователь ошибся, однако два постулата его теории впоследствии подтвердились:
- ядро атома имеет значительную массу;
- электростатические силы удерживают электроны на орбите (сходство с кольцами Сатурна, что удерживаются благодаря гравитационным силам).
Томсон выдвинул гипотезу о том, что атом напоминает шарообразную, электронейтральную сферу диаметром около 10 –10 м, где положительный заряд равномерно распределен по всей структуре атома, а электроны хаотично расположены в этом поле. Поэтому, можно сказать, что атом напоминает микроскопическую булочку с изюмом.
Опыты продолжались в разных странах. В лаборатории Резерфорда проходили испытания, которые смогли доказать, что в центре атома расположено крупное ядро с диаметром около —10 —15 м, в котором содержится более 99,95 % его массы, а заряд его положительный.
Ученые продолжали исследования с катодным излучением, и выяснили, что масса ядра была примерно в два раза больше, чем масса всех протонов в нем. Опираясь на это знание, Резерфорд выдвинул гипотезу, что в ядре атома присутствует еще некая тяжелая частица, лишенная заряда. С биографией выдающегося ученого можно кратко ознакомиться в учебнике «Введение в естественно-научные предметы» , под редакцией А.Е. Гуревич.
В 1932 году и Джеймс Чедвик обнаружил нейтрон — третий недостающий элемент атома.
Атомное взаимодействие обеспечивает тесную связь протонам и нейтронам в ядре атома. Протоны и нейтроны имеют общее название — нуклоны. Ученые считают, что их характеристики достаточно подобны, чтобы отнести эти частицы к одному семейству, как биологи относят в один вид собак и волков.
Казалось бы, вот оно – тайна ядра разгадана. Но нет, в современной физике считается, что нуклоны состоят из еще более мелких частиц, которые называют кварками, и кварковая модель является ведущей в современной науке.
Эксперименты по исследованию атома и его ядра не прекращаются, и в 2010 году международная группа физиков при исследовании протонов в мюонном водороде установила, что размер радиуса протона меньше на 4%, чем считалось до этого.
Так в фундаментальную физику ворвалась загадка протонного радиуса, почему измерение одной и той же величины в обычном и в мюонном водороде дает разные результаты — и, несмотря на усилия сотен специалистов, она до сих пор не решена.
Изотопы
Работая в лаборатории Резерфорда, Фредерик Содди экспериментально установил, что встречаются атомы одного химического элемента с различной атомной массой. А поскольку к этому времени уже было известно, что количество протонов для ядра постоянно, соответственно, отличались они количеством нейтронов.
Содди предложил термин изотоп (от греческих слов изос — «равный» и топос — «место») для обозначения веществ, идентичных по химическим свойствам, но отличающихся атомной массой и определенными физическими свойствами.
При графической записи изотоп выглядит как знак химического элемента, которому он соответствует. А что бы обозначить разницу, в массовом числе используют индекс слева вверху: ( 12 C, 222 Rn)
Протий, дейтерий, и тритий — исторические собственные названия изотопов водорода.
- стабильные (устойчивые);
- нестабильные (радиоактивные).
Электронное строение атома
Исследование таинственного микромира продолжается. Изучение движения электронов и внутриатомных взаимодействий выделилось в отдельную область физики — квантовую механику. Главный постулат квантовой механики — все волны обладают свойствами частиц, а микрочастицы имеют волновую природу.
В макромире физическое тело всегда находится в какой-то конкретной точке пространства. Даже если вы сфотографируете летящую муху и на фотографии она будет в виде черной полосы, вы все равно будете уверены, что в конкретный момент времени она была в определенном месте.
В мире атома все иначе. Легкий подвижный электрон находится одновременно во всех точках околоядерного пространства. Если провести аналогию с макромиром, больше всего это напомнит неплотный клубок мягкой пушистой шерсти.
И именно эта зона пространства, где существует вероятность встретить электрон, называется электронным облаком. Плотность электронного облака неравномерна.
В электронном облаке выделяют зону, где вероятность встречи с электроном более 90% — эта область обозначена как атомная или электронная орбиталь.
Все электроны в атоме обладают определенной энергией. Чтобы описать состояние электрона, ученые используют квантовые числа. Всего их четыре. Целое число n, которое определяет энергию электронов на конкретном энергетическом уровне, называют главным квантовым числом.
На одной электронной оболочке находятся атомные орбитали с единым значением главного квантового числа n.
У невозбужденного атома электроны расположены на орбиталях 4-х видов: s, p, d и f.
Но почему нельзя было обозначить буквами по алфавиту a, b, c? Все не так просто, для обозначения атомных орбиталей ученые решили использовать начальные буквы от прилагательных, описывающих спектральные линии в атомных спектрах:
- s (sharp) — резкая,
- p (principal) — главная,
- d (diffuse) — диффузная,
- f (fundamental) — фундаментальная.
Чтобы графически представить расположение электронов на уровнях и подуровнях атомной оболочки, ученые ввели электронные формулы. Это такие численно-буквенные комбинации, где подуровень обозначен строчной латинской литерой, а цифровой индекс вверху справа обозначает количество электронов на подуровне.
Например, атом водорода имеет один электрон, который расположен на s-подуровне 1-го энергетического уровня: 1s 1 . Электроны углерода расположены на двух энергетических уровнях, на внешнем энергетическом уровне у углерода выделяют два подуровня 2s и 2p, где находятся 4 электрона. Также используется графическая схема строения атома.
Для наглядности строения атомной оболочки углерода и процессов в ней можно воспользоваться схемой , представленной на нашем ресурсе.
Несмотря на свои способности быть одновременно в любой точке пространства, электроны при заполнении орбиталей соблюдают определенный порядок:
- Принцип наименьшей энергии. Электроны занимают атомные орбитали от наименьшей энергии к наибольшей. Распределение подуровней по энергиям представлено рядом : 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p, где от 1s до 7p — энергия увеличивается.
- Принцип Паули — на одной орбитали помещается два электрона. Суммарное количество электронов в одном электронном слое или на одном электронном уровне равно 2n2.
- Правило Хунда — прежде чем начать собираться в пары, электроны сначала в пределах подуровня по одному занимают вакантные орбитали.
У этого правила есть еще одно мнемоническое название — правило троллейбуса. Расположение электронов напоминает рассадку в общественном транспорте. Если есть свободные места и человек входит один, он сядет на свободное сиденье, и только если нет свободных сидений, подсядет к кому-то на свободное место.
Итак, подведем выводы, на которые ученым понадобилось более сотни лет опытов, исследований, научных дискуссий и даже трагедий.
- Форма атома — сфера.
- Ядро и электронная оболочка — составные структуры атома.
- По электронной оболочке движутся электроны с отрицательным зарядом.
- Масса ядра составляет основную часть массы атома, т.к. протон весит примерно в 2000 раз больше электрона.
- Радиус атома приблизительно в 100000 раз больше чем радиус ядра.
- Атомное ядро состоит из нуклонов: протонов (p+) и нейтронов (n0), которые состоят из кварков.
- Количество протонов N(p+) равно заряду ядра (Z) и порядковому номеру элемента в периодической системе элементов, т.е. N(p+) = Z
- Количество электронов в нейтральном атоме равно количеству протонов в его ядре.
- Массовое число представляет собой сумму протонов Z и нейтронов N и обозначается литерой А.
- Если атом приобретает лишние электроны или теряет свои, то его заряд изменяется и он превращается в ион с положительным или отрицательным зарядом, что можно увидеть на иллюстрации в учебнике «Введение в естественно-научные предметы» , под редакцией А.Е. Гуревич.
Чтобы проверить насколько хорошо усвоен материал, предлагаем вашему вниманию тест на тему «Строение атома» для 8-11 классов:
Как устроен атом
Атом — химически неделимая, электронейтральная частица, состоящая из ядра и электронов. Ядро заряжено положительно и состоит из протонов и нейтронов. Оно определяет массу атома и радиоактивные свойства. Электроны заряжены отрицательно и определяют химические свойства атома. Атом является наименьшей частицей химического элемента и входит в состав простых и сложных веществ.
Со времен Демокрита атом считали неделимым, и только в начале XX века открыли элементарные частицы и доказали возможность деления атома. Некоторые атомы распадаются самопроизвольно: их ядра испускают частицы или электромагнитное излучение. Такие элементы называют радиоактивными.
Как устроен атом
А́том (от др.-греч. ἄτομος — неделимый) — наименьшая, химически неделимая часть химического элемента, являющаяся носителем его свойств. [1] Атом состоит из атомного ядра и электронов. Ядро атома состоит из положительно заряженных протонов и незаряженных нейтронов, связанных между собой при помощи сильного взаимодействия. Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом. Атомы классифицируются по количеству протонов и нейтронов в ядре: количество протонов определяет принадлежность атома некоторому химическому элементу, а число нейтронов — изотопу этого элемента.
Атомы различного вида в разных количествах, связанные межатомными связями, образуют молекулы.
Содержание
История становления понятия
Понятие об атоме как о наименьшей неделимой части материи было впервые сформулировано древнеиндийскими и древнегреческими философами (см.: атомизм). В XVII и XVIII веках химикам удалось экспериментально подтвердить эту идею, показав, что некоторые вещества не могут быть подвергнуты дальнейшему расщеплению на составляющие элементы с помощью химических методов. Однако в конце XIX — начале XX века физиками были открыты субатомные частицы и составная структура атома, и стало ясно, что атом в действительности не является неделимым.
На международном съезде химиков в Карлсруэ (Германия) в 1860 году были приняты определения понятий молекулы и атома. Атом — наименьшая частица химического элемента, входящая в состав простых и сложных веществ.
Модели атомов
- Кусочки материи. Демокрит полагал, что свойства того или иного вещества определяются формой, массой, и пр. характеристиками образующих его атомов. Так, скажем, у огня атомы остры, поэтому огонь способен обжигать, у твёрдых тел они шероховаты, поэтому накрепко сцепляются друг с другом, у воды — гладки, поэтому она способна течь. Даже душачеловека, согласно Демокриту, состоит из атомов. [2]
- Модель атома Томсона (модель «Пудинг с изюмом»). Дж. Дж. Томсон предложил рассматривать атом как некоторое положительно заряженное тело с заключёнными внутри него электронами. Была окончательно опровергнута Резерфордом после проведённого им знаменитого опыта по рассеиванию альфа-частиц.
- Ранняя планетарная модель атома Нагаоки. В 1904 году японский физик Хантаро Нагаока предложил модель атома, построенную по аналогии с планетой Сатурн. В этой модели вокруг маленького положительного ядра по орбитам вращались электроны, объединённые в кольца. Модель оказалась ошибочной.
- Планетарная модель атома Бора-Резерфорда. В 1911 году [3] Эрнест Резерфорд, проделав ряд экспериментов, пришёл к выводу, что атом представляет собой подобие планетной системы, в которой электроны движутся по орбитам вокруг расположенного в центре атома тяжёлого положительно заряженного ядра («модель атома Резерфорда»). Однако такое описание атома вошло в противоречие с классической электродинамикой. Дело в том, что, согласно классической электродинамике, электрон при движении с центростремительным ускорением должен излучать электромагнитные волны, а, следовательно, терять энергию. Расчёты показывали, что время, за которое электрон в таком атоме упадёт на ядро, совершенно ничтожно. Для объяснения стабильности атомов Нильсу Бору пришлось ввести постулаты, которые сводились к тому, что электрон в атоме, находясь в некоторых специальных энергетических состояниях, не излучает энергию («модель атома Бора-Резерфорда»). Постулаты Бора показали, что для описания атома классическая механика неприменима. Дальнейшее изучение излучения атома привело к созданию квантовой механики, которая позволила объяснить подавляющее большинство наблюдаемых фактов.
Квантово-механическая модель атома
Современная модель атома является развитием планетарной модели. Согласно этой модели, ядро атома состоит из положительно заряженных протонов и не имеющих заряда нейтронов и окружено отрицательно заряженными электронами. Однако представления квантовой механики не позволяют считать, что электроны движутся вокруг ядра по сколько-нибудь определённым траекториям (неопределённость координаты электрона в атоме может быть сравнима с размерами самого атома).
Химические свойства атомов определяются конфигурацией электронной оболочки и описываются квантовой механикой. Положение атома в таблице Менделеева определяется электрическим зарядом его ядра (то есть количеством протонов), в то время как количество нейтронов принципиально не влияет на химические свойства; при этом нейтронов в ядре, как правило, больше, чем протонов (см.: атомное ядро). Если атом находится в нейтральном состоянии, то количество электронов в нём равно количеству протонов. Основная масса атома сосредоточена в ядре, а массовая доля электронов в общей массе атома незначительна (несколько сотых процента массы ядра).
Массу атома принято измерять в атомных единицах массы, равных 1 ⁄12 от массы атома стабильного изотопа углерода 12 C.
Строение атома
Субатомные частицы
Хотя слово атом в первоначальном значении обозначало частицу, которая не делится на меньшие части, согласно научным представлениям он состоит из более мелких частиц, называемых субатомными частицами. Атом состоит из электронов, протонов, все атомы, кроме водорода-1, содержат также нейтроны.
Электрон является самой лёгкой из составляющих атом частиц с массой 9,11·10 −31 кг, отрицательным зарядом и размером, слишком малым для измерения современными методами. [4] Протоны обладают положительным зарядом и в 1836 раз тяжелее электрона (1,6726·10 −27 кг). Нейтроны не обладают электрическим зарядом и в 1839 раз тяжелее электрона (1,6929·10 −27 кг). [5]
При этом масса ядра меньше суммы масс составляющих его протонов и нейтронов из-за эффекта дефекта массы. Нейтроны и протоны имеют сравнимый размер, около 2,5·10 −15 м, хотя размеры этих частиц определены плохо. [6]
В стандартной модели элементарных частиц как протоны, так и нейтроны состоят из элементарных частиц, называемых кварками. Наряду с лептонами, кварки являются одной из основных составляющих материи. И первые и вторые являются фермионами. Существует шесть типов кварков, каждый из которых имеет дробный электрический заряд, равный + 2 ⁄3 или − 1 ⁄3 элементарного. Протоны состоят из двух u-кварков и одного d-кварка, а нейтрон — из одного u-кварка и двух d-кварков. Это различие объясняет разницу в массах и зарядах протона и нейтрона. Кварки связаны между собой сильными ядерными взаимодействиями, которые передаются глюонами. [7] [8]
Электроны в атоме
При описании электронов в атоме в рамках квантовой механики, обычно рассматривают распределение вероятности в 3n-мерном пространстве для системы n электронов.
Электроны в атоме притягиваются к ядру, между электронами также действует кулоновское взаимодействие. Эти же силы удерживают электроны внутри потенциального барьера, окружающего ядро. Для того, чтобы электрон смог преодолеть притяжение ядра, ему необходимо получить энергию от внешнего источника. Чем ближе электрон находится к ядру, тем больше энергии для этого необходимо.
Электронам, как и другим частицам, свойственен корпускулярно-волновой дуализм. Иногда говорят, что электрон движется по орбитали, что неверно. Состояние электронов описывается волновой функцией, квадрат модуля которой характеризует плотность вероятности нахождения частиц в данной точке пространства в данный момент времени, или, в общем случае, оператором плотности. Существует дискретный набор атомных орбиталей, которым соответствуют стационарные чистые состояния электронов в атоме.
Каждой орбитали соответствует свой уровень энергии. Электрон может перейти на уровень с большей энергией, поглотив фотон. При этом он окажется в новом квантовом состоянии с большей энергией. Аналогично, он может перейти на уровень с меньшей энергией, излучив фотон. Энергия фотона при этом будет равна разности энергий электрона на этих уровнях (см.: постулаты Бора).
Свойства атома
По определению, любые два атома с одним и тем же числом протонов в их ядрах относятся к одному химическому элементу. Атомы с одним и тем же количеством протонов, но разным количеством нейтронов называют изотопами данного элемента. Например, атомы водорода всегда содержат один протон, но существуют изотопы без нейтронов (водород-1, иногда также называемый протием — наиболее распространённая форма), с одним нейтроном (дейтерий) и двумя нейтронами (тритий). [9] Известные элементы составляют непрерывный натуральный ряд по числу протонов в ядре, начиная с атома водорода с одним протоном и заканчивая атомом унуноктия, в ядре которого 118 протонов. [10] Все изотопы элементов периодической системы, начиная с номера 83 (висмут), радиоактивны. [11] [12]
Масса
Поскольку наибольший вклад в массу атома вносят протоны и нейтроны, суммарное число этих частиц называют массовым числом. Массу покоя атома часто выражают в атомных единицах массы (а. е. м.), которая также называется дальтоном (Да). Эта единица определяется как 1 ⁄12 часть массы покоя нейтрального атома углерода-12, которая приблизительно равна 1,66·10 −24 г. [13] Водород-1 — наилегчайший изотоп водорода и атом с наименьшей массой, имеет атомный вес около 1,007825 а. е. м. [14] Масса атома приблизительно равна произведению массового числа на атомную единицу массы [15] Самый тяжёлый стабильный изотоп — свинец-208 [11] с массой 207,9766521 а. е. м. [16]
Так как массы даже самых тяжёлых атомов в обычных единицах (например, в граммах) очень малы, то в химии для измерения этих масс используют моли. В одном моле любого вещества по определению содержится одно и то же число атомов (примерно 6,022·10 23 ). Это число (число Авогадро) выбрано таким образом, что если масса элемента равна 1 а. е. м., то моль атомов этого элемента будет иметь массу 1 г. Например, углерод имеет массу 12 а. е. м., поэтому 1 моль углерода весит 12 г. [13]
Размер
Атомы не имеют отчётливо выраженной внешней границы, поэтому их размеры определяются по расстоянию между ядрами соседних атомов, которые образовали химическую связь (Ковалентный радиус) или по расстоянию до самой дальней из стабильных орбит электронов в электронной оболочке этого атома (Радиус атома). Радиус зависит от положения атома в периодической системе, вида химической связи, числа ближайших атомов (координационного числа) и квантово-механического свойства, известного как спин. [17] В периодической системе элементов размер атома увеличивается при движении сверху вниз по столбцу и уменьшается при движении по строке слева направо. [18] Соответственно, самый маленький атом — это атом гелия, имеющий радиус 32 пм, а самый большой — атом цезия (225 пм). [19] Эти размеры в тысячи раз меньше длины волны видимого света (400—700 нм), поэтому атомы нельзя увидеть в оптический микроскоп. Однако отдельные атомы можно наблюдать с помощью сканирующего туннельного микроскопа.
Малость атомов демонстрируют следующие примеры. Человеческий волос по толщине в миллион раз больше атома углерода. [20] Одна капля воды содержит 2 секстиллиона (2·10 21 ) атомов кислорода, и в два раза больше атомов водорода. [21] Один карат алмаза с массой 0,2 г состоит из 10 секстиллионов атомов углерода. [22] Если бы яблоко можно было увеличить до размеров Земли, то атомы достигли бы исходных размеров яблока. [23]
Учёные из Харьковского физико-технического института представили первые в истории науки снимки атома. Для получения снимков учёные использовали электронный микроскоп, фиксирующий излучения и поля (field-emission electron microscope, FEEM). Физики последовательно разместили десятки атомов углерода в вакуумной камере и пропустили через них электрический разряд в 425 вольт. Излучение последнего атома в цепочке на фосфорный экран позволило получить изображение облака электронов вокруг ядра. [24]
Радиоактивный распад
У каждого химического элемента есть один или более изотопов с нестабильными ядрами, которые подвержены радиоактивному распаду, в результате чего атомы испускают частицы или электромагнитное излучение. Радиоактивность возникает, когда радиус ядра больше радиуса действия сильных взаимодействий (расстояний порядка 1 фм [25] ).
Существуют три основные формы радиоактивного распада [26] [27] :
- происходит, когда ядро испускает альфа-частицу — ядро атома гелия, состоящее из двух протонов и двух нейтронов. В результате испускания этой частицы возникает элемент с меньшим на два атомным номером. происходит из-за слабых взаимодействий, и в результате нейтрон превращается в протон или наоборот. В первом случае происходит испускание электрона и антинейтрино, во втором — испускание позитрона и нейтрино. Электрон и позитрон называют бета-частицами. Бета-распад увеличивает или уменьшает атомный номер на единицу. происходит из-за перехода ядра в состояние с более низкой энергией с испусканием электромагнитного излучения. Гамма-излучение может происходить вслед за испусканием альфа- или бета-частицы после радиоактивного распада.
Каждый радиоактивный изотоп характеризуется периодом полураспада, то есть временем, за которое распадается половина ядер образца. Это экспоненциальный распад, который вдвое уменьшает количество оставшихся ядер за каждый период полураспада. Например, по прошествии двух периодов полураспада в образце останется только 25 % ядер исходного изотопа. [25]
Магнитный момент
Элементарные частицы обладают внутренним квантовомеханическим свойством известным как спин. Оно аналогично угловому моменту объекта вращающегося вокруг собственного центра масс, хотя строго говоря, эти частицы являются точечными и нельзя говорить об их вращении. Спин измеряют в единицах приведённой планковской постоянной ( alt=»\hbar» width=»» height=»» />), тогда электроны, протоны и нейтроны имеют спин равный ½ alt=»\hbar» width=»» height=»» />. В атоме электроны обращаются вокруг ядра и обладают орбитальным угловым моментом помимо спина, в то время как ядро само по себе имеет угловой момент благодаря ядерному спину. [28]
Магнитное поле, создаваемое магнитным моментом атома, определяется этими различными формами углового момента, как и в классической физике вращающиеся заряженные объекты создают магнитное поле. Однако, наиболее значительный вклад происходит от спина. Благодаря свойству электрона, как и всех фермионов, подчиняться правилу запрета Паули, по которому два электрона не могут находиться в одном и том же квантовом состоянии, связанные электроны спариваются друг с другом, и один из электронов находится в состоянии со спином вверх, а другой — с противоположной проекцией спина — состояние со спином вниз. Таким образом магнитные моменты электронов сокращаются, уменьшая полный магнитный дипольный момент системы до нуля в некоторых атомах с чётным числом электронов. [29]
В ферромагнитных элементах, таких как железо, нечётное число электронов приводит к появлению неспаренного электрона и к ненулевому полному магнитному моменту. Орбитали соседних атомов перекрываются, и наименьшее энергетическое состояние достигается, когда все спины неспаренных электронов принимают одну ориентацию, процесс известный как обменное взаимодействие. Когда магнитные моменты ферромагнитных атомов выравниваются, материал может создавать измеримое макроскопическое магнитное поле. Парамагнитные материалы состоят из атомов, магнитные моменты которых разориентированы в отсутствии магнитного поля, но магнитные моменты отдельных атомов выравниваются при приложении магнитного поля. [29] [30]
Ядро атома тоже может обладать ненулевым полным спином. Обычно при термодинамическом равновесии спины ядер ориентированы случайным образом. Однако, для некоторых элементов (таких как ксенон-129) возможно поляризовать значительную часть ядерных спинов для создания состояния с сонаправленными спинами —состояния называемого гиперполяризацией. Это состояние имеет важное прикладное значение в магнитно-резонансной томографии. [31] [32]
Энергетические уровни
Когда электрон находится в связанном состоянии в атоме, он обладает потенциальной энергией, которая обратно пропорциональна его расстоянию от ядра. Эта энергия обычно измеряется в электронвольтах (эВ) и равна энергии, которую надо передать электрону, чтобы сделать его свободным (оторвать от атома). Согласно квантовомеханической модели атома связанный электрон может занимать только дискретный набор разрешённых энергетических уровней — состояний с определённой энергией. Наинизшее из разрешённых энергетических состояний называется основным, а все остальные — возбуждёнными. [33]
Для перехода электрона с одного энергетического уровня на другой нужно передать ему или отнять у него энергию. Это происходит путём соответственно поглощения или испускания фотона, причём энергия этого фотона равна абсолютной величине разности энергий начального и конечного уровней электрона. Энергия испущенного фотона пропорциональна его частоте, поэтому переходы между разными энергетическими уровнями проявляются в различных областях электромагнитного спектра. [34] Каждый элемент имеет уникальный спектр испускания, который зависит от заряда ядра, заполнения электронных подоболочек, взаимодействия электронов, а также других факторов. [35]
Когда излучение с непрерывным спектром проходит через вещество (например, газ или плазму), некоторые фотоны поглощаются атомами или ионами, вызывая электронные переходы между энергетическим состояниями, разность энергий которых равна энергии поглощённого фотона. Затем эти возбуждённые электроны спонтанно переходят на уровень, лежащий ниже по энергии, снова испуская фотоны. Таким образом, вещество ведёт себя как фильтр, превращая исходный непрерывный спектр в спектр поглощения, в котором имеются серии тёмных полос. При наблюдении с тех углов, куда не направлено исходное излучение, можно заметить излучение с эмиссионным спектром, испускаемое атомами. Спектроскопические измерения энергии, амплитуды и ширины спектральных линий излучения позволяют определить вид излучающего вещества и физические условия в нём. [36]
Более детальный анализ спектральных линий показал, что некоторые из них обладают тонкой структурой, то есть расщеплены на несколько близких линий. В узком смысле «тонкой структурой» спектральных линий принято называть их расщепление, происходящее из-за спин-орбитального взаимодействия между спином и вращательным движением электрона. [37]
Взаимодействие магнитных моментов электрона и ядра приводит к сверхтонкому расщеплению спектральных линий, которое, как правило, меньше, чем тонкое.
Если поместить атом во внешнее магнитное поле, то также можно заметить расщепление спектральных линий на две, три и более компонент — это явление называется эффектом Зеемана. Он вызван взаимодействием внешнего магнитного поля с магнитным моментом атома, при этом в зависимости от взаимной ориентации момента атома и магнитного поля энергия данного уровня может увеличиться или уменьшиться. При переходе атома из одного расщеплённого состояния в другое будет излучаться фотон с частотой, отличной от частоты фотона при таком же переходе в отсутствие магнитного поля. Если спектральная линия при помещении атома в магнитное поле расщепляется на три линии, то такой эффект Зеемана называется нормальным (простым). Гораздо чаще в слабом магнитном поле наблюдается аномальный (сложный) эффект Зеемана, когда происходит расщепление на 2, 4 или более линий (аномальный эффект происходит из-за наличия спина у электронов). При увеличении магнитного поля вид расщепления упрощается, и аномальный эффект Зеемана переходит в нормальный (эффект Пашена — Бака). [38] Присутствие электрического поля также может вызвать сравнимый по величине сдвиг спектральных линий, вызванный изменением энергетических уровней. Это явление известно как эффект Штарка. [39]
Если электрон находится в возбуждённом состоянии, то взаимодействие с фотоном определённой энергии может вызвать вынужденное излучение дополнительного фотона с такой же энергией — для этого должен существовать более низкий уровень, на который возможен переход, и разность энергий уровней должна равняться энергии фотона. При вынужденном излучении эти два фотона будут двигаться в одном направлении и иметь одинаковую фазу. Это свойство используется в лазерах, которые могут испускать когерентный пучок света в узком диапазоне частот. [40]
Валентность
Внешняя электронная оболочка атома, если она не полностью заполнена, называется валентной оболочкой, а электроны этой оболочки называются валентными электронами. Число валентных электронов определяет то, как атом связывается с другими атомами посредством химической связи. Путём образования химических связей атомы стремятся заполнить свои внешние валентные оболочки. [41]
Чтобы показать повторяющиеся химические свойства химических элементов, их упорядочивают в виде периодической таблицы. Элементы с одинаковым числом валентных электронов формируют группу, которая изображается в таблице в виде столбца (движение по горизонтальному ряду соответствуют заполнению валентной оболочки электронами). Элементы, находящиеся в самом правом столбце таблицы, имеют полностью заполненную электронами внешнюю оболочку, поэтому они отличаются крайне низкой химической активностью и называются инертными или благородными газами. [42] [43]
Дисперсионное притяжение
Важным свойством атома является его склонность к дисперсионному притяжению. Происхождение дисперсионных сил было объяснено в 1930 году Ф. Лондоном. Межатомное взаимодействие возникает вследствие флуктуаций заряда в двух атомах, находящихся близко друг от друга. Поскольку электроны движутся, каждый атом обладает мгновенным дипольным моментом, отличным от нуля. Если бы флуктуации электронной плотности в двух атомах были бы несогласованными, то не было бы результирующего притяжения между атомами. Однако мгновенный диполь на одном атоме наводит противоположно направленный диполь в соседнем атоме. Эти диполи притягиваются друг к другу за счёт возникновения силы притяжения, которая называется дисперсионной силой, или силой Лондона. Энергия такого взаимодействия прямо пропорциональна квадрату электронной поляризуемости атома α и обратно пропорциональна r 6 , где r — расстояние между двумя атомами. [44]