Что такое углеродные нанотрубки?
Углеродные нанотрубки представляют собой цилиндрические молекулы, изготовленные из свернутых листов графена. Это самые жесткие и прочные материалы, которые были синтезированы. Они имеют уникальные электрические и тепловые свойства. Эти нанотрубки могут иметь множество применений, от электроники до материаловедения.
С момента открытия углеродных нанотрубок в 1991 году появился новый ученик в области материаловедения — нанонаука. Многие университеты и организации по всему миру вложили миллионы долларов, чтобы раскрыть тайны этих материалов.
Углеродные нанотрубки — интригующий аллотроп углерода. У них есть множество уникальных, никогда не встречавшихся ранее свойств. Например, они могут быть плотными и сильными, будучи тоньше человеческого волоса.
Углеродная нанотрубка представляет собой чрезвычайно маленькую цилиндрическую структуру, изготовленную из графена. Графен представляет собой один слой атомов углерода, плотно связанных в двумерной гексагональной решетке.
Они могут быть изготовлены различной длины в соответствии с требованиями. Эти конструкции невероятно легкие, стабильные и обладают потенциалом для разработки удивительных материалов будущего. На самом деле, они считаются лучшим кандидатом на материал для строительства космического лифта.
Ниже мы подробно остановились на процессе производства, свойствах и применениях углеродных нанотрубок. Это просто краткий обзор того, что мы знаем об этих удивительных молекулах.
Два основных типа углеродных нанотрубок
Углеродные нанотрубки могут быть классифицированы на основе их структуры —
1) Одностенные нанотрубки (ОСНТ): имеют диаметры в диапазоне один нанометр. Они являются одним из углеродных аллотропов, промежуточных между плоскими графеновыми и фуллереновыми клетками.
2) Многостенные нанотрубки (MWNT): состоит из нескольких концентрически связанных углеродных нанотрубок. Они могут быть длиной в несколько микрометров (или даже миллиметров) с диаметром более 100 нанометров.
Обе структуры имеют различные характеристики, которые делают эти нанотрубки подходящими для различных применений.
Кто открыл углеродные нанотрубки?
Это довольно спорный вопрос, потому что многие ученые сообщают о существовании углеродных нанотрубок. В документе, опубликованном в 2006 году, описывалось увлекательное и часто искаженное происхождение углеродной нанотрубки.
Хотя история углеродных нанотрубок восходит к началу 1950-х годов (когда два российских ученых опубликовали четкие изображения углеродных трубок с 50 нанометрами), большая часть научной и популярной литературы посвящена японскому физику Сумио Иидзиме за открытие полого нанометрового размера трубы, состоящие из графитового углерода.
В 1991 году он написал статью, описывающую многостенные углеродные нанотрубки, что послужило основанием для интенсивных исследований углеродных наноструктур.
Как они сделаны?
Углеродные нанотрубки могут быть изготовлены несколькими способами. Тремя наиболее распространенными процедурами являются разряд, лазерная абляция и химическое осаждение из паровой фазы.
Дуговой разряд — это традиционная технология, в которой углеродные нанотрубки получают дуговым испарением двух углеродных стержней, расположенных вплотную. Эти нанотрубки затем изолируются от пара и сажи.
При лазерной абляции для испарения графита используются инертный газ и пульсирующий лазер (при высоких температурах). Углеродные нанотрубки затем извлекаются из паров, которые обычно требуют дальнейшей очистки.
Процесс химического осаждения из паровой фазы дает возможность массового производства нанотрубок в более легко контролируемых условиях и при меньших затратах. Таким образом, в настоящее время это самый популярный метод синтеза углеродных нанотрубок.
В этом процессе производители объединяют углеродсодержащие реакционные газы (такие, как окись углерода или водород) с металлическими катализаторами (такими как железо), чтобы получить нанотрубки на катализаторе внутри высокотемпературной печи.
Процесс может быть либо плазменным, либо чисто каталитическим. Последнее требует более высоких температур (до 750 ° C), чем процесс с плазменной поддержкой (200-500 ° C).
Во всех этих трех методах конечные продукты должны быть дополнительно очищены с использованием различных методов, таких как обработка ультразвуком или кислотой.
Свойства углеродных нанотрубок
Механический — с точки зрения модуля упругости и прочности на разрыв, углеродные нанотрубки являются самыми жесткими и прочными материалами, которые синтезируются. Этот вид силы происходит от чрезвычайно сильной формы молекулярного взаимодействия между отдельными атомами углерода — ковалентными связями sp 2 .
Сравнение механических свойств разных материалов
Нанотрубки удерживаются вместе сравнительно слабыми ван-дер-ваальсовыми силами. Обычно углеродные нанотрубки намного длиннее своего диаметра. В 2013 году исследовательская группа создала углеродные нанотрубки длиной 0,5 метра с отношением диаметра к длине 1: 132 000,00.
Исследование , проведенное в 2008 году, показало, что отдельные нанотрубки могут иметь прочность до 100 гигапаскалей. Стандартные одностенные нанотрубки, однако, могут выдерживать давление до 25 гПа без постоянной деформации.
Электроуглеродные нанотрубки обладают исключительной электропроводностью. Они либо металлические, либо полупроводниковые, и эти свойства не зависят от того, свернута ли трубка ниже или выше плоскости графена. Электрические свойства остаются неизменными для нанотрубки и ее зеркального отражения.
Теоретически, металлические нанотрубки могут нести в 1000 раз больше плотности электрического тока, чем металлы, такие как медь.
Оптико-углеродные нанотрубки обладают полезными свойствами фотолюминесценции, оптического поглощения и спектроскопии комбинационного рассеяния света.
Они обеспечивают надежную и быструю характеристику «качества нанотрубок» с точки зрения структурных дефектов и нетрубого содержания углерода. Эти характеристики определяют практически все важные свойства, включая электрические, механические и оптические свойства.
Хотя электрохимические, электрические и механические свойства нанотрубок хорошо изучены и имеют практическое применение в различных областях, применение оптических свойств до сих пор неясно. До настоящего времени светодиоды, оптоэлектронные запоминающие устройства, болометры были реализованы с использованием одностенных углеродных нанотрубок.
Термические — углеродные нанотрубки обладают уникальными термическими свойствами, которые делают их особенными для разработки новых материалов. На самом деле их теплопроводность намного лучше, чем у алмазов.
Теплопроводность при комнатной температуре одностенной нанотрубки вдоль ее оси составляет 3500 Вт · м -1 · К -1. Температурная стабильность этих нанотрубок составляет около 750 °С на воздухе и до 2800 °С в вакууме.
Применение
За последние два десятилетия цены на углеродные нанотрубки снизились с 1500 долларов за грамм до 2 долларов за грамм. Это открыло широкий спектр применений, особенно в области материаловедения и электроники.
В настоящее время используются плоские дисплеи, сенсорные устройства, сканирующие зондовые микроскопы, ветряные турбины, морские краски, велосипедные компоненты и спортивное оборудование, такое как хоккейные клюшки, лыжи и бейсбольные биты.
Гибкий водородный датчик из одностенных нанотрубок / Фото: DR. Sun / Argonne
Объемные углеродные нанотрубки были использованы для создания вантаблака (одного из самых темных известных материалов, который поглощает до 99,96% видимого света). В тканевой инженерии они могут использоваться в качестве строительных лесов для роста костей.
В будущем эти нанотрубки могут использоваться для различных целей: их можно использовать для лечения рака, мониторинга окружающей среды, накопления энергии, плоских дисплеев, конструкций самолетов, радаров и космических аппаратов.
Риски для здоровья углеродных нанотрубок
Углеродные нанотрубки-это недавно открытый материал с многолетней историей. Нам еще многое предстоит раскрыть. Хотя из-за этого материала не произошло никаких серьезных несчастных случаев, некоторые результаты показывают, что нанотрубки могут представлять опасность для здоровья, аналогичную асбесту.
Потенциальные риски для здоровья не являются причиной для тревоги, но компании, работающие с углеродными нанотрубками, должны принять некоторые меры предосторожности, чтобы избежать воздействия.
В 2013 году Национальный институт безопасности и гигиены труда опубликовал отчет с подробным описанием рисков и рекомендованных пределов воздействия для углеродных нановолокон и нанотрубок.
В 2016 году Европейский Союз установил правила коммерциализации одностенных углеродных нанотрубок (до 10 метрических тонн).
Последние исследования
Много исследований было проведено в той же области, особенно в последние пару лет.
Например, в 2019 году ученые открыли новый способ физического измерения углеродных нанотрубок. Другая группа исследователей продемонстрировала 16-разрядный микропроцессор, состоящий из 14 000 углеродных нанотрубок.
В 2018 году исследователи создали большое количество нетронутых одностенных нанотрубок в оттенках радуги. Это может найти применение в средствах для нанесения покрытий для новых типов солнечных элементов или технологий с сенсорным экраном.
В 2017 году ученые обнаружили, что усовершенствованные одностенные углеродные нанотрубки могут предложить более эффективный и устойчивый способ очистки и очистки воды, чем традиционные промышленные материалы, такие как силиконовые гели.
Углеродные нанотрубки, их производство, свойства и применение
Углеродные нанотрубки, их производство, свойства и применение.
Углеродные нанотрубки – это углеродная модификация углерода, представляющая собой полые цилиндрические структуры диаметром от десятых до нескольких десятков нанометров и длиной от одного микрометра до нескольких сантиметров, состоящие из одной или нескольких свёрнутых в трубку графеновых плоскостей.
Описание углеродных нанотрубок:
Углеродные нанотрубки (англ. carbon nanotube, CNT) – это углеродная модификация углерода, представляющая собой полые цилиндрические структуры диаметром от десятых до нескольких десятков нанометров и длиной от одного микрометра до нескольких сантиметров, состоящие из одной или нескольких свёрнутых в трубку графеновых плоскостей.
Углеродные нанотрубки являются одной из аллотропных форм углерода наряду с алмазом , графитом, графеном , фуллереном , карбином и пр.
Если смотреть на углеродную нанотрубку в микроскоп с увеличением в миллион раз, то можно наблюдать полый цилиндр, поверхность которого формируется множеством шестиугольных многоугольников. На самой вершине равностороннего многоугольника располагается атом углерода. Углеродная нанотрубка визуально напоминает лист бумаги свернутый в трубку, только вместо бумажной поверхности следует рассматривать графитовую (точнее – графеновую) плоскость. В научной среде цилиндрическую плоскость трубки принято называть графеновой. Толщина графеновой плоскости не превышает один атом углерода .
Длина углеродной нанотрубки может достигать до нескольких сантиметров. Некоторым ученым удалось синтезировать углеродные нанотрубки длиной 20 см. Для получения более длинных структур их можно сплести в нити неограниченной длины.
Физические свойства нанотрубок пребывают в прямой зависимости от хиральности (особенность мельчайших частиц вещества не накладываться полностью на свое зеркальное отображение). Степень хиральности определяется зависимостью, существующей между специальными индексами хиральности (n, m) и неким углом сворачивания трубки (α).
Индексы хиральности (n, m) при этом являются координатами радиус-вектора R в заданной на графеновой плоскости косоугольной системе координат, определяющего ориентацию оси трубки относительно графеновой плоскости и ее диаметр. Индексы (n, m) указывают местонахождение того шестиугольника сетки, который в результате свертывания трубки должен совпасть с шестиугольником в начале координат.
Виды и классификация углеродных нанотрубок:
В зависимости от индексов хиральности различают: прямые, зубчатые, зигзагообразные и спиральные углеродные нанотрубки.
По количеству графеновых слоев углеродные нанотрубки делятся на однослойные ( одностенные ) и многослойные (многостенные).
Наиболее простой вид нанотрубок содержит один слой. Диаметр однослойных нанотрубок может составлять один нанометр, длина – превышать предыдущий вариант в тысячи раз. Однослойную нанотрубку нередко отождествляют с «выкройкой» графена, имеющей сеточную структуру и состоящую из бесчисленного множества правильных многоугольников.
Многослойные нанотрубки содержат несколько слоев графена. Они характеризуются широким разнообразием форм и конфигураций. Причем разнообразие структур проявляется как в продольном, так и в поперечном направлении. Здесь выделяются следующие типы:
– нанотрубки в виде совокупности коаксиально вложенных друг в друга цилиндрических трубок, т.н. тип «русская матрёшка» (russian dolls),
– нанотрубки в виде совокупности вложенных друг в друга коаксиальных (шестигранных) призм,
– нанотрубки в виде свитка (scroll).
Расстояние между соседними графеновыми слоями составляет 0,34 нм, как в обычном графите.
По типу торцов углеродные нанотрубки бывают:
– закрытые (заканчивающиеся полусферой, которая может рассматриваться как половина молекулы фуллерена).
По электронным свойствам углеродные нанотрубки делятся на:
– металлические. Разность индексов хиральности (n – m) делится на 3 либо индексы равны между собой,
– полупроводниковые. Прочие значения индексов хиральности (n и m).
Тип проводимости нанотрубок зависит от их хиральности, т.е. от группы симметрии, к которым принадлежит конкретная нанотрубка, причем он подчиняется простому правилу: если индексы нанотрубки равны между собой или же их разность делится на три, нанотрубка является полуметаллом, в любом другом случае они проявляют полупроводниковые свойства.
Свойства и преимущества углеродных нанотрубок:
– обладают адсорбционными свойствами. Могут хранить в себе различные газы, например, водород . Попав внутрь атомы и молекулы уже не могут выйти наружу, т.к. концы трубки запаиваются, а пройти через графеновые плоскости цилиндра они не могут, т.к. углеродные решетки слишком узки для большинства атомов,
– обладают капиллярным эффектом. Углеродные нанотрубки открытым концом втягивают в себя жидкие вещества и расплавленные металлы,
– улучшение эксплуатационных характеристик других материалов при добавлении в их структуру,
– высокая прочность. Углеродные нанотрубки прочнее лучших марок стали в 50-100 раз,
– имеют в шесть раз меньшую плотность, чем обыкновенная сталь. Это означает, что материалы на основе углеродных нанотрубок при одинаковом объеме будут в десятки раз прочнее. Нанокабель длиной от Земли до Луны, состоящий из одной углеродной нанотрубки, можно намотать на катушку размером с маковое зернышко,
– модуль Юнга у углеродных нанотрубок вдвое выше, чем у обычных углеродных волокон ,
– небольшая нить из углеродных нанотрубок диаметром 1 мм выдерживает груз весом 20 тонн, что в сотни миллиардов раз больше ее собственной массы,
– рекордно высокая удельная поверхность – до 2 600 м 2 /г,
– высокая гибкость. Их можно растягивать, сжимать, скручивать и пр., не опасаясь при этом повредить их каким-либо образом. Они напоминают жесткие резиновые трубки, которые не рвутся и не ломаются при различных механических нагрузках. Однако под действием механических напряжений, превышающих критические, нанотрубки не только не рвутся и не ломаются, а просто перестраиваются, сохраняя при этом высокую прочность, гибкость, прочие механические и электрические свойства,
– высокая устойчивость к изнашиваемости. Многоразовая деформация (тысячи и десятки тысяч циклов скручивания/раскручивания, сжатия/растяжения в минуту) нанотрубок никаким образом не влияет на их прочность, на их электро- и теплопроводность. Какие-либо признаки деформации либо износа при этом отсутствуют,
– повышенная электро- и теплопроводность. Проводимость меди, как лучшего металлического проводника таблицы Д.И. Менделеева , в 1000 раз хуже, чем у углеродных нанотрубок. При этом, электропроводность трубок зависит от индекса хиральности. В одних случаях нанотрубки могут быть полупроводниками, в других проявлять свойства практически идеальных проводников. В последнем случае через нанотрубки можно пропускать электрический ток величиной 10 7 А/см 2 и при этом они не будут выделять тепло (в то время как обычный проводник из меди сразу бы испарился),
– взаимная связь между электрическими и механическими свойствами,
– токсичность и канцерогенность, аналогичная асбестовым волокнам. Вместе с тем токчичность и канцерогенность нанотрубок (как и волокон асбеста) весьма различна и зависит от диаметра и типа волокон. На сегодняшний день продолжаются исследования по вопросу биологической совместимости нанотрубок с живыми организмами. Во всяком случае при работе с нанотрубками следует соблюдать меры безопасности, и в первую очередь обеспечить защиты органов дыхания и органов пищеварения,
– проявляют мемристорный эффект,
– занимают промежуточное положение между кристаллами и отдельными атомами. Поэтому применение углеродных нанотрубок будет способствовать миниатюризации устройств,
– с помощью углеродных нанотрубок можно создавать полупроводниковые гетероструктуры, т.е. структуры типа «металл/полупроводник» или стык двух разных полупроводников,
– обладая повышенной теплопроводностью, эффективно рассеивают тепло,
– ловят радиоволны частотой от 40 до 400 МГц (обычные АМ и FМ волны), а затем усиливают и передают их,
Углеродные нанотрубки
Для получения нанотрубки (n, m), графеновую плоскость надо разрезать по направлениям пунктирных линий и свернуть вдоль направления вектора R.
Идеальная нанотрубка представляет собой свёрнутую в цилиндр графитовую плоскость, то есть поверхность, выложенную правильными шестиугольниками, в вершинах которых расположены атомы углерода. Результат такой операции зависит от угла ориентации графеновой плоскости относительно оси нанотрубки. Угол ориентации, в свою очередь, задаёт [4] .
Индексы хиральности однослойной нанотрубки (m, n) однозначным образом определяют её диаметр D. Указанная связь имеет следующий вид:
>» width=»» height=»» /> = 0,142 нм — расстояние между соседними атомами углерода в графитовой плоскости. Связь между индексами .
Среди различных возможных направлений сворачивания нанотрубок выделяются те, для которых совмещение шестиугольника (m, n) с началом координат не требует искажения его структуры. Этим направлениям соответствуют, в частности, углы α = 30° (armchair конфигурация) и α = 0° (zigzag конфигурация). Указанные конфигурации отвечают хиральностям (n, n) и (0, n) соответственно.
Одностенные нанотрубки
Структура одностенных (single-walled) нанотрубок, наблюдаемых экспериментально, во многих отношениях отличается от представленной выше идеализированной картины. Прежде всего это касается вершин нанотрубки, форма которых, как следует из наблюдений, далека от идеальной полусферы [6] .
Особое место среди одностенных нанотрубок занимают так называемые armchair-нанотрубки или нанотрубки с [7] .
Многостенные нанотрубки
Многостенные (multi-walled) нанотрубки отличаются от одностенных значительно более широким разнообразием форм и конфигураций. Разнообразие структур проявляется как в продольном, так и в поперечном направлении.
Структура типа «матрёшки» (russian dolls) представляет собой совокупность коаксиально вложенных друг в друга цилиндрических трубок. Другая разновидность этой структуры представляет собой совокупность вложенных друг в друга коаксиальных призм. Наконец, последняя из приведённых структур напоминает свиток (scroll). Для всех структур на рис. характерно значение расстояния между соседними графеновыми слоями, близкое к величине 0,34 нм, присущей расстоянию между соседними плоскостями кристаллического графита [8] .
Реализация той или иной структуры многостенных нанотрубок в конкретной экспериментальной ситуации зависит от условий синтеза. Анализ имеющихся экспериментальных данных указывает, что наиболее типичной структурой многостенных нанотрубок является структура с попеременно расположенными по длине участками типа «русской матрёшки» и «папье-маше». При этом «трубки» меньшего размера последовательно вложены в трубки большего размера [8] . В пользу такой модели говорят, например, факты по История открытия
Фуллерен (C60) был открыт группой Смолли, Крото и Кёрла в 1985 г. [9] , за что в 1996 г. эти исследователи были удостоены Нобелевской премии по химии. Что касается углеродных нанотрубок, то здесь нельзя назвать точную дату их открытия. Хотя общеизвестным является факт наблюдения структуры многостенных нанотрубок Иидзимой в [10] , существуют более ранние свидетельства открытия углеродных нанотрубок. Так, например в 1974—1975 гг. Эндо и др. [11] опубликовали ряд работ с описанием тонких трубок с диаметром менее 100 Å, приготовленных методом конденсации из паров, однако более детального исследования структуры не было проведено. Группа ученых Института катализа СО АН СССР в 1977 году при изучении зауглероживания железохромовых катализаторов [12] , при этом был предложен механизм образования и описано строение стенок. В 1992 в Nature [13] была опубликована статья, в которой утверждалось, что нанотрубки наблюдали в 1953 г. Годом ранее, в 1952, в статье советских учёных [14] сообщалось об электронно-микроскопическом наблюдении волокон с диаметром порядка 100 нм, полученных при термическом разложении окиси углерода на железном катализаторе. Эти исследования также не были продолжены. В 2006 г, углеродные нанотрубки были обнаружены в дамасской стали [15] .
Существует множество теоретических работ по предсказанию данной [16] химик Джонс (Дедалус) размышлял о свёрнутых трубах графита. В работе Л. А. Чернозатонского и др. [17] , вышедшую в тот же год, что и работа Ииджимы, были получены и описаны углеродные нанотрубы, а М. Ю. Корнилов, профессор кафедры органической химии Киевского национального университета, не только предсказал существования одностенных углеродных нанотруб в 1986 г., но и высказал предположение об их большой упругости [18] .
Впервые возможность образования наночастиц в виде трубок была обнаружена для углерода. В настоящее время подобные структуры получены из нитрида бора, Структурные свойства
- упругие свойства; дефекты при превышении критической нагрузки:
- в большинстве случаев представляют собой разрушенную ячейку- графена следует, что дефектные нанотрубки будут искажаться аналогичным образом, то есть с возникновением выпуклостей (при 5-и) и седловидных поверхностей (при 7-и). Наибольший же интерес в данном случае представляет комбинация данных искажений, особенно расположенных друг напротив друга ( Электронные свойства нанотрубок
Электронные свойства графитовой плоскости
Спектр углеродной плоскости в первой зоне Бриллюэна. Показана только часть E(k)>0, часть E(k)<0 получается отражением в плоскости kx, ky.
- Дираковские точки (См. подробнее Графен)
Преобразование спектра при сворачивании плоскости в трубку
Сверху: Дираковские точки в зонной структуре графена Снизу: Выделение в зонной структуре графена разрёшенных k-состояния в случае полупроводниковой (слева) и металлической (справа) углеродной нанотрубки.
Тип проводимости нанотрубок зависит от их хиральности, т.е. от группы симметрии, к которым принадлежит конкретная нанотрубка, причем он подчиняется простому правилу: если индексы нанотрубки равны между собой или же их разность делится на три, нанотрубка является полуметаллом, в любом другом случае они проявляют полупроводниковые свойства.
Происхождение этого явления в следующем. Графитовую плоскость (графен) можно представить в виде бесконечно протяженной, в то время как нанотрубку с известными оговорками как одномерной объект. Если представить нанотрубный графеновый фрагмент в виде его развертки на графитовый лист, то видно, что в направлении свертки трубки количество разрешенных волновых векторов уменьшается до значений, вполне определенных индексами хиральности (длина такого вектора k обратно пропорциональна периметру трубки). На рисунке показаны примеры разрешенных k-состояний металлической и полупроводниковой нанотрубки. Видно, что если разрешённое значение волнового вектора совпадает с точкой К, в зонной картине нанотрубки также будет существовать пересечение валентной зоны и зоны проводимости и нанотрубка, соответственно, будет проявлять полуметаллические свойства, а в другом случае – полупроводниковые [19] .
- Поведение спектра при приложении продольного магнитного поля
Учёт взаимодействия электронов
- Сверхпроводимость в нанотрубках
Сверхпроводимость углеродных нанотрубок открыта исследователями из Франции и России (ИПТМ РАН, Черноголовка). Ими были проведены измерения вольт-амперных характеристик:
- отдельной одностенной нанотрубки диаметром
При температуре, близкой к 4 К, между двумя сверхпроводящими металлическими контактами наблюдался ток. В отличие от обычных трёхмерных проводников, перенос заряда в нанотрубке имеет ряд особенностей, которые, судя по всему, объясняются одномерным характером переноса (как, например, квантование сопротивления R: см. статью, опубликованной в Science [20] ).
Оптические свойства нанотрубок
Полупроводниковые модификации углеродных нанотрубок (разность индексов электрон-дырочных пар, приводящая к испусканию фотона. Прямозонность автоматически включает углеродные нанотрубки в число материалов Мемристорные свойства нанотрубок
В 2009 г., Yao, Zhang и др. [21] продемонстрировали [22] обнаружили мемристорный эффект на массиве разориентированных многослойных углеродных нанотрубок. Было установлено, что резистивное переключение в массиве обусловлено формированием проводящих каналов из УНТ ориентированных электрическим полем.
В 2013 г., Ageev, Blinov и др. [23] сообщили об обнаружении мемристорного эффекта на пучках вертикально ориентированных углеродных нанотрубок при исследовании методом сканирующей туннельной микроскопии. После, в 2015 г. эта же группа ученых показала [24] возможность резистивного переключения в индивидуальных вертикально ориентированных УНТ. Обнаруженный мемристорный эффект был основан на возникновении внутреннего электрического поля в УНТ при ее деформации.
Свойства интеркалированных нанотрубок
Возможные применения нанотрубок
- Механические применения: сверхпрочные нити, транзисторы, нанопровода, прозрачные проводящие поверхности, нейронами и электронными устройствами в новейших нейрокомпьютерных разработках.
- дисплеи, светодиоды.
- Медицина (в стадии активной разработки).
- Одностенные нанотрубки (индивидуальные, в небольших сборках или в сетях) являются миниатюрными датчиками для обнаружения молекул в газовой среде или в растворах с ультравысокой чувствительностью — при электросопротивление, а также характеристики нанотранзистора могут изменяться. Такие нанодатчики могут использоваться для мониторинга окружающей среды, в военных, медицинских и биотехнологических применениях.
- Трос для космического лифта: нанотрубки, теоретически, могут держать огромный вес — до тонны на квадратный миллиметр. Однако получить достаточно длинные углеродные трубки с толщиной стенок в один атом не удавалось до сих пор [25] , из-за чего приходится использовать нити, сплетённые из относительно коротких нанотрубок, что уменьшает итоговую прочность.
- Листы из углеродных нанотрубок можно использовать в качестве плоских прозрачных [26]
- Искусственные мышцы. Путём введения парафина в скрученную нить из нанотрубок международной команде ученых из университета Техаса удалось создать искусственную мышцу, которая в 85 раз сильнее человеческой [27]
- Генераторы энергии и двигатели. Нити из парафина и углеродных трубок могут поглощать тепловую и световую энергию и преобразовывать её в механическую. Опыт показывает, что такие нити выдерживают более миллиона циклов скручивания/раскручивания со скоростью 12.500 об/мин или 1.200 циклов сжатия/растяжения в минуту без видимых признаков износа. [28] Такие нити могут применяться для выработки энергии из солнечного света.
Получение углеродных нанотрубок
Формирование УНТ из фуллереновой сажи при высокотемпературном тепловом воздействии на сажу впервые наблюдали Оксфордская [30] и Швейцарская группы [31] . Установка для электродугового синтеза металлоемка, энергозатратна, но универсальна для получения различных типов углеродных наноматериалов. Существенной проблемой является неравновесность процесса при горении дуги. Электродуговой метод в своё время пришел на смену метода лазерного испарения ( [32] .
Однако, выход УНТ оставался низким. Введение в графит небольших добавок никеля и кобальта (по 0.5 ат.%) позволило увеличить выход УНТ до 70-90% [33] . С этого момента начался новый этап в представлении о механизме образования нанотрубок. Стало очевидным, что металл является катализатором роста. Так появились первые работы по получению нанотрубок низкотемпературным методом — методом каталитического углеводородов ( катализатора использовались частицы металла группы железа. Один из вариантов установки по получению нанотрубок и эффекта Гиббса-Томпсона [34] . Поэтому, наночастицы железа, с размером порядка 10 нм находятся в расплавленном состоянии ниже 600°С. На данный момент осуществлен низкотемпературный синтез УНТ методом каталитического пиролиза ацетилена в присутствии частиц Fe при 550°С. Снижение температуры синтеза имеет и негативные последствия. При более низких температурах получаются УНТ с большим диаметром (около 100 нм) и сильно дефектной структурой типа «бамбук» или «вложенные наноконусы». Полученные материалы состоят только из углерода, но к экстраординарным характеристикам (например, Волокна из углеродных трубок
Для практического применения УНТ в настоящее время ищется способ создания на их основе протяжённых волокон, которые в свою очередь можно будет сплести в многожильный провод. Уже удалось создать из углеродных нанотрубок протяженные волокна, которые обладают высокой электропроводностью и превосходящей сталь прочностью [35] .
Токсичность нанотрубок
Результаты экспериментов, проведённых в последние годы, показали, что длинные многостенные углеродные нанотрубки (МНТ) могут вызвать отклик, аналогичный Очистка от катализаторов
Наноразмерные металлические катализаторы являются важными компонентами многих эффективных методов синтеза УНТ и в особенности для [36] Во время синтеза катализаторы могут конвертировать углеродсодержащие соединения в трубчатый углерод, при этом они сами как правило становятся частично закапсулированны графитизированными слоями углерода. Таким образом, они могут стать частью результируемого УНТ-продукта. [37] Такие металлические примеси могут быть проблематичными для многих применений УНТ. Катализаторы как Никель, Кобальт или Иттрий могут вызвать к примеру, токсикологические проблемы. [38] В то время как незакапсулированные катализаторы сравнительно легко вымываются [39] Эффективное удаление катализаторов, особенно закапсулированных, с сохранением структуры УНТ представляет собой сложную и трудоёмкую процедуру. Многие варианты очистки УНТ уже были изучены и индивидуально оптимизированы с учётом качества используемых УНТ. [40] [41] Новый подход к очистке УНТ, дающий возможность одновременно вскрывать и выпаривать закапсулированные металлические катализаторы является чрезвычайно быстрый нагрев УНТ и его примесей в термической плазме. [42]
Углеродные нанотрубки: производство, применение, свойства
Энергетика является важной отраслью промышленности, которая играет огромную роль в жизни человека. Энергетическое состояние в стране зависит от работы многих ученых в данной отрасли. На сегодняшний день они занимаются поиском альтернативных источников энергии. Для этих целей они готовы использовать все что угодно, начиная солнечным светом и водой, заканчивая энергией воздуха. То оборудование, которое способно вырабатывать энергию из окружающей среды, очень ценится.
Общие сведения
Углеродные нанотрубки — это протяженные свернутые графитовые плоскости, имеющие цилиндрическую форму. Как правило, толщина их достигает нескольких десятков нанометров, с длиной в несколько сантиметров. На конце нанотрубок образуется сферическая головка, которая является одной из частей фуллерена.
Существуют такие типы углеродных нанотрубок: металлические и полупроводниковые. Главным их отличием является проводимость тока. Первый вид может проводить ток при температуре, равной 0ºС, а второй — только при повышенных температурах.
Углеродные нанотрубки: свойства
Большинство современных направлений, таких как прикладная химия или нанотехнологии, связаны с нанотрубками, которые имеют углеродную каркасную структуру. Что это такое? Под данной структурой подразумевают большие молекулы, связанные между собой только атомами углерода. Углеродные нанотрубки, свойства которых основаны на замкнутом виде оболочки, очень ценятся. Кроме того, данные образования имеют цилиндрическую форму. Такие трубки могут получаться путем сворачивания графитового листа, либо расти из определенного катализатора. Углеродные нанотрубки, фото которых представлены ниже, имеют необычную структуру.
Токсичность
В результате множественных исследований было выяснено, что углеродные нанотрубки могут вызывать такие же проблемы, как и асбестовые волокна, то есть возникают различные злокачественные опухоли, а также рак легких. Степень отрицательного влияния асбеста зависит от типа и толщины его волокон. Так как углеродные нанотрубки имеют маленький вес и размеры, они легко попадают в организм человека вместе с воздухом. Далее, они попадают в плевру и входят в грудную клетку, и со временем вызывают различные осложнения. Ученые провели эксперимент, и добавили в пищу мышей частички нанотрубок. Изделия малого диаметра практически не задерживались в организме, а вот более крупные — впивались в стенки желудка и вызывали различные заболевания.
Методы получения
На сегодняшний день существуют следующие методы получения углеродных нанотрубок: дуговой заряд, абляция, осаждение из газовой фазы.
Электродуговой разряд. Получение (углеродные нанотрубки описываются в данной статье) в плазме электрического заряда, который горит с применением гелия. Такой процесс может выполняться при помощи специального технического оборудования для получения фуллеренов. Но при данном способе используются другие режимы горения дуги. Например, плотность тока понижается, а также используют катоды огромных толщин. Для создания атмосферы из гелия необходимо повысить давление этого химического элемента. Углеродные нанотрубки получаются методом распыления. Чтобы их количество увеличилось, необходимо ввести в графитовый стержень катализатор. Чаще всего это смесь разных групп металла. Далее, происходит изменение давления и способа распыления. Таким образом, получается катодный осадок, где и образуются углеродные нанотрубки. Готовые изделия растут перпендикулярно от катода и собираются в пучки. Они имеют длину 40 мкм.
Аблясация. Такой способ был изобретен Ричардом Смалли. Суть его состоит в том, чтобы испарять разные графитовые поверхности в реакторе, работающем при высоких температурах. Углеродные нанотрубки образуются в результате испарения графита на нижней части реактора.
Осаждение из газовой фазы. Метод осаждения паров углерода был изобретен в конце 50-х годов. Но никто даже и не предполагал, что с помощью него можно получать углеродные нанотрубки. Итак, для начала необходимо подготовить поверхность с катализатором. В качестве него могут служить мелкие частицы разных металлов, например, кобальта, никеля и многих других. Нанотрубки начинают появляться из слоя катализатора. Их толщина напрямую зависит от размера катализирующего металла. Поверхность нагревается до высоких температур, а затем происходит подвод газа, содержащего углерод. Среди них — метан, ацетелен, этанол и т. д. В качестве дополнительного технического газа служит аммиак. Данный способ получения нанотрубок является самым распространенным. Сам процесс происходит на различных промышленных предприятиях, благодаря чему затрачивается меньше финансовых средств для изготовления большого количества трубок. Еще одним преимуществом такого метода является то, что вертикальные элементы могут получиться из любых частиц металла, служащих катализатором. Получение (углеродные нанотрубки описываются со всех сторон) стало возможным благодаря исследованиям Суоми Ииджима, который наблюдал под микроскопом за их появлением в результате синтеза углерода.
Основные виды
Углеродные элементы классифицируют по количеству слоев. Самый простой вид — одностенные углеродные нанотрубки. Каждая из них имеет толщину примерно 1 нм, причем их длина может быть намного больше. Если рассматривать строение, то изделие выглядит как обертывание графита с помощью шестиугольной сетки. В ее вершинах расположены атомы углерода. Таким образом, трубка имеет форму цилиндра, у которого нет швов. Верхняя часть устройств закрывается крышками, состоящими из молекул фуллерена.
Следующий вид — многослойные углеродные нанотрубки. Они состоят из нескольких слоев графита, которые сложены в форму цилиндра. Между ними выдерживается расстояние в 0,34 нм. Структуру данного типа описывают с помощью двух способов. По первому, многослойные трубки — это несколько вложенных друг в друга однослойных трубок, что похоже на матрешку. По второму, многослойные нанотрубки представляют собой лист графита, который несколько раз оборачивается вокруг себя, что похоже на свернутую газету.
Углеродные нанотрубки: применение
Элементы являются абсолютным новым представителем класса наноматериалов.
Благодаря таким характеристикам, как прочность, изгиб, проводимость, используются во многих областях:
- в качестве добавок к полимерам;
- катализатором для осветительных устройств, а также плоских дисплеев и трубок в телекоммуникационных сетях;
- в качестве поглотителя электромагнитных волн;
- для преобразования энергии;
- изготовления анодов в различных видах батареек;
- хранения водорода;
- изготовления датчиков и конденсаторов;
- производства композитов и усиления их структуры и свойств.
На протяжении многих лет углеродные нанотрубки, применение которых не ограничивается одной определенной отраслью, используются в научных исследованиях. Такой материал имеет слабые позиции на рынке, так как существуют проблемы с масштабным производством. Еще одним важным моментом является большая стоимость углеродных нанотрубок, которая составляет примерно 120 долларов за один грамм такого вещества.
Они применяются как основной элемент для производства многих композитов, которые используются для изготовления многих спортивных товаров. Еще одна отрасль —автомобилестроение. Функционализация углеродных нанотрубок в данной области сводится к наделению полимеров проводящими свойствами.
Коэффициент теплопроводности нанотрубок достаточно высок, поэтому их можно использовать в качестве охлаждающего устройства для различного массивного оборудования. Также из них изготавливают наконечники, которые присоединяются к зондовым трубам.
Важнейшей отраслью применения являются компьютерные технологии. Благодаря нанотрубкам создаются особо плоские дисплеи. При помощи их можно существенно уменьшить габаритные размеры самого компьютера, а также увеличить его технические показатели. Готовое оборудование будет в несколько раз превосходить нынешние технологии. На основе этих исследований можно создать высоковольтные кинескопы.
Со временем, трубки будут использоваться не только в электронике, но и медицинских и энергетических сферах.
Производство
Углеродные трубки, производство которых распределено между двумя их видами, распределено неравномерно.
Лидеры производства
На сегодня ведущее место в производстве углеродных нанотрубок занимают страны Азии, производственные возможности которых выше в 3 раза, чем в других странах Европы и Америки. В частности, изготовлением MWNT занимается Япония. Но другие страны, такие как Корея и Китай, никак не уступают в этом показателе.
Производство в России
Отечественное производство углеродных нанотрубок существенно отстает от других стран. На самом деле все зависит от качества проводимых исследований в данной области. Здесь не выделяется достаточно финансовых средств для создания научно-технологических центров в стране. Многие люди не воспринимают разработки в области нанотехнологий, потому что не знают, как это можно использовать в промышленности. Поэтому переход экономики на новую тропу проходит довольно сложно.
Поэтому президентом России был издан указ, в котором указываются пути развития различных областей нанотехнологий, в том числе и углеродных элементов. Для этих целей была создана особая программа развития и производства собственных технологий.
Как говорилось ранее, вся проблема состоит в привлечении средств. Большинство инвесторов не хотят вкладываться в научные разработки, тем более на длительное время. Все бизнесмены хотят видеть прибыль, но наноразработки могут идти годами. Именно это отталкивает представителей малого и среднего бизнеса. Кроме того, без государственного инвестирования не получится в полной мере запустить производство наноматериалов.
На сегодняшни день разработками в данной отрасли занимаются на химических факультетах различных университетов Москвы, Тамбова, Санкт-Петербурга, Новосибирска и Казани. Ведущими производителями углеродных нанотрубок являются фирма «Гранат» и тамбовский завод «Комсомолец».
Положительные и отрицательные стороны
Среди достоинств можно выделить особые свойства углеродных нанотрубок. Они являются прочным материалом, который под действием механических воздействий не разрушается. Кроме того, они хорошо работают на изгиб и растяжения. Это стало возможным благодаря замкнутой каркасной структуре. Их применение не ограничивается одной отраслью. Трубки нашли применение в автомобилестроении, электронике, медицине и энергетике.
Огромным недостатком является негативное воздействие на здоровье человека.
Существенной стороной является финансирование этой отрасли. Многие люди не хотят вкладываться в науку, так как для получения прибыли необходимо много времени. А без функционирования научно-исследовательских лабораторий развитие нанотехнологий невозможно.
Заключение
Углеродные нанотрубки играют важную роль в инновационных технологиях. Многие специалисты прогнозируют рост данной отрасли в ближайшие годы. Будет наблюдаться значительный рост производственных возможностей, что приведет к снижению стоимости на товар. С уменьшением цены, трубки будут пользоваться огромным спросом, и станут незаменимым материалом для многих устройств и оборудования.