Как устроен плавкий предохранитель кратко
Перейти к содержимому

Как устроен плавкий предохранитель кратко

Плавкие предохранители их назначение типы и устройство

Плавкие предохранители их назначение типы, виды, устройство важно знать для эффективного пользования электроприборами, это один из видов защитных приспособлений от сверхтоков, коротких замыканий. Вставка предохранителя «жертвует» собой — перегорает, размыкая цепь питания. Начинка защищаемого объекта остается без повреждений и чтобы привести его в рабочее состояние потребуется только заменить проводник. Если прибор вышел из строя, это еще вовсе не означает существенную его поломку — возможно, просто перегорел плавкий предохранитель. Замена элементарная: нужно поместить новую вставку в держатель или впаять новый ПП.

Плавкие предохранители

Плавкие предохранители 2

Плавкие предохранители 3

Что такое плавкие предохранители

Для электросети есть несколько защитных устройств, реагирующих на опасные факторы размыканием цепи, ими можно создавать множество ступеней. Традиционно в щитках и на линиях потребителей устанавливается автоматика отключения — АВ, УЗО+АВ, АВДТ, иногда такие устройства смонтированы сразу на шнурах питания (кабельные УЗО, характерно для водонагревателей). Но также есть элементы проще и дешевле — плавкие предохранители, вставки.

Плавкие предохранители 4

Плавкий предохранитель-пробка

Устройство, внешний вид

Плавкий предохранитель — это стеклянная/керамическая/фибровая колбочка (вставка) на концах с металлическими колпачками, коробочка, флажок с проволочиной на платах электроприборов, в ВРУ, пробках. Вставляется в посадочное место (держатель) с металлическими зажимами или наподобие розетки, припаивается. Фактически это проводок, соединяющий цепь, но со специальными параметрами.

держатели

Всем известно, что если сечение жил проводки не рассчитанное на мощность включенных электроприборов, то она перегревается и может сгореть, этот же принцип в основе ПП.

Плавкие предохранители 5

устройство предохранителя

Внутри вставки находится проводник (проводок, проволочина, пластина) из металлов и их сплавов (медь, цинк, сталь) обязательно соединенная с цепью через контакты на двух ее концах. В мелких девайсах элемент не превышает размером детали микросхемы. Есть и большие устройства — коробочки со сторонами в несколько см, с толстыми плавкими пластинами внутри рассчитанные на тысячи ампер (ППН-37,41).

устройство предохранителя 2

Форма может быть и с розеточным подключением наподобие вилки, но принцип тот же. А также есть типоразмеры без посадочного места, то есть цельные, у которых вставка не заменяемая, такой ПП меняется полностью вместе с ней.

плавкая вставка

предохранитель

Материалы корпуса — композит, керамика, стекло, фибра. Внутри может быть наполнение (кварцевая крошка для гашения электродуги), что характерно для мощных разновидностей ПП.

Плавкие предохранители 6

Как работает плавкий предохранитель

Срабатывание происходит посредством сгорания плавкой вставки: когда величина тока превышает допустимое значение, создается температурное влияние — элемент перегорает, тем самым контакты расцепляются, оборудование обесточивается. Аналогично и при КЗ. Процесс занимает доли секунды. Есть разные размыкающие проводники (более или менее чувствительные) под конкретные температуры, нагрузки.

схема

Отличие ПП от автоматов и УЗО: после активации требуется замена вставки или целого элемента. Достоинство в дешевизне и простоте замены: потребуется просто защелкнуть новую вставку, поместить в розетку новый экземпляр, реже — припаять.

описание

Защита ПП основывается на способности металлов перегреваться, когда через них проходит превышающий их пропускную способность ток. При соответствии параметров происходит равномерный нагрев металла — тепло успевает рассеиваться. Когда же значение превышает допустимый уровень — тонкая проволочина, пластина внутри колбы расплавляется и разрушается. Причем это происходит почти моментально.

Плавкие предохранители 7

Для чего применяются плавкие вставки предохранителей:

  • защита от перегрузок (всплески, скачки);
  • от КЗ.

Кроме защиты, сработка ПП укажет на проблемы, поломки, на дефекты оборудования, например, спровоцировавшего КЗ.

предохраниотель

Схематическое обозначение

На схемах и чертежах ПП обозначается так:

  • прямоугольник с пересекающей его посередине горизонтальной прямой черточкой. Концы подсоединены к цепи;
  • согласно иностранным стандартам могут использоваться другие графические рисунки:
    • по IEC — прямоугольник с обозначенными сегментами;
    • по IEEE/ANSI — волна.

    схема

    Описание вариантов плавких вставок и предохранителей

    • с наполнением (ПН-2, ППН, НПН). Внутренняя полость, заполненная материалами, гасящими электродугу, появляющуюся при перегорании. Цепь разомкнута только при исчезновении данного явления. Гасящее вещество — кварцевая пыль;
    • без наполнения (ПР-2). Дугу подавляет газ, выделяемый при срабатывании и нагреве стенок вставки. Слаботочные ПП могут не иметь этой и предыдущей особенности.

    типы плавких вставок и предохранителей

    схема

    схема

    схема

    • трубчатые и слаботочные. Первые, это стеклянные, керамические или фибровые цилиндрики с хомутками на торцах. Вторые те же, но чаще со стеклянной колбой, для маломощных бытовых устройств до 6 А. Вставка защелкивается в горизонтальный продольный держатель с зажимными клеммами, его металлические торцы касаются контактов на цилиндрике (хомутков), таким образом, изделие включается в цепь. Такие разновидности обычно ненаполненные, особенно, если они фибровые: этот материал, нагреваясь, выделяет газ для подавления дуги;
    • вилочные. Обычно для автомобильного оснащения, для блоков с ПП на панелях управления. Контакты напоминают вилку, расположены снизу;
    • пробки-предохранители или пробковые плавкие вставки. Стандартно для 63 А. Обслуживают единовременную работу бытовых потребителей. Перегорающая часть скрыта керамикой с патроном, снаружи — 1 контакт, другой — подключен к пробке. ПП выгорает, обесточивая квартиру. Восстанавливают электроснабжение заменой вставки. Такие устройства ставились в домах старой застройки, теперь используются реже, так как есть АВ и УЗО. Остаются актуальными на электростанциях, в промышленности;
    • ножевые. Для 100 — 1250 А, применяются для высоких значений, например, при наличии мощных электродвигателей, в ВРУ;
    • кварцевые, с кварцевой пылью внутри — для значений до 36 кВ;
    • газогенерирующие (с возможностью разборки и без таковой). При горении (вспышке) возникает хлопок и интенсивное газовыделение (модели ПСН, ПВТ). Для 35–110 кВ. Номинал до 100 А

    виды плавких вставок и предохранителей

    схема

    Выбор плавкой вставки и плавкого предохранителя

    На выбор влияет:

    • нагрузка на сеть — основной параметр для выбора. Данная определяющая также влияет на то, будет ли ПП с наполнением, на материал его вставки, параметры (толщину, сплав) проводника;
    • типоразмер и способ установки. ПП подбирается под имеющиеся на оснащении посадочное место (вилка, продольная конструкция с клеммами). Монтаж простым вставлением или припаиванием (на микросхемах).

    плавкие вставки и предохранители

    плавкие предохранители на плате

    ПП помощнее монтируют в трансформаторных узлах с токами для групп МКД, предприятий. Маломощные — около счетчиков, для защиты отдельных квартир. Слаботочные в виде маленьких колб — в бытовых приборах, на их платах. На данный момент не всегда они актуальные в современной технике, но особая разновидность — интегральные керамические SMD предохранители — есть всегда (их минус — сложность в замене).

    класическое исполнение

    Расчет

    Для определения подходящих параметров плавкого предохранителя учитывают следующее:

    Если в схеме есть электродвигатель, то берут во внимание его пусковой параметр (ток), разделенный на определенный коэффициент:

    • для легкого старта и короткозамкнутого ротора k=2.5;
    • для тяжелого и фазного k=2 – 1,6.

    схема

    Правила, как подобрать номинал:

    • уравнение для исчисления: I пп>1/k (I общ.+ I пуск.);
    • номинал должен превышать величину, полученную при исчислениях по току;
    • удобно пользоваться табл. фиксированных данных, этого будет достаточно, так как они отображают точную информацию.

    таблица

    Пример, как рассчитать номинал ПП для квартирной сети: сложить мощность всех потребителей (электроприборов) в Вт (1 кВт это 100 Вт) и посмотреть в таблице, какому значению (А) номинала плавкого предохранителя она соответствует. Желательно добавить запас около 20 %. Если величина находится между конечными цифрами диапазона, то выбирают следующую по возрастанию позицию.

    Описанный выше расчет подходит для всех бытовых целей, но для предприятий с оборудованием с мощными пусковыми токами, электродвигателями, для ПП, обслуживающих целые дома, потребуется ознакомиться с диаграммами временно пусковых значений.

    вводно-распределительное устройство

    Следует сказать, что в щитках современных квартир ПП не используют, в этом просто нет смысла — автоматики защитного отключения (АВ, УЗО, АВДТ) с избытком хватает, и ее опции намного расширенные. Но в домовых ВРУ они есть всегда. Также чаще изделия встречаются в электросхемах, в автомобилях, на станциях, в мощном оборудовании промышленности. Стандартно они присутствуют на панелях управления (сигнализация, устройства с реле и подобное).

    плавкие предохранители в автомобиле

    Исчисление диаметра проволоки (пластины вставки, проводника)

    Расчет диаметра проводника ПП и его замена делается редко, но это возможно: когда нет нового элемента (вставки) на место перегоревшего старого и когда конструкция изделия позволяет вставить пластину или проволочину.

    Сечение проводка «жучка» подбирается под номинал сгоревшей вставки. Для квартир стандартно монтируют ПП на 63 А, подойдет медь ∅ 0.9 мм.

    1. Смотрят номинал ПП (корпус, документация).
    2. Измеряют ∅ проводка (цифровым штангенциркулем).
    3. Возводят результат в куб и из полученного извлекают кв. корень, умножают на 80.
    4. Итог: получаем цифру равную номиналу ПП. Результат приблизительный, но максимально приближенный до точного.

    таблица

    Подобранную проволоку наматывают на контакты (выводы) сгоревшей вставки соединяя их, продолжая цепь. «Жучок» помещают в гнездо предохранителя, размещают между зажимами на торцах или вставляют как вилку.

    предохранитель

    большой предохранитель

    Повторное плавление жилы означает неполадку в защищаемом объекте или сети (значение тока выше их возможностей). Есть риск: если подобрана проволока толще, то она не среагирует на поломку. То есть неисправность не диагностируется, обслуживаемый объект будет продолжать работу с перегрузками, что приведет к выходу его из строя, это также чревато возгоранием, ударами тока.

    Как проверить работоспособность

    Главное — определить, есть ли разрыв. Некоторые типы плавких предохранителей (часто автомобильные) оснащены встроенным индикатором перегорания. В слаботочных вариантах через стеклянную колбу видно проволоку (если разорвана, то изделие не рабочее).

    вид рабочего и не рабочего ПП

    проверка

    Есть варианты ПП с непрозрачными вставками, корпусами из полимеров, фибры, керамики и без индикаторов. Диагностировать обрыв можно мультиметром:

    Как устроен плавкий предохранитель?

    Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

    Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

    Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

    Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

    Назначение, устройство и применение плавких предохранителей

    Плавкие предохранители, наряду с автоматическими выключателями, применяются для защиты элементов и устройств электрических установок от повреждений, которые могут возникнуть при ненормальных режимах, угрожающих целостности отдельных элементов или всей установки. Обычно плавкие предохранители применяются для защиты кабелей, проводов и электрических устройств сильного и слабого тока от коротких замыканий и более или менее значительных перегрузок.

    Плавкий предохранитель

    Сравнительная дешевизна и простота устройства предохранителей обусловили широкое применение во всех тех случаях, когда они пригодны для защиты электрических установок. Однако, будучи простыми по конструкции, предохранители имеют ряд недостатков, обусловливающих их применение в электрических установках с несложными коммутационными схемами и для защиты элементов установок, не предъявляющих высоких требований в отношении защиты от перегрузок.

    Основными недостатками предохранителей являются:

    трудность, а в ряде случаев невозможность получения избирательного действия их как при коротких замыканиях в сети, так и при перегрузках;

    малая пригодность большинства предохранителей для защиты от небольших перегрузок;

    необходимость в специальном коммутационном аппарате (рубильнике, разъединителе), поскольку предохранитель, в отличие от автоматических выключателей, может осуществлять только автоматическое отключение при аварийных режимах, являясь в нормальных режимах неуправляемым аппаратом;

    необходимость в замене одной из частей предохранителя (плавкой вставки) после его срабатывания.

    В настоящее время ведется разработка более совершенных по своим характеристикам предохранителей, позволяющих осуществлять надежную защиту от перегрузок и обладающих более высоким избирательным действием.

    Плавкие предохранители обычно классифицируются по следующим признакам:

    В настоящее время изготовляется большое количество разных видов предохранителей. Подробнее об этом смотрите здесь: Виды предохранителей

    Характеристики

    Зависимость общего времени сгорания плавкой вставки и гашения возникающей при этом дуги от кратности тока, плавящего вставку, по отношению к номинальному току вставки предохранителя называется характеристикой предохранителя, или, иначе, амперсекундной (защитной) характеристикой.

    Защитная характеристика предохранителя

    Характеристикой предохранителя определяется:

    способность защищать элемент установки от перегрузок;

    избирательность действия предохранителя в совокупности с действием других предохранителей и релейной защиты схемы, в которой установлен предохранитель.

    Подбирая соответствующие амперсекундные характеристики плавких вставок последовательно включенных предохранителей смежных участков сети, добиваются избирательности их действия, т. е. такого действия, при котором вставка нижестоящего по направлению питания предохранителя перегорает раньше, чем успеет перегореть вставка вышестоящего предохранителя.

    Трубчатые плавкие предохранители

    При подборе плавких вставок предохранителей по условиям избирательности защиты должно соблюдаться также условие, при котором номинальный ток плавкой вставки не превосходил бы величины, определяемой правилами для защищаемого элемента установки.

    Важной характеристикой предохранителя является разрывная способность, определяющая максимальную величину отключаемого предохранителем тока короткого замыкания. Разрывная способность предохранителя зависит от быстроты гашения дуги при перегорании плавкой вставки, и при прочих равных условиях она тем больше, чем ниже лежит амперсекундная характеристика плавкой вставки.

    Устройство предохранителей

    Как указывалось выше, основным назначением предохранителя является защита элементов электрических установок от перегрузок и коротких замыканий. Предохранитель, включенный с защищаемым элементом последовательно, перегорает, когда ток защищаемой цепи превысит на определенную величину номинальный ток плавкой вставки. При этом предохранитель автоматически отключает поврежденный участок сети. На любые другие отклонения от нормального режима работы сети предохранитель не реагирует. Для восстановления питания участка сети при перегорании плавкой вставки необходимо заменить перегоревшую плавкую вставку новой.

    Предохранители Хагер и Сименс

    Основными частями любого предохранителя являются:

    элемент, используемый для размещения (крепления) плавкой вставки и создания условий для гашения дуги при перегорании плавкой вставки;

    основание предохранителя в виде стойки или патрона в зависимости от типа предохранителя, с зажимом для подключения к цепи электрического тока.

    Основание предохранителя и элемент, используемый для размещения плавкой вставки, снабжаются соответственными контактными устройствами. При помощи контактных устройств элемент закрепляется ив основании предохранителя, а также обеспечивается надежное включение плавкой вставки в защищающую цепь тока.

    Некоторые предохранители снабжаются дополнительными устройствами: зажимами для предотвращения выпадания предохранителей при вибрации, ручками для удобного и безопасного извлечения съемного элемента предохранителя из распределительного устройства и т. д.

    Рубильник с предохранителями

    Монтаж и эксплуатация предохранителей

    Трубчатые предохранители должны устанавливаться на вертикальных плоскостях с контактными стойками, установленными строго по вертикали. Категорически воспрещается установка плавких вставок незаводского изготовления или вставок, не предназначающихся для данного типа патрона, во избежание разрыва трубки и перекрытий при срабатывании предохранителя. Номинальный ток плавкой вставки должен соответствовать данным защищаемого элемента установки.

    При эксплуатации нужно следить за состоянием предохранителей и распределительных устройств, не допуская загрязнения и запыления, чтобы избежать перекрытия между предохранителями равной полярности. Необходимо периодически очищать контактные части предохранителей от окислов. Все операции по извлечению патронов из контактных стоек должны производиться специально предусмотренными приспособлениями (клещами, ручками) при снятом напряжении.

    Предохранители рекомендуется устанавливать на вертикальных плоскостях, но допускается установка их на наклонных и горизонтальных плоскостях. Чтобы предотвратить перегрев зажимов предохранителей, необходимо присоединение подводящих проводов выполнять тщательно шинами или проводниками надлежащего сечения. При эксплуатации необходимо постоянно следить за правильностью затяжки плавких вставок, подворачивая при необходимости головку предохранителей. Контактные части предохранителей рекомендуется смазывать чистым техническим вазелином.

    Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

    Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

    Гарантированный разрыв цепи при сверхтоках: плавкие предохранители

    На первый взгляд, плавкие предохранители – одно из простейших изделий электротехники. Однако это одно из ответственнейших ее изделий, при выборе которых необходимо принимать в расчет не менее десятка различных параметров. Компания Littelfuse производит широчайшую линейку плавких предохранителей трех основных типов – быстродействующие, сверхбыстродействующие и Slo-Blo® (с дополнительной тепловой инерцией), а также предлагает облегчить процесс выбора с помощью онлайн- сервиса iDesign.

    Плавкие предохранители, появившиеся на заре развития электротехники, и сегодня продолжают оставаться важными элементами защиты электронных компонентов от сверхтоков – принцип их действия не изменился. На фоне стремительно сменяющих друг друга поколений процессоров, появления и исчезновения целых классов электронных устройств, плавкий предохранитель, на первый взгляд, кажется раритетом, которому самое место в одном ряду с триодом, гальваническим элементом Вольта и когерером. На самом же деле, современные плавкие предохранители являются высокотехнологичными устройствами, характеристики которых значительно отличаются от характеристик прототипов из ХХ века, и даже бурное развитие полупроводниковых защитных приборов не вытеснило их из электронных схем.

    Плавкие предохранители по-прежнему остаются самыми надежными элементами «последней ступени», когда для защиты от серьезных повреждений и последствий необходимо физически разорвать электрическую цепь.

    О плавких предохранителях производства известной американской компании Littelfuse и пойдет речь в этой статье.

    Общие принципы

    Компания Littelfuse по праву считается производителем №1 в области защиты электрических цепей. Она предлагает наибольший выбор самых разных плавких предохранителей, включая предохранители для поверхностного монтажа, радиального и аксиального типов, стеклянные или керамические, тонкопленочные, быстродействующие, с фирменными характеристиками Slo-Blo® и так далее.

    Фактически некоторые из серий предохранителей Littelfuse на сегодняшний день являются промышленным стандартом.

    По этой причине продукцию компании можно встретить как в бытовой электронике, например, в MP3-плеерах, мобильных телефонах и цифровых видеокамерах, так и в составе телекоммуникационного, промышленного оборудования и в ответственных медицинских приборах.

    Плавкий предохранитель является устройством, чувствительным к протекающему току, и намеренно устанавливается в качестве элемента для разрыва электрической цепи. Таким образом можно обеспечить защиту от повреждения отдельных компонентов или функциональных блоков, при этом защита будет надежная, поскольку под воздействием сверхтока предохранитель разрушается и размыкает цепь.

    Вся обширная линейка плавких предохранителей производства компании Littelfuse условно подразделяется по своим характеристикам на три основные категории:

    • быстродействующие;
    • сверхбыстродействующие;
    • Slo-Blo®.

    Slo-Blo® – это семейство предохранителей с дополнительной тепловой инерцией, что позволяет использовать их в цепях с высокими пусковыми токами, временными перегрузками и так далее.

    В целом, данная градация продукции Littelfuse согласуется со стандартами, которые определяют требования к предохранителям в различных областях применения. Перечень стандартов, которым соответствует продукция Littelfuse и краткая сводка их требований приведены в [1(fusecatalog)].

    Так, к примеру, в стандарте IEC 60127-1 (ГОСТ Р 601127-1 – 2005 [2]) приводится следующая классификация предохранителей:

    • FF — сверхбыстродействующие, Very Quick Acting;
    • F — быстродействующие, Quick Acting;
    • M —полузамедленные, Medium Time Lag;
    • T — замедленные, Time Lag;
    • TT — сверхзамедленные, Long Time Lag.

    В стандарте IEC 60127-4 приводятся обобщенные параметры некоторых классов предохранителей.

    Время срабатывания при токе перегрузки в 10IN (1000%):

    • Type FF: Менее 0,001 с;
    • Type F: 0,001…0,01 с;
    • Type T: 0,01…0,1 с;
    • Type TT: 0,1…1,00 с.

    Основными конкурентами плавких предохранителей в современных электронных устройствах являются PTC (Positive Temperature Coefficient) – термисторы. Это полупроводниковые приборы, сопротивление которых существенно возрастает с повышением температуры. Данное свойство позволяет использовать PTC в качестве защитных элементов в электрических цепях по аналогии с традиционными предохранителями. В случае возникновения повышенных токов температура PTC повышается, сопротивление существенно возрастает, и ток в цепи снижается до безопасного уровня.

    Рис. 1. Характеристика PTC-термистора

    Рис. 1. Характеристика PTC-термистора

    Характеристика PTC приведена на рисунке 1.

    Главным отличием PTC от традиционных предохранителей является их способность многократно выполнять защитную функцию, в то время как плавкий предохранитель после перегорания нуждается в замене. В обиходе PTC часто называют самовосстанавливающимися предохранителями.

    Тем не менее, и традиционные предохранители, и PTC имеют свои достоинства и недостатки, что предоставляет разработчику богатый выбор устройств защиты от сверхтоков. Основные характеристики и отличия плавких и полупроводниковых предохранителей приведены в таблице 1.

    Таблица 1. Предохранители и PTC

    Параметр Плавкие предохранители PTC-термисторы
    Возможность восстановления после прекращения перегрузки Нет. В случае срабатывания предохранителя требуется замена Да. Замена не требуется, уменьшается стоимость гарантийного и сервисного обслуживания, допускается установка в труднодоступных узлах конструкции
    Ток утечки Нет. После срабатывания предохранителя ток утечки отсутствует, цепь физически разорвана Да. В состоянии «Trip», когда PTC нагрет, присутствует ток утечки от сотен миллиампер при номинальном напряжении до нескольких сотен миллиампер при пониженном напряжении
    Максимально возможный ток прерывания, А Imax = 10…10000, в зависимости от типа Типичный PTC: Imax = 40;PTC для батарейного питания: Imax = 100
    Рабочее напряжение Ur, В ≤600 ≤60
    Рабочий ток Ir, А ≤30 ≤14
    Сопротивление Rfuse Rptc ≥ (2*Rfuse)
    Характеристика «время-ток» В зависимости от типа предохранителя Скорость срабатывания похожа на характеристику предохранителей Slo-Blo®
    Максимальная рабочая температура окружающей среды Tmax, °С <125 <85

    При выборе в качестве устройства защиты плавкого предохранителя приходится учитывать множество факторов:

    • Номинальный рабочий ток предохранителя, указанный в техническом описании, является пороговым значением, при достижении которого вероятность срабатывания многократно повышается. При этом, температура окружающей среды напрямую влияет на этот процесс. Для предотвращения ложных срабатываний существует правило: нормальный рабочий ток в цепи (для температуры окружающей среды 25°С) не должен превышать 75% от номинала предохранителя. К примеру, предохранитель, рассчитанный на ток в 10 А, обычно не рекомендуется использовать при токах более 7,5 А при температуре окружающей среды 25°С.
    • Номинальное действующее напряжение (переменного или постоянного тока). Напряжение, действующее в цепи, не должно превышать максимально допустимого напряжения предохранителя.
    • Температура окружающей среды. Номинальный рабочий ток предохранителя, приведенный к температуре окружающей среды 25°С, существенным образом зависит от ее изменения. Чем выше окружающая температура, чем более нагрет предохранитель – тем быстрее и при более низких значениях протекающего тока он срабатывает. И наоборот, при низких температурах предохранитель срабатывает позднее.Кроме того, предохранитель нагревает сам себя, когда рабочий ток в цепи приближается или превышает номинальный ток выбранного предохранителя. Практический опыт показывает, что предохранители при комнатной температуре работают без ложных срабатываний в случае, если ток в цепи не превышает 75% от их номинала.
    • Режим перегрузки по току – уровень тока, для которого требуется срабатывание защиты. Может указываться просто значение тока в амперах или комплексная характеристика тока перегрузки и максимального времени, в течение которого предохранитель еще не срабатывает. При выборе предохранителя полезно ориентироваться на график зависимости допустимого тока от времени воздействия. Однако следует учитывать, что данные графики приводятся производителем на основании усредненных данных.
    • Максимально возможный ток прерывания предохранителя должен соответствовать или превышать максимально возможный аварийный ток в цепи. Невыполнение этого условия может привести к серьезным последствиям из-за неконтролируемого разрушения предохранителя, возникновения электрической дуги, воспламенения и тому подобного.
    • Импульсы тока, пусковой ток, переходные процессы в цепях. Термин «импульсы» применяется для описания широкой категории возмущений в электрической цепи, например, ударных и пусковых токов, переходных процессов и так далее.

    Собственно, электрические импульсы могут существенным образом отличаться в каждом конкретном типе схем, и разные типы предохранителей могут реагировать на них по-своему.

    Одна из главных особенностей воздействия импульсов заключается в том, что во время этого воздействия в структуре предохранителя возникают локальные перегревы, что приводит к механической усталости, а это, в свою очередь, приводит к сокращению времени жизни предохранителя и к изменению его параметров.

    В практических случаях, если в цепях действуют значительные стартовые токи, хорошо подходят предохранители класса Slo-Blo®.

    Предохранители с характеристикой Slo-Blo® имеют нормированную тепловую инерцию, которая позволяет им быть нечувствительным к значительным стартовым токам, обеспечивая при этом защиту при более продолжительных нагрузках.

    Разработчику необходимо определить параметры стартовых токов и сравнить их с такими характеристиками предохранителя как «время-ток» и I²t. Кроме того, рекомендуется тестировать на макете способность предохранителя выдерживать импульсные воздействия в реальных условиях.

    Номинальная энергия расплавления (Н.Р.) I²t – это энергия, требуемая для расплавления защитного элемента. Величина выражается в амперах2 в секунду. Номинальная энергия расплавления I²t является константой для каждого из различных типов защитных элементов, и приводится обычно для интервала воздействия 8 миллисекунд (или 1 миллисекунда для тонкопленочных предохранителей). По сути, величинаI2t является характеристикой предохранителя и обеспечивается материалом защитного элемента и его конфигурацией. Если выбирать предохранитель, опираясь на базисные параметры, такие как номинальный рабочий ток, коррекция параметров (re-rating), температура окружающей среды, необходимо также пользоваться и параметром I²t, который является не только постоянной величиной для каждого типа предохранителей, но и независим от температуры и напряжения.

    Наиболее часто номинальная энергия расплавления I²t как критерий выбора используется в случаях, когда предохранитель должен выдерживать большие импульсы тока в течение коротких интервалов времени. Такие токи, вызывающие выделение значительной мощности на элементах электрической цепи, являются распространенным явлением, и их оценка (с последующим правильным выбором элементов защиты) критически важна.

    Рис. 2. Форма импульсов тока для предохранителя PICO®II

    Рис. 2. Форма импульсов тока для предохранителя PICO®II

    Рис. 3. Типовые импульсы тока в электрических цепях

    Рис. 3. Типовые импульсы тока в электрических цепях

    Вышесказанное можно проиллюстрировать следующим примером:

    Выберем быстродействующий предохранитель PICO®II 125 В, который должен выдерживать 100000 импульсов тока, форма которых показана на рисунке 2.

    Номинальный рабочий ток данного предохранителя составляет 0,75 А при температуре окружающей среды 25°С.

    Шаг 1. Обратимся к рисунку 3 и выберем наиболее подходящую форму импульса тока, который действует в проектируемой электрической схеме. Форма импульса наибольшим образом соответствует графику «Е» на этом рисунке.

    Подставим значения пикового тока и времени в формулу, соответствующую форме тока «Е» на рисунке 3:

    I²t = 0,2×8²×0,004 = 0,0512 А²с;

    Обозначим это значение как «I²t импульса».

    Рис. 4. Циклическая импульсная нагрузочная способность

    Рис. 4. Циклическая импульсная нагрузочная способность

    Шаг 2. Определим требуемую величину номинальной энергии расплавления I²t, обратившись к рисунку 4 (между импульсами должен присутствовать интервал времени (

    10 сек), для рассеивания тепла от предыдущего события).

    Согласно этому рисунку, значение I²t импульса, рассчитанное в шаге 1, для 100000 импульсов не должно превышать 22% от значения номинальной энергии расплавления.

    Можно сформулировать требования к номинальной энергии расплавления предохранителя следующим образом:

    I²t Н.Р. = I²t импульса/0,22 = 0,0512/0,22 = 0,2327 А²с.

    Шаг 3. Проверка соответствия сверхбыстродействующего предохранителя серии PICO®II, 125 В, на соответствие требованиям данного примера выглядит так:

    Артикул предохранителя – 0251001, номинальный ток – 1 А, номинальная энергия расплавления I²t = 0,256 А²с, что больше, чем значение 0,2327 А²с, вычисленное в шаге 2.

    При этом номинальный ток предохранителя не должен превышать значения 0,75 А, несмотря на то, что в характеристиках фигурирует цифра 1 А, запас по току в 25% необходим для надежной работы устройства.

    Шаг 4. Ограничения в физических размерах, таких, как длина, диаметр или высота;

    Шаг 5. Требования регулирующих или сертифицирующих органов, таких как UL, CSA, VDE, METI, MITI или Military;

    Шаг 6. Форм-фактор, удобство замены, визуальная индикация и так далее;

    Шаг 7. Тип держателя предохранителя – зажимы, монтажный блок, монтажная панель, монтаж на печатную плату и так далее.

    Таким образом, выбор предохранителя превращается в нетривиальную задачу, при решении которой нужно учитывать не менее десятка различных параметров, и, если имеются какие-либо ограничения по габаритным размерам или температуре окружающей среды, то еще и выполнить несколько итераций расчетов перед тем, как подходящий элемент защиты будет выбран. Понимая это, инженеры компании Littelfuse запустили сервис iDesign, который значительно упрощает процесс выбора не только плавких предохранителей и держателей для них, но и PTC-термисторов. В интерактивном режиме разработчику предоставляется возможность оценить все требуемые параметры, включая форму импульса пускового тока, что существенно ускоряет процесс разработки и позволяет минимизировать количество ошибок.

    Предохранители Littelfuse

    Традиционная система обозначений предохранителей Littelfuse показана на рисунке 5.

    Рис. 5. Система обозначений предохранителей Littelfuse

    Рис. 5. Система обозначений предохранителей Littelfuse

    Помимо вышеуказанной системы обозначений, в номенклатуре компании Littelfuse имеется также система обозначений Littelfuse-Wickmann. Wickmann – это немецкая компания, более 80 лет являющаяся лидером в производстве схем защиты для бытовой и промышленной электроники, телекоммуникационного оборудования и рынка обработки данных. В 2004 году была приобретена компанией Littelfuse. Продукция Wickmann пополнила продуктовую линейку Littelfuse, система обозначений Littelfuse-Wickmann показана на рисунке 6.

    Рис. 6. Система обозначений Littelfuse-Wickmann

    Рис. 6. Система обозначений Littelfuse-Wickmann

    Предохранители Littelfuse в исполнении для поверхностного монтажа приведены в таблице 2.

    Таблица 2. Предохранители Littelfuse в исполнении для поверхностного монтажа

    Наименование Серия Типоразмер Time lag Fast Acting Very Fast Acting Диапазон рабочих токов, А Максимальное рабочее напряжение, В Ток прерывания при Vmax, А Диапазон рабочих температур, °C
    Ceramic Chip 437 1206 + 0,25…8 125/63/32 50 -55…150
    438 0603 + 0,25…6 32/24 50
    440 1206 + 1,75…8 32 50
    441 0603 + 2…6 32 50
    469 1206 + 1…8 24/32 24…63
    501 1206 + 10; 12; 15; 20 32 150
    Thin Film 466 1206 + 0,125…5 125/63/32 50 -55…90
    429 1206 + 7 24 35
    468 1206 + 0,5…3 63/32 35…50
    467 0603 + 0,25…5 32 35…50
    494 0603 + 0,25…5 32 35…50
    435 0402 + 0,25…5 32 35
    Nano2® Fuse 448 2410 + 0,062…15 125/65 35…50 -55…125
    449 2410 + 0,375…5 125 50
    451/453 2410 + 0,062…15 125/65 35…50
    452/454 2410 + 0,375…12 125/72 50
    456 4012 + 20; 25; 30; 40 125 100
    458 1206 + 1,0…10 75/63 50
    443 4012 + 0,5…5 250 50
    464 4818 + 0,5…6,3 250 100
    465 4818 + 1…6,3 250 100
    462 4118 + 0,500…5 350 100 -40…80
    485 4818 + 0,500…3,15 600 100 -55…125
    Telelink® Fuse 461 4012 0,500…2,0 600 60
    461Е 4012 1,25 600 60
    OMNI-BLOK®
    Fuseholder
    154 + 0,062…10,0 125 35…50
    154Т + 0,375…5 125 50
    PICO® SMF
    Fuse
    459 + 0,062…5 125 50…300
    460 + 0,5…5 125 50

    Предохранители серии Ceramic Chip предназначены для использования в схемах широкого профиля, но разрабатывались специально для применения в условиях с высокой температурой окружающей среды. Некоторые модели из линейки Ceramic Chip могут иметь рабочую температуру до 150°С. Серия отличается прекрасной температурной стабильностью и высокой надежностью, кроме того, выполнена на 100% по бессвинцовой технологии и не содержит галогенов. Полностью соответствует стандарту RoHS.

    Серия Thin Film (тонкопленочные предохранители) разработана для вторичной защиты цепей, которые используются в ограниченном пространстве, например, в носимых и мобильных электронных устройствах. Данная серия – низкопрофильная, что делает ее особенно привлекательной для приложений, в которых такой параметр как высота критичен. Защитный элемент, основанный на специальных сплавах, позволяет этой серии иметь отличную характеристику I2t, что означает высокую стойкость к пусковым токам. По этому параметру серия Thin Film превосходит керамические или стеклонаполненные предохранители, упакованные в корпуса аналогичного типоразмера.

    Серия Nano2® отличается очень маленькими размерами, пакуется в SMD-корпуса квадратного сечения. Серия выполняется по бессвинцовой технологии, и среди ее особенностей, помимо малых габаритных размеров – широкий диапазон номинальных токов (0,062…15 А), широкий диапазон рабочих температур, низкий температурный дерейтинг (ограничение допустимого тока относительно номинального значения из-за поправки на температуру окружающей среды). Серия находит применение в бытовой электронике, промышленной, медицинской и автомобильной технике.

    Серия Telelink® – плавкие предохранители поверхностного монтажа, обеспечивающие защиту от сверхтоков для широкого круга телекоммуникационных приложений. Серия предназначена для совместного применения с защитным тиристорами, например, из линейки Littlefuse SIDACtor®, или газоразрядниками из серии Greentube. Такая комбинация обеспечивает соответствие стандартам GR-1089-Core, TIA-968-A, UL/EN/IEC 60950, и ITUK.20/K.21. По своей структуре является предохранителем с повышенной тепловой инерцией, соответствует временным характеристикам Slo-Blo®.

    Предохранители серии OMNI-BLOCK® – это комбинация предохранителя и держателя в корпусе для поверхностного монтажа. Технология, по которой изготовлены компоненты, позволяет устанавливать их на печатную плату методом автоматической сборки «за один шаг», что экономит время и уменьшает стоимость установки.

    Если в процессе эксплуатации потребуется замена предохранителя – ее можно осуществить простым способом, не подвергая печатную плату процедуре пайки, нагрева и тому подобного. В держатель форм-фактора OMNI-BLOCK® устанавливаются предохранители серии Nano2®, предназначенные для поверхностного монтажа.

    Держатели предохранителей также можно приобретать и устанавливать как отдельные компоненты.

    Серия PICO®SMF разработана как продолжение серии PICO® для монтажа в отверстия, но предназначена для поверхностного монтажа. Обладает широкими диапазонами допустимых токов и температур, соответствует требованиям RoHS. Предохранители серии PICO®SMF чаще всего находят применение в базовых станциях беспроводной связи, телекоммуникационном и сетевом оборудовании.

    Предохранители Littelfuse с радиальным и аксиальным типом выводов приведены в таблице 3.

    Таблица 3. Предохранители Littelfuse с радиальным и аксиальным типом выводов

    Наименование Серия Time lag Medium Acting Fast Acting Very Fast Acting Диапазон рабочих токов, А Максимальное рабочее напряжение, В Ток прерывания при Vmax, А Диапазон рабочих температур, °C
    Micro™
    Fuse/TR3 Fuse
    262/268 + 0,002…5 125 10000 -50…125
    269 + 0,002…5 125 10000
    272/278 + 0,002…5 125 10000
    273/279 + 0,002…5 125 10000 -55…85
    274 + 0,002…5 125 10000
    303 + 0,5…5 125 50 -55…70
    TR5® Fuse 370 + 0,4…6,3 250 35…50 -40…85
    372 + 0,4…6,3 250 35…50
    373 + 0,5…10 250 50
    374 + 0,5…10 250 50
    382 + 1…10 250 100
    383 + 1…10 300 50…100
    5×20 mm 217 + 0,032…15 250 35…150 -55…125
    218 + 0,032…16 250 35…100
    213 + 0,2…6,3 250 35…63
    219XA + 0,04…6,3 250 150
    216 + 0,05…16 250 750…1500
    215 + 0,125…20 250 400/1500
    232 + 1…10 250/125 300/10000
    235 + 0,1…7 250/125 35…10000
    233 + 1…10 125 10000
    234 + 1…10 250 100…200
    239 + 0,08…7 250/125 35…10000
    285 + 0,125…20 250 400…1500
    477 + 0,5…16 400 DC/500 AC 100…1500
    977 + 0,5…16 450 DC/500 AC 200/100
    TE5 369 + 1…6,3 300 50 -40…85
    385 + 0,35…1,5 125 50
    391 0,125…4 65 50
    392 + 0,8…6,3 250 25…63
    395 + 0,05…6,3 125 100
    396 + 0,05…6,3 125 100
    397 + 0,35…1,5 125 50
    398 + 0,125…4 65 50
    399 + 0,125…4 65 50
    400 + 0,5…6,3 250 130
    804 + 0,8…6,3 250 150 -40…125
    808 + 2…5 250 100 -40…85
    PICO®
    Fuse/
    PICO® II
    Fuse Axial
    251 + 0,062…15 125 300 DC/50 AC -55…125
    253 + 0,062…15 125 300 DC/50 AC
    275 + 20…30 32 300 DC/50 AC
    263 + 0,062…5 250 50
    471 + 0,5…5 125 50
    472 + 0,5…5 125 50
    473 + 0,375…7 125 50
    265/266/267 + 0,062…15 125 300 DC/50 AC

    Серии TR3® и TR5® – предохранители для монтажа в отверстия печатной платы с проволочными выводами радиального типа. Помимо пайки, допускается установка в держатель. Позволяют экономить место на печатной плате, имеют низкое внутреннее сопротивление. Ударопрочный корпус предохраняет защитный элемент от повреждений и обеспечивает предохранителю высокую вибрационную стойкость. Эти предохранители выполнены по бессвинцовой и безгалогенной технологии, часто применяются в батарейных зарядных устройствах, источниках питания, промышленных контроллерах.

    Предохранители типоразмера 5х20 мм с выводами аксиального типа разработаны для полного соответствия стандарту IEC и предназначены для повсеместного применения без ограничений. Используются для защиты цепей в оборудовании различных классов и широкой номенклатуры.

    Предохранители серии TE5® упаковываются в негорючие, заполненные компаундом корпуса, что гарантирует необратимое физическое разделение цепи в случае срабатывания. Занимают меньше места на печатной плате. Кроме того, для этой серии характерен малый разброс времени срабатывания и низкое внутреннее сопротивление. Производитель рекомендует ее для глобального применения без ограничений.

    Серии PICO® и PICO®II разработаны для реализации широкого спектра характеристик в малогабаритных субминиатюрных корпусах. Среди предохранителей данной серии можно встретить и малогабаритные – на напряжение 250 В (серия 263, PICO®II), и сверхбыстродействующие высоконадежные – для защиты конечного оборудования (серии 265/266/267 PICO® Very Fast Acting fuse).

    Предохранители серии 473 (PICO®II, Slo-Blo®) сочетают в себе временные характеристики категории Slo-Blo® и высокую надежность серии PICO®.

    Заключение

    Несмотря на кажущуюся простоту, правильный выбор и использование плавкого предохранителя является нетривиальной задачей. Разработчик электрической схемы должен учитывать и конструкционные параметры, и номинальные и интегральные токи, и влияние температуры окружающей среды. Наличие в ассортименте Littelfuse широчайшей гаммы предохранителей, несомненно, облегчает решение этой задачи, а сервис iDesign позволяет значительно ускорить принятие правильного решения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *