Куда направлена сила лоренца действующая на протон
Перейти к содержимому

Куда направлена сила лоренца действующая на протон

Сила Лоренца: определение, формула, применение на практике

Мари Ампер доказал, что при наличии электрического тока в проводнике, оказавшемся в магнитном поле, он взаимодействует с силами этого поля. Учитывая то, что электрический ток – это не что иное, как упорядоченное движение электронов, можно предположить, что электромагнитные поля подобным образом действуют также на отдельно взятую заряженную частицу. Это действительно так. На точечный заряд действует сила Лоренца, модуль которой можно вычислить по формуле.

Определение и формула

Хендрик Лоренц доказал, что электромагнитная индукция взаимодействует с заряженными частицами. Эти взаимодействия приводят к возникновению силы Лоренца. Рассматриваемая сила возникает под действием магнитной индукции. Она перпендикулярна вектору скорости движущейся частицы (см. рис. 1). Необходимым условием возникновения этой силы является движение электрического заряда.

Выводы Лоренца

Рис. 1. Выводы Лоренца

Обратите внимание на расположение векторов (рисунок слева, вверху). Векторы, указывающие направления скорости и силы Лоренца, лежат в одной плоскости XOY, причём они расположены под углом 90º. Вектор магнитной индукции сориентирован вдоль оси Z, перпендикулярной плоскости XOY, а значит, в выбранной системе координат он перпендикулярен к векторам силы и скорости.

По закону Ампера

Учитывая, что

Формулы для расчета

(здесь j – плотность тока, q – единичный заряд, n – количество зарядов на бесконечно малую единицу длины проводника, S – сечение проводника, символом v обозначен модуль скорости движущейся частицы), запишем формулу Ампера в виде:

Вариант записи формулы Ампера

Так, как nSdl общее число зарядов в объёме проводника, то для нахождения силы, действующей на точечный заряд, разделим выражение на количество частиц:

Сила действующая на точечный заряд формула

Модуль F вычисляется по формуле:

модуль силы F

Из формулы следует:

  1. Сила Лоренца приобретает максимальное значение, если угол α прямой.
  2. Если точечный заряд, например, электрон, попадает в среду однородного магнитного поля, обладая некой начальной скоростью, перпендикулярной к линиям электромагнитной индукции, тогда вектор F будет перпендикулярен к вектору скорости. На точечный заряд будет действовать центробежная сила, которая заставит его вращаться по кругу. При этом работа равняется нулю (см. рис.2).
  3. Если угол между вектором индукции и скоростью частицы не равняется 90º, тогда заряд будет двигаться по спирали. Направление вращения зависит от полярности заряда (рис. 3).

Из рисунка 3 видно, что вектор F направлен в противоположную сторону, если знак заряда меняется на противоположный (при условии, что направления остальных векторов остаются неизменными).

Траекторию движения частицы правильно называть винтовой линией. Радиус этой винтовой линии (циклотронный радиус) определяется перпендикулярной к полю составной начальной скорости частицы. Шаг винтовой линии, вдоль которой перемещается частица, определяется составной начальной скорости заряда, вошедшего в однородное магнитное поле. Эта составная направлена параллельно к электромагнитным линиям.

В чём измеряется?

Размерность силы Лоренца в международной системе СИ – ньютон (Н). Разумеется, модуль силы Лоренца настолько крохотная величина, по сравнению с ньютоном, что её записывают в виде К×10 -n Н, где 0<К<1, а n – порядок числа 10.

Когда возникает?

Магнитные поля не реагируют на неподвижный электрический заряд, так же как не действует сила Ампера на обесточенный проводник.

Для возникновения силы Лоренца необходимо выполнить три условия:

  1. У частицы должен быть отрицательный или положительный заряд.
  2. Заряженная частица должна находиться в магнитном поле.
  3. Частица должна быть в движении, то есть вектор v ≠ 0.

Если хотя бы одно из условий не выполняется, сила Лоренца не возникает.

Формула силы Лоренца при наличии магнитного и электрического полей

Рассмотрим случай, когда заряженная частица находится в движении в двух полях одновременно (в электрическом и магнитном), тогда на заряд подействуют две составляющие:

2 составляющие действующие на заряд

Формула силы Лоренца

Поскольку эту формулу вывел Лоренц, то её также называют именем учёного-физика.

Направление силы Лоренца

Мы уже упоминали, что направление возникшей силы Лоренца, кроме магнитных параметров, определяется (в том числе) полярностью заряда. Если бы мы имели возможность наблюдать заряженную элементарную частицу, пребывающую в магнитном поле, то по вектору её перемещения можно было бы определить направление вектора силы F.

Но на практике наблюдать элементарные заряды очень сложно из-за крохотных размеров. Поэтому для определения этого направления применяют способ, известен, как правило левой руки (рис. 4).

Нахождение вектора силы Лоренца

Рис. 4. Нахождение вектора силы Лоренца

Ладонь необходимо развернуть так, чтобы вектор индукции входил в неё. В случае с положительным зарядом, вытянутые пальцы располагают по движению частицы. (для отрицательного заряда пальцы направляют в противоположную сторону). Большой палец под прямым углом указывает искомое направление.

Если известна ориентация вектора скорости частицы, то определить направления остальных векторов можно, применяя правило правой руки, которое понятно из рисунка 5.

Пример применения правила правой руки

Рис. 5. Пример применения правила правой руки

Применение на практике

Практическое значение работ Лоренца мы можем наблюдать в электронно-лучевых трубках. Там поток электронов движется в магнитном поле, изменением которого задаётся траектория электронного пучка.

Данный принцип управления траекторией электронного пучка использовался в старых моделях телевизоров Рис. 6). Электроны под воздействием магнитных полей очерчивали линии на люминофоре кинескопа, рисуя изображения на экране.

Применение учения Лоренца

Рис. 6. Применение учения Лоренца

На рисунке справа изображена схема масспектрографа – прибора для разделения заряженных частиц по величине их зарядов.

Ещё один пример – бесконтактный электромагнитный метод определения скорости течения (вязкости) электропроводных жидкостей. Методика может быть применима к расплавленным металлам, например к алюминию. Бесконтактный способ определения вязкости очень полезен при работе с агрессивными жидкими электропроводными веществами (рис. 7).

Измерение текучести жидких веществ

Рис. 7. Измерение текучести жидких веществ

Работа ускорителей была бы невозможной без участия силы Лоренца. В этих устройствах заряженные частицы удерживаются и разгоняются до околосветовых скоростей благодаря электромагнитам, расположенным вдоль кольцевой трассы.

Мощная электронная лампа – Магнетрон также работает на принципе взаимодействия электронов с магнитными полями, которые направляют высокочастотное излучение в нужном направлении. Магнетрон является основной рабочей деталью микроволновых печей.

На основании действия силы Лоренца создано много других устройств, используемых на практике.

Куда направлена сила лоренца действующая на протон

Задания Д15 № 5296

Протон р имеет скорость направленную горизонтально вдоль прямого длинного проводника с током I (см.&nbspрисунок). Куда направлена действующая на протон сила Лоренца?

1) перпендикулярно плоскости рисунка от нас

2) вертикально вверх в плоскости рисунка ↑

3) горизонтально влево в плоскости рисунка ←

4) вертикально вниз в плоскости рисунка ↓

Согласно правилу правой руки: «Если отведенный в сторону большой палец правой руки расположить по направлению тока, то направление обхвата провода четырьмя пальцами покажет направление линий магнитной индукции». Следовательно, вектор магнитной индукции поля, создаваемого проводником в точке, где находится протон, направлен перпендикулярно плоскости рисунка от нас.

Направление силы Лоренца определяется правилом левой руки: «Если левую руку расположить так, чтобы линии индукции магнитного поля входили в ладонь перпендикулярно ей, а четыре пальца были направлены по току (по движению положительно заряженной частицы или против движения отрицательно заряженной), то отставленный большой палец покажет направление действующей силы Лоренца». Протон заряжен положительно. Мысленно проделав для него описанные выше действия, получаем, что сила Лоренца направлена вертикально вверх в плоскости рисунка ↑.

Сила Лоренца

Протон \(p\) , влетевший в зазор между полюсами электромагнита, имеет скорость \(v\) , которая перпендикулярна вектору индукции \(B\) магнитного поля, направленному вертикально (см. рис.). Как направлена действующая на протон сила Лоренца \(F\) ?
1) горизонтально влево
2) от наблюдателя
3) вертикально вверх
4) к наблюдателю

По правилу левой руки: «Если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а вытянутые четыре пальца совпадали с направлением движения заряда, то отогнутый большой палец укажет направление силы Лоренца, действующей на положительный заряд».Поскольку протон несет положительный заряд, мысленно проделав указанные действия, получаем, что сила Лоренца направлена к наблюдателю.

Протон \(p\) имеет горизонтальную скорость \(v\) , направленную вдоль прямого длинного проводника с током \(I\) (см. рисунок). Куда направлена действующая на протон сила Лоренца \(F\) ?
1) вертикально вверх в плоскости рисунка
2) вертикально вниз в плоскости рисунка
3) горизонтально влево в плоскости рисунка
4) перпендикулярно плоскости рисунка к нам

Направление вектора магнитной индукции определим по правилу правой руки. В соответствии с этим правилом, получаем направление вектора \(\vec\) от нас перпендикулярно плоскости чертежа.
По правилу левой руки: «Если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а вытянутые четыре пальца совпадали с направлением движения заряда, то отогнутый большой палец укажет направление силы Лоренца, действующей на положительный заряд».Поскольку протон несет положительный заряд, мысленно проделав указанные действия, получаем, что сила Лоренца направлена вверх в плоскости рисунка.

В некоторый момент времени скорость \(v\) электрона \(e\) движущегося в магнитном поле, направлена вдоль оси x (см. рисунок). Как направлен вектор магнитной индукции B, если в этот момент сила Лоренца, действующая на электрон, направлена вдоль оси y?
1) из плоскости чертежа от нас
2) в отрицательном направлении оси х
3) в положительном направлении оси х
4) из плоскости чертежа к нам

По правилу левой руки: «Если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а вытянутые четыре пальца совпадали с направлением движения заряда, то отогнутый большой палец укажет направление силы Лоренца, действующей на положительный заряд».Поскольку электрон несет отрицательный заряд (то пальцы направляем против скорости), мысленно проделав указанные действия, получаем, что вектор магнитной индукции направлен от нас в плоскости чертежа.

Протон \(р\) имеет скорость \(v\) , направленную горизонтально вдоль прямого длинного проводника с током \(I\) (см. рис.). Определите направление действующей на протон силы Лоренца?
1) перпендикулярно плоскости рисунка от нас
2) вертикально вверх в плоскости рисунка
3) горизонтально влево в плоскости рисунка
4) вертикально вниз в плоскости рисунка

Направление вектора магнитной индукции определим по правилу правой руки. “Если обхватить проводник правой рукой так, чтобы оттопыренный большой палец указывал направление тока, то остальные пальцы покажут направление огибающих проводник линий магнитной индукции поля, создаваемого этим током, а значит и направление вектора магнитной индукции, направленного везде по касательной к этим линиям.” В соответствии с этим правилом, получаем направление вектора \(\vec\) от нас перпендикулярно плоскости чертежа.
По правилу левой руки: «Если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а вытянутые четыре пальца совпадали с направлением движения заряда, то отогнутый большой палец укажет направление силы Лоренца, действующей на положительный заряд».Поскольку протон несет положительный заряд, мысленно проделав указанные действия, получаем, что сила Лоренца направлена вверх в плоскости рисунка.

Электрон \(e\) , влетевший в зазор между полюсами электромагнита, имеет горизонтальную скорость \(v\) которая перпендикулярна вектору индукции B магнитного поля, направленному горизонтально (см. рисунок). Как направлена действующая на электрон сила Лоренца F?
1) вертикально вниз
2) вертикально вверх
3) горизонтально влево
4) горизонтально вправо

По правилу левой руки: «Если левую руку расположить так, чтобы линии магнитной индукции входили в ладонь, а вытянутые четыре пальца совпадали с направлением движения заряда, то отогнутый большой палец укажет направление силы Лоренца, действующей на положительный заряд». Поскольку электрон несет отрицательный заряд (то пальцы направляем против скорости), мысленно проделав указанные действия, получаем, что вектор магнитной индукции направлен вертикально вверх.

Электрон \(e\) движется в магнитном поле с индукцией \(B\) со скоростью \(v\) . Как направлена относительно рисунка (вправо, влево, вверх, вниз, к наблюдателю, от наблюдателя) вызванная этим полем сила Лоренца, действующая на электрон? Ответ запишите словом (словами) без разделения пробелом.

На электрон будет действовать сила Лоренца, которая определяется по правилу левой руки: «Если левую руку расположить так, чтобы линии индукции магнитного поля входили во внутреннюю сторону ладони, перпендикулярно к ней, а четыре пальца были направлены по току (по движению положительно заряженной частицы или против движения отрицательно заряженной), то отставленный на 90° большой палец покажет направление действующей силы Лоренца. Так как электрон это отрицательно заряженная частица, то сила Лоренца будет действовать влево.

Электрон \(e\) движется в магнитном поле с индукцией \(B\) со скоростью \(v\) . Как направлена относительно рисунка (вправо, влево, вверх, вниз, к наблюдателю, от наблюдателя) вызванная этим полем сила Лоренца, действующая на электрон? Ответ запишите словом (словами) без разделения пробелом.

На электрон будет действовать сила Лоренца, которая определяется по правилу левой руки: «Если левую руку расположить так, чтобы линии индукции магнитного поля входили во внутреннюю сторону ладони, перпендикулярно к ней, а четыре пальца были направлены по току (по движению положительно заряженной частицы или против движения отрицательно заряженной), то отставленный на 90° большой палец покажет направление действующей силы Лоренца. Так как электрон это отрицательно заряженная частица, то сила Лоренца будет действовать вправо.

Куда направлена сила лоренца действующая на протон

У нас давно не было, что называется, “практического” параграфа, в котором бы рассматривалась какая-нибудь задача на применение ранее изученного материала. Сейчас мы это исправим.

Пусть есть протон, движущийся в однородном магнитном поле со скоростью, равной 1/10 скорости света. Величина магнитной индукции равна 2 теслам.

Сперва нужно найти как величину, так и направление силы Лоренца, которая будет действовать на эту заряженную частицу.

Как мы помним, для магнитного поля прежде всего важны заряд частицы и ее скорость. Что занимательно, потому что пока не очень понятно, чем таким особенным отличаются движущиеся частицы от неподвижных. Первых магнитное поле распознает, а вот вторых – нет. Ну ладно, не об этом сейчас речь. В данный момент для нас имеет значение тот факт, что величину силы Лоренца мы вычислить способны:

Учитывая, что заряд нашей элементарной частицы равен по величине заряду электрона, скорость света равна c=3⋅10^8\,м/с (не забывайте, что скорость протона в 10 раз меньше), а угол между вектором скорости и вектором магнитной индукции составляет 90 градусов, найдем значения силы, действующей на протон со стороны магнитного поля:

Теперь нужно определить ее направление. Для этого воспользуемся правилом левой руки.

Вектор магнитной индукции направлен на нас, а вектор скорости протона направлен вправо. Отогнутый на 90 градусов большой палец левой руки в плоскости рисунка указывает на юг.

Как видите, сила Лоренца направлена перпендикулярно к вектору скорости, поэтому она не будет менять его величину. Но она будет менять его направление. В данном случае сила Лоренца будет центростремительной силой, заставляющей протон двигаться по окружности.

Предположим, что нам нужно определить радиус этой окружности. Это нетрудно сделать, если применить пару фактов из области механики.

Вспомним второй закон Ньютона:

В данном случае мы можем не учитывать направления векторных величин, а работать только с их модулями.

Единственная сила, которая будет действовать на протон, – это сила Лоренца. Она будет сообщать ему центростремительное ускорение, которое может быть найдено через квадрат скорости частицы и радиус окружности, по которой она вращается:

Нам осталось посмотреть значение массы протона в справочных таблицах ( m\approx<1.7⋅10^<-27>\,кг> ) и подставить числа в полученное выражение, чтобы найти ответ:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *