Тест по физике Получение и передача переменного тока 9 класс
Тест по физике Получение и передача переменного тока, Трансформатор для учащихся 9 класса с ответами. Тест включает в себя 10 заданий с выбором ответа.
1. Выберите верное(-ые) утверждение(-я).
А. в электрических сетях нашей страны используется постоянный ток
Б. в электрических сетях нашей страны используется переменный ток
1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б
2. Где происходит промышленное получение переменного тока?
1) На заводах
2) На фабриках
3) На электростанциях
4) В жилых домах
3. Какое явление лежит в основе действия генераторов?
1) Намагничивание
2) Электролиз
3) Электромагнитная индукция
4) Резонанс
4. Как называется подвижная часть генератора?
1) Ротор
2) Статор
3) Трансформатор
4) Электродвигатель
5. В индукционном генераторе тока происходит превращение
1) механической энергии ротора и магнитной энергии статора в электрическую энергию
2) механической и магнитной энергии ротора в электрическую энергию
3) электрической энергии тока, протекающего по обмотке статора, и механической энергии ротора в магнитную энергию
4) магнитной энергии ротора в электрическую энергию
6. Чему равна стандартная частота переменного тока в России?
1) 25 Гц
2) 50 Гц
3) 75 Гц
4) 100 Гц
7. Стандартная частота переменного тока в США 60 Гц. Определите его период.
1) 0,017 с
2) 0,6 с
3) 0,3 с
4) 60 с
8. На рисунке приведен график зависимости силы тока от времени. Пользуясь графиком, определите частоту колебаний.
1) 0,25 Гц
2) 0,5 Гц
3) 1 Гц
4) 2 Гц
9. Повышающий трансформатор на электростанциях используетcя для
1) увеличения силы тока в линиях электропередач
2) увеличения частоты передаваемого напряжения
3) уменьшения частоты передаваемого напряжения
4) уменьшения доли потерянной энергии на линии электропередач
10. Напряжения на концах первичной и вторичной обмоток ненагруженного трансформатора равны U1 = 220 В и U2 = 55 В. Каково отношение числа витков в первичной обмотке к числу витков во вторичной N1/N2?
Ответы на тест по физике Получение и передача переменного тока, Трансформатор
1-2
2-3
3-3
4-1
5-1
6-2
7-1
8-1
9-4
10-2
Генератор постоянного тока: устройство, принцип работы, классификация
На заре электрификации генератор постоянного тока оставался безальтернативным источником электрической энергии. Довольно быстро эти альтернаторы были вытеснены более совершенными и надёжными трехфазными генераторами переменного тока. В некоторых отраслях постоянный ток продолжал быть востребованным, поэтому устройства для его генерации совершенствовались и развивались.
Даже в наше время, когда изобретены мощные выпрямительные устройства, актуальность генераторов постоянного электротока не потерялась. Например, они используются для питания силовых линий на городском электротранспорте, используемых трамваями и троллейбусами. Такие генераторы по-прежнему используют в технике электросвязи в качестве источников постоянного электротока в низковольтных цепях.
Устройство и принцип работы
В основе действия генератора лежит принцип, вытекающий из закона электромагнитной индукции. Если между полюсами постоянного магнита поместить замкнутый контур, то при вращении он будет пересекать магнитный поток (см. рис. 1). По закону электромагнитной индукции в момент пересечения индуцируется ЭДС. Электродвижущая сила возрастает по мере приближения проводника к полюсу магнита. Если к коллектору (два жёлтых полукольца на рисунке) подсоединить нагрузку R, то через образованную электрическую цепь потечёт ток.
Рис. 1. Принцип действия генератора постоянного тока
По мере выхода витков рамки из зоны действия магнитного потока ЭДС ослабевает и приобретает нулевое значение в тот момент, когда рамка расположится горизонтально. Продолжая вращение контура, его противоположные стороны меняют магнитную полярность: часть рамки, которая находилась под северным полюсом, занимает положение над южным магнитным полюсом.
Величины ЭДС в каждой активной обмотке контура определяются по формуле: e1 = Blvsinw t; e2 = -Blvsinw t; , где B – магнитная индукция, l – длина стороны рамки, v – линейная скорость вращения контура, t – время, w t – угол, под которым рамка пересекает магнитный поток.
При смене полюсов меняется направление тока. Но благодаря тому, что коллектор поворачивается синхронно с рамкой, ток на нагрузке всегда направлен в одну сторону. То есть рассматриваемая модель обеспечивает выработку постоянного электричества. Результирующая ЭДС имеет вид: e = 2Blvsinw t, а это значит, что изменение она подчиняется синусоидальному закону.
Строго говоря, данная конструкция обеспечивает только полярность неподвижных щеток, но не устраняет пульсации ЭДС. Поэтому график сгенерированного тока имеет вид, как показано на рис.2.
Рисунок 2. График тока, выработанного примитивным генератором
Такой ток, за исключением редких случаев, не пригоден для использования. Приходится сглаживать пульсации до приемлемого уровня. Для этого увеличивают количество полюсов постоянных магнитов, а вместо простой рамки используют более сложную конструкцию – якорь, с большим числом обмоток и соответствующим количеством коллекторных пластин (см. рис. 3). Кроме того, обмотки соединяются разными способами, о чём речь пойдёт ниже.
Рис. 3. Ротор генератора
Якорь изготавливается из листовой стали. На сердечниках якоря имеются пазы, в которые укладываются несколько витков провода, образующего рабочую обмотку ротора. Проводники в пазах соединены последовательно и образуют катушки (секции), которые в свою очередь через пластины коллектора создают замкнутую цепь.
С точки зрения физики процесса генерации не имеет значения, какие детали вращаются – обмотки контура или сам магнит. Поэтому на практике якоря для маломощных генераторов делают из постоянных магнитов, а полученный переменный ток выпрямляют диодными мостами и другими схемами.
И напоследок: если на коллектор подать постоянное напряжение, то генераторы постоянного тока могут работать в режиме синхронных двигателей.
Конструкция двигателя (он же генератор) понятна из рисунка 4. Неподвижный статор состоит из двух сердечников полюсов, состоящих из ферримагнитных пластин, и обмоток возбуждения, соединённых последовательно. Щётки расположены по одной линии друг против друга. Для охлаждения обмоток используется вентилятор.
Рис. 4. Двигатель постоянного тока
Классификация
Различают два вида генераторов постоянного тока:
- с независимым возбуждением обмоток;
- с самовозбуждением.
Для самовозбуждения генераторов используют электричество, вырабатываемое самим устройством. По принципу соединения обмоток якоря самовозбуждающиеся альтернаторы с делятся на типы:
- устройства с параллельным возбуждением;
- альтернаторы с последовательным возбуждением;
- устройства смешанного типа (компудные генераторы).
Рассмотрим более подробно особенности каждого типа соединения якорных обмоток.
С параллельным возбуждением
Для обеспечения нормальной работы электроприборов, требуется наличие стабильного напряжения на зажимах генераторов, не зависящее от изменения общей нагрузки. Задача решается путём регулировки параметров возбуждения. В альтернаторах с параллельным возбуждением выводы катушки подключены через регулировочный реостат параллельно якорной обмотке.
Реостаты возбуждения могут замыкать обмотку «на себя». Если этого не сделать, то при разрыве цепи возбуждения, в обмотке резко увеличится ЭДС самоиндукции, которая может пробить изоляцию. В состоянии, соответствующем короткому замыканию, энергия рассеивается в виде тепла, предотвращая разрушение генератора.
Электрические машины с параллельным возбуждением не нуждаются во внешнем источнике питания. Благодаря наличию остаточного магнетизма всегда присутствующего в сердечнике электромагнита происходит самовозбуждение параллельных обмоток. Для увеличения остаточного магнетизма в катушках возбуждения сердечники электромагнитов делают из литой стали.
Процесс самовозбуждения продолжается до момента, пока сила тока не достигнет своей предельной величины, а ЭДС не выйдет на номинальные показатели при оптимальных оборотах вращения якоря.
Достоинство: на генераторы с параллельным возбуждением слабо влияют токи при КЗ.
С независимым возбуждением
В качестве источника питания для обмоток возбуждения часто используют аккумуляторы или другие внешние устройства. В моделях маломощных машин используют постоянные магниты, которые обеспечивают наличие основного магнитного потока.
На валу мощных генераторов расположен генератор-возбудитель, вырабатывающий постоянный ток для возбуждения основных обмоток якоря. Для возбуждения достаточно 1 – 3% номинального тока якоря и не зависит от него. Изменение ЭДС осуществляется регулировочным реостатом.
Преимущество независимого возбуждения состоит в том, что на возбуждающий ток никак не влияет напряжение на зажимах. А это обеспечивает хорошие внешние характеристики альтернатора.
С последовательным возбуждением
Последовательные обмотки вырабатывают ток, равен току генератора. Поскольку на холостом ходе нагрузка равна нулю, то и возбуждение нулевое. Это значит, что характеристику холостого хода невозможно снять, то есть регулировочные характеристики отсутствуют.
В генераторах с последовательным возбуждением практически отсутствует ток, при вращении ротора на холостых оборотах. Для запуска процесса возбуждения необходимо к зажимам генератора подключить внешнюю нагрузку. Такая выраженная зависимость напряжения от нагрузки является недостатком последовательных обмоток. Такие устройства можно использовать только для питания электроприборов с постоянной нагрузкой.
Со смешанным возбуждением
Полезные характеристики сочетают в себе конструкции генераторов со смешанным возбуждением. Их особенности: устройства имеют две катушки – основную, подключённую параллельно обмоткам якоря и вспомогательную, которая подключена последовательно. В цепь параллельной обмотки включён реостат, используемый для регулировки тока возбуждения.
Процесс самовозбуждения альтернатора со смешанным возбуждением аналогичен тому, который имеет генератор с параллельными обмотками (из-за отсутствия начального тока последовательная обмотка в самовозбуждении не участвует). Характеристика холостого хода такая же, как у альтернатора с параллельной обмоткой. Это позволяет регулировать напряжения на зажимах генератора.
Смешанное возбуждение сглаживает пульсацию напряжения при номинальной нагрузке. В этом состоит главное преимущество таких альтернаторов перед прочими типами генераторов. Недостатком является сложность конструкции, что ведёт к удорожанию этих устройств. Не терпят такие генераторы и коротких замыканий.
Технические характеристики генератора постоянного тока
Работу генератора характеризуют зависимости между основными величинами, которые называются его характеристиками. К основным характеристикам можно отнести:
- зависимости между величинами при работе на холостом ходе;
- характеристики внешних параметров;
- регулировочные величины.
Некоторые регулировочные характеристики и зависимости холостого хода мы раскрыли частично в разделе «Классификация». Остановимся кратко на внешних характеристиках, которые соответствуют работе генератора в номинальном режиме. Внешняя характеристика очень важна, так как она показывает зависимость напряжения от нагрузки, и снимается при стабильной скорости оборотов якоря.
Внешняя характеристика генератора постоянного тока с независимым возбуждением выглядит следующим образом: это кривая, зависимости напряжения от нагрузки (см. рис. 5). Как видно на графике падение напряжения наблюдается, но оно не сильно зависит от тока нагрузки (при сохранении скорости оборотов двигателя, вращающего якорь).
Рис. 5. Внешняя характеристика ГПТ
В генераторах с параллельным возбуждением зависимость напряжения от нагрузки сильнее выражена (см. рис. 6). Это связано с падением тока возбуждения в обмотках. Чем выше нагрузочный ток, тем стремительнее будет падать напряжение на зажимах генератора. В частности, при постепенном падении сопротивления до уровня КЗ, напряжение падёт до нуля. Но резкое замыкание в цепи вызывает обратную реакцию генератора и может быть губительным для электрической машины этого типа.
Рис. 6. Характеристика ГПТ с параллельным возбуждением
Увеличение тока нагрузки при последовательном возбуждении ведёт к росту ЭДС. (см. верхнюю кривую на рис. 7). Однако напряжение (нижняя кривая) отстаёт от ЭДС, поскольку часть энергии расходуется на электрические потери от присутствующих вихревых токов.
Рис. 7. Внешняя характеристика генератора с последовательным возбуждением
Обратите внимание на то, что при достижении своего максимума напряжение, с увеличением нагрузки, начинает резко падать, хотя кривая ЭДС продолжает стремиться вверх. Такое поведение является недостатком, что ограничивает применение альтернатора этого типа.
В генераторах со смешанным возбуждением предусмотрены встречные включения обеих катушек – последовательной и параллельной. Результирующая намагничивающая сила при согласном включении равна векторной сумме намагничивающих сил этих обмоток, а при встречном – разнице этих сил.
В процессе плавного увеличении нагрузки от момента холостого хода до номинального уровня, напряжение на зажимах будет практически постоянным (кривая 2 на рис. 8). Увеличение напряжения наблюдается в том случае, если количество проводников последовательной обмотки будет превышать количество витков соответствующее номинальному возбуждению якоря (кривая 1).
Изменение напряжения для случая с меньшим числом витков в последовательной обмотке, изображает кривая 3. Встречное включение обмоток иллюстрирует кривая 4.
Рис. 8. Внешняя характеристика ГПТ со смешанным возбуждением
Генераторы со встречным включением используют тогда, когда необходимо ограничить токи КЗ, например, при подключении сварочных аппаратов.
В нормально возбуждённых устройствах смешанного типа ток возбуждения постоянный и от нагрузки почти не зависит.
Реакция якоря
Когда к генератору подключена внешняя нагрузка, то токи в его обмотке образуют собственное магнитное поле. Возникает магнитное сопротивление полей статора и ротора. Результирующее поле сильнее в тех точках, где якорь набегает на полюсы магнита, и слабее там, где он с них сбегает. Другими словами якорь реагирует на магнитное насыщение стали в сердечниках катушек. Интенсивность реакции якоря зависит от насыщения в магнитопроводах. Результатом такой реакции является искрение щёток на коллекторных пластинах.
Снизить реакцию якоря можно путём применения компенсирующих дополнительных магнитных полюсов или сдвигом щёток с осевой линии геометрической нейтрали.
Среднее значение электродвижущей силы пропорционально магнитному потоку, количеству активных проводников в обмотках и частоте вращения якоря. Увеличивая или уменьшая указанные параметры можно управлять величиной ЭДС, а значит и напряжением. Проще всего, желаемого результата можно достичь путём регулировки частоты вращения якоря.
Мощность
Различают полную и полезную мощность генератора. При постоянной ЭДС полная мощность пропорциональна току: P = EIa. Отдаваемая в цепь полезная мощность P1 = UI.
Важной характеристикой альтернатора является его КПД – отношение полезной мощности к полной. Обозначим данную величину символом ηe. Тогда: ηe=P1/P.
На холостом ходе ηe = 0. максимальное значение КПД – при номинальных нагрузках. Коэффициент полезного действия в мощных генераторах приближается к 90%.
Применение
До недавнего времени использование тяговых генераторов постоянного тока на ж/д транспорте было безальтернативным. Однако уже начался процесс вытеснения этих генераторов синхронными трёхфазными устройствами. Переменный ток, синхронного альтернатора выпрямляют с помощью выпрямительных полупроводниковых установок.
На некоторых российских локомотивах нового поколения уже применяют асинхронные двигатели, работающие на переменном токе.
Похожая ситуация наблюдается с автомобильными генераторами. Альтернаторы постоянного тока заменяют асинхронными генераторами, с последующим выпрямлением.
Пожалуй, только передвижные сварочные аппараты с автономным питанием неизменно остаются в паре с альтернаторами постоянного тока. Не отказались от применения мощных генераторов постоянного тока также некоторые отрасли промышленности.
Принцип действия генератора
Генераторами называются машины, преобразующие механическую энергию в электрическую. Принцип действия генератора основан на явлении электромагнитной индукции, когда в проводнике, двигающемся в магнитном поле и пересекающем его магнитные силовые линии, индуктируется ЭДС. Следовательно, такой проводник может нами рассматриваться как источник электрической энергии.
Способ получения индуктированной ЭДС, при котором проводник перемещается в магнитном поле, двигаясь вверх или вниз, очень неудобен при практическом его использовании. Поэтому в генераторах применяется не прямолинейное, а вращательное движение проводника.
Основными частями всякого генератора являются: система магнитов или чаще всего электромагнитов, создающих магнитное поле, и система проводников, пересекающих это магнитное поле.
Возьмем проводник в виде изогнутой петли, которую в дальнейшем будем называть рамкой (рис. 1), и поместим ее в магнитное поле, создаваемое полюсами магнита. Если такой рамке сообщить вращательное движение относительно оси 00, то стороны ее, обращенные к полюсам, будут пересекать магнитные силовые линии и в них будет индуктироваться ЭДС.
Рис. 1. Индуктирование ЭДС в пелеобразном проводнике (рамке), вращающемся в магнитном поле
Присоединив к рамке при помощи мягких проводников электрическую лампочку, мы этим самым замкнем цепь, и лампочка загорится. Горение лампочки будет продолжаться до тех пор, пока рамка будет вращаться в магнитном поле. Подобное устройство представляет собой простейший генератор, преобразующий механическую энергию, затрачиваемую на вращение рамки, в электрическую энергию.
Такой простейший генератор имеет довольно существенный недостаток. Через небольшой промежуток времени мягкие проводника, соединяющие лампочку с вращающейся рамкой, скрутятся и разорвутся. Для того чтобы избежать подобных разрывов в цепи, концы рамки (рис.2) присоединяются к двум медные кольцам 1 и 2, вращающимся вместе с рамкой.
Эти кольца получили название контактных колец. Отведение электрического тока с контактных колец во внешнюю цепь (к лампочке) осуществляется упругими пластинками 3 и 4, прилегающими к кольцам. Эти пластинки называются щетками.
Рис. 2. Направление индуктированной ЭДС (и тока) в проводниках А и Б рамки, вращающейся в магнитном поле: 1 и 2 — контактные кольца, 3 и 4 — щетки.
При таком соединении вращающейся рамки с внешней цепью разрыва соединительных проводов не произойдет, и генератор будет работать нормально.
Рассмотрим теперь направление индуктирующейся в проводниках рамки ЭДС или, что то же самое, направление индуктированного в рамке тока при замкнутой внешней цепи.
При направлении вращения рамки, которое показано на рис. 2, в левом проводнике АА ЭДС будет индуктироваться в направлении от нас за плоскость чертежа, а в правом ВВ — из-за плоскости чертежа на нас.
Так как обе половины проводника рамки соединены между собой последовательно, то индуктированные ЭДС в них будут складываться, и на щетке 4 будет положительный полюс генератора, а на щетке 3 отрицательный.
Проследим за изменением индуктированной ЭДС за полный оборот рамки. Если рамка, вращаясь в направлении часовой стрелки, повернется на 90° от положения, изображенного на рис. 2, то половинки ее проводника в этот момент будут двигаться вдоль магнитных силовых линий, и индуктирование ЭДС в них прекратится.
Дальнейший поворот рамки еще на 90° приведет к тому, что проводники рамки снова будут пересекать силовые линии магнитного поля (рис. 3), но проводник АА будет при этом по отношению к силовым линиям двигаться не снизу вверх, а сверху вниз, проводник же ВВ, наоборот, будет пересекать силовые линии, двигаясь снизу вверх.
Рис. 3. Изменение направления индуктированной э. д. с. (и тока) при повороте рамки на 180° по отношению к положению, приведенному на рис. 2.
При новом положении рамки направление индуктированной ЭДС в проводниках АЛ и ВВ изменится на обратное. Это следует из того, что самое направление, в котором каждый из этих проводников пересекает в этом случае магнитные силовые линии, изменилось. В результате полярность щеток генератора также изменится: щетка 3 станет теперь положительной, а щетка 4 отрицательной.
Вращая рамку дальше, снова будем иметь движение проводников АА и ВВ вдоль магнитных силовых линий, а в дальнейшем — повторение всех процессов сначала.
Таким образом, за один полный оборот рамки индуктированная ЭДС дважды меняла свое направление, причем величина ее за это же время также дважды достигала наибольших значений (когда проводники рамки проходили под полюсами) и дважды равнялась нулю (в моменты движения проводников вдоль магнитных силовых линий).
Вполне понятно, что изменяющаяся по направлению и величине ЭДС вызовет в замкнутой внешней цепи изменяющийся по направлению и величине электрический ток.
Так, например, если к зажимам данного простейшего генератора присоединить электрическую лампочку, то за первую половину оборота рамки электрический ток через лампочку будет идти в одном направлении, а за вторую .половину оборота — в другом.
Рис. 4. Кривая изменения индуктированного тока за один оборот рамки
Представление о характере изменения тока при повороте рамки на 360°, т. е. за один полный оборот, дает кривая на рис. 4. Электрический ток, непрерывно изменяющийся по величине и направлению, носит название переменного тока.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
На каком явлении основано действие генератора переменного тока?
Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.
Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.
Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.
Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.