Почему активная мощность не может быть отрицательной
Перейти к содержимому

Почему активная мощность не может быть отрицательной

Активная, реактивная, полная и комплексная мощности.

Активная мощность, которая была определена как среднее значение мгновенной мощности за период, характеризует среднюю за период скорость поступления энергии в двухполюсник и численно равна постоянной составляющей мгновенной мощности (2.106).

По знаку активной мощности можно судить о направлении передачи энергии: при РЛ > 0 двухполюсник потребляет энергию, при РЛ Pq > 0 энергия запасается в магнитном поле цени, при Pq в электрическом; при Pq = 0 в цепи отсутствует обмен энергией с источником.

С учетом выражений (2.111) и (2.112) выражение (2.110) можно записать следующим образом:

Следовательно, комплексная мощность представляет собой комплексное число, вещественная часть которого равна активной мощности цепи РЛ, а мнимая — реактивной Pq.

Комплексному числу Ps можно поставить в соответствие вектор ?5, проекции которого на вещественную и мнимую оси равны Рл и Pq (рис. 2.28, а). Прямоугольный треугольник с гипотенузой, равной Р$, и катетами Рл и Pq называется треугольником мощностей. Из рисунка очевидно, что полная, активная и реактивная мощности связаны между собой соотношением

В связи с тем, что треугольник мощностей цепи подобен треугольнику сопротивлений этой же цепи (рис. 2.28, б), комплексная мощность Ps и ее компоненты PSf РЛ, Pq могут быть выражены через комплексное сопротивление цепи Z и его компоненты 2, г, т.

Найдем связь между комплексной мощностью и комплексными действующими значениями тока и напряжения на зажимах цепи. Подставляя в формулу (2.109) выражения (2.107) и (2.48), получаем

Треугольники мощностей (а) и сопротивлений (б) произвольного пассивного двухполюсника

Рис. 2.28. Треугольники мощностей (а) и сопротивлений (б) произвольного пассивного двухполюсника

JXVi — комплексно-сопряженный ток (число, комплексно-сопряженное с током /).

Таким образом, комплексная мощность цепи равна произведению комплексного напряжения цепи U на комплексно-сопряженный ток /.

Активная, реактивная, полная и комплексная мощности имеют одинаковую размерность [Дж/с]. Однако, для того чтобы подчеркнуть различный физический смысл, который вкладывается в эти понятия, единицам измерения данных величин присвоены различные названия. Активная мощность, так же как и мгновенная, выражается в ваттах |Вт|, полная и комплексная мощности — в вольт-амперах [В • А], реактивная мощность — в вольт-амперах реактивных [вар].

Пример 2.7. Напряжение и ток на зажимах произвольного двухполюсника изменяются по гармоническому закону:

Рассчитать полную, активную, реактивную и комплексную мощности двухполюсника.

Определим комплексный ток /, комплексное напряжение U и сдвиг фаз ф между током и напряжением на зажимах двухполюсника:

Подставляя эти величины в выражения (2.107), (2.108), (2.112) и (2.109), находим искомые мощности:

Активная, реактивная, полная и комплексная мощности

Активная мощность, как и мгновенная мощность, измеряется в ваттах (Вт). Активная мощность равна средней скорости потребления энергии двухполюсником. Для пассивных цепей, потребляющих электрическую энергию, значение активной мощности не может быть отрицательным: РА> 0. Случай РА = 0 соответствует цепи, состоящей только из реактивных элементов, для которых I (р I = я/2. Если пассивная цепь содержит хотя бы один резистивный элемент, то для нее I cp I 0. Цепь, для которой РА 0 и PQ > 0. В случае, если комплексное сопротивление цепи имеет емкостной или резистивно-емкостной, характер (р 0 в цепи имеет место запасание энергии магнитного поля, а при отрицательной реактивной мощности PQ j(p через комплексное напряжение и комплексный ток на зажимах цепи. С учетом того, что Ps = UI, ф = i|/и — |/j, получаем

Поскольку U =Ue JV|u — комплексное напряжение на зажимах

цепи, I = Ie -JVi — комплексно-сопряженный ток (комплексное число, сопряженное с комплексным током I = Ie m ), получаем следующее выражение для комплексной мощности:

С учетом закона Ома U = IZ и соотношения 11 = 1“ получаем выражение для комплексной мощности пассивного двухполюсника через его комплексное сопротивление Z

Поскольку Z = ze jlp = г +jx, то выражение (5.10) можно представить в виде

С учетом (5.6) и (5.7) можно записать комплексную мощность в алгебраической форме

Сравнивая выражения (5.11) и (5.12), получаем выражения для активной и реактивной мощностей через резистивную и реактивную составляющие комплексного сопротивления:

Полная мощность, в свою очередь, выражается через полное сопротивление цепи:

Большая Энциклопедия Нефти и Газа

При этом положительные значения мощности ( четные четверти периода) соответствуют потреблению энергии катушкой ( энергия запасается магнитным, полем катушки), отрицательные значения мощности соответствуют возврату запасенной энергии обратно источнику.  [5]

При указанных на схеме положительных направлениях токов и напряжений положительные значения мощностей соответствуют притоку энергии к рассматриваемым элементам от остальной цепи, а отрицательные значения мощностей — передаче энергии из рассматриваемых элементов в цепь. Суммарная активная мощность, обусловленная взаимной индукцией, поступающая в оба элемента, равна нулю Рш — — Р2М, суммарная реактивная мощность, обусловленная взаимной индукцией, в общем случае отлична от нуля и может быть величиной как положительной, так и отрицательной.  [6]

При указанных на схеме положительных направлениях токов и напряжений положительные значения мощностей соответствуют притоку энергии к рассматриваемым элементам от активного четырехполюсника, а отрицательные значения мощностей — передаче энергии из рассматриваемых элементов в четырехполюсник.  [7]

Действительно, 3.14 площадь, ограниченная огибающей положительных значений мощности и осью абсцисс, представляет собой энергию, поступающую в индуктивность, а площадь, ограниченная огибающей отрицательных значений мощности и осью абсцисс, — энергию, возвращаемую индуктивностью источнику за четверть периода изменения тока через индуктивность.  [8]

Во вторую четверть периода, когда напряжение уменьшается от Um до нуля, конденсатор разряжается, а энергия, запасенная в электрическом поле конденсатора, возвращается источнику напряжения, что соответствует отрицательному значению мощности .  [9]

При уменьшении тока, а следовательно и магнитного потока ( вторая и четвертая четверти периода, рис. 6 — 5), происходит уменьшение энергии магнитного поля от максимального значения до нуля, которая возвращается цепью генератору. Таким образом, в эти части периода цепь работает в режиме генератора, что соответствует отрицательному значению мощности цепи с индуктивностью.  [10]

При уменьшении напряжения ( вторая и четвертая четверти периода, рис. 6 — 18) происходит уменьшение накопленной энергии электрического поля от максимального значения до нуля и она возвращается цепью генератору. Таким образом, в эти части периода цепь работает в режиме генератора, что соответствует отрицательному значению мощности цепи с емкостью. Энергия, получаемая цепью за полупериод, равна нулю, следовательно, равна нулю и средняя мощность цепи.  [11]

Из синусоидальной диаграммы ( рис. 4 — 17) видно, что возрастанию тока соответствуют положительные значения мощности. В это время магнитное поле вокруг цепи усиливается и электромагнитная энергия источника переходит в энергию магнитного поля цепи. Убыванию тока соответствуют отрицательные значения мощности . В это время магнитное поле ослабевает и его энергия переходит в электромагнитную и возвращается обратно к источнику энергии.  [12]

В цепи, содержащей активное, индуктивное и емкостное сопротивления, в которой ток / и напряжение и в общем случае сдвинуты по фазе на некоторый угол ф, мгновенное значение мощности р равно произведению мгновенных значений силы тока / и напряжения и. Кривую мгновенной мощности р можно получить перемножением мгновенных значений тока i и напряжения и при различных углах ш / ( рис. 199, о), Из этого рисунка видно, что в некоторые, моменты времени, когда ток и напряжение направлены навстречу друг другу, мощность имеет отрицательное значение. Возникновение в электрической цепи отрицательных значений мощности является вредным. Это означает, что в такие периоды времени приемник возвращает часть полученной электроэнергии обратно источнику; в результате уменьшается мощность, передаваемая от источника к приемнику. Очевидно, что чем больше угол сдвига фаз ф, тем больше время, в течение которого часть электроэнергии возвращается обратно к источнику, и тем больше возвращаемая обратно энергия и мощность.  [13]

Активная реактивная и полная мощность

Многие потребители электроэнергии не подозревают того, что часть учтённого электричества расходуется бесполезно. В зависимости от вида нагрузки уровень потерь электроэнергии может достигать от 12 до 50%. При этом счетчики электроэнергии засчитывают эти потери, относя их к полезной работе, за что приходится платить. Виной завышения оплаты за потребление электроэнергии, не выполняющей полезной работы, является реактивная мощность, присутствующая в сетях переменных токов.

Чтобы понять, за что мы переплачиваем и как компенсировать влияние реактивных мощностей на работу электрических установок, рассмотрим причину появления реактивной составляющей при передаче электроэнергии. Для этого придётся разобраться в физике процесса, связанного с переменным напряжением.

Что такое реактивная мощность?

Для начала рассмотрим понятие электрической мощности. В широком смысле слова, этот термин означает работу, выполненную за единицу времени. По отношению к электрической энергии, понятие мощности немного откорректируем: под электрической мощностью будем понимать физическую величину, реально характеризующую скорость генерации тока или количество переданной либо потреблённой электроэнергии в единицу времени.

Понятно, что работа электричества в единицу времени определяется электрической мощностью, измеряемой в ваттах. Мгновенную мощность на участке цепи находят по формуле: P = U×I, где U и I – мгновенные значения показателей параметров напряжения и силы тока на данном участке.

Строго говоря, приведённая выше формула справедлива только для постоянного тока. Однако, в цепях синусоидального тока формула работает лишь тогда, когда нагрузка потребителей чисто активная. При резистивной нагрузке вся электрическая энергия расходуется на выполнение полезной работы. Примерами активных нагрузок являются резистивные приборы, такие как кипятильник или лампа накаливания.

При наличии в электрической цепи ёмкостных или индуктивных нагрузок, появляются паразитные токи, не участвующие в выполнении полезной работы. Мощность этих токов называют реактивной.

На индуктивных и ёмкостных нагрузках часть электроэнергии рассеивается в виде тепла, а часть препятствует выполнению полезной работы.

К устройствам с индуктивными нагрузками относятся:

  • электромоторы;
  • дроссели;
  • трансформаторы;
  • электромагнитные реле и другие устройства, содержащие обмотки.

Ёмкостными сопротивлениями обладают конденсаторы.

Чему равна полная мощность

Теория комплексных чисел позволит тщательно разобраться в понятии полных, активных, реактивных мощностей. Соответственно, можно легко определить коэффициент. Данная теория представляет собой целый треугольник мощностей активная, реактивная и полная.


Вычисление активной производительности трёхфазной цепи

Активная производительность

Единица измерения активной мощности электрической трёхфазной цепи — ватт (русское обозначение: Вт, киловатт — кВт; международное: ватт -W, киловатт — kW).

Вам это будет интересно Переход с 380 на 220 вольт

Важно! Средняя мгновенная производительность, которая обозначается буквой Т — это активная мощность.

Там, где преобладает несинусоидальный ток, равенство электрической ёмкости соответствует средним мощностям отдельных элементов. Активная величина — это прежде всего скорость необратимого преобразования электрической энергии в другие виды энергии. К ним относится тепловая и электромагнитная. Как правило, активная производительность выражается через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g.

Определяя любую электрическую цепь (синусоидальный или несинусоидальный ток) активная отдача всей цепи будет равна сумме активных мощностей отдельных элементов. Важно отметить, что для трёхфазных цепей электрическая производительность определяется как сумма производительности отдельных фаз. С полной ёмкостью S, активная связана соотношением полной и активной отдачи.

К сожалению, потребителю электроэнергии приходится платить не за активную (полезную) мощность, а за полную мощность. Разница в мощности на входе и на выходе системы бесперебойного питания составила 58 кВА! Необходимо учесть, что тариф за потребление электроэнергии с низким cosj (Pf) существенно выше. Таким образом, применение системы бесперебойного питания позволило не только защитить оборудование от исчезновения и провалов напряжения, но и получить существенную экономию электроэнергии.

Рассматривая длинные линии (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая производительность, которая определяется как разность между падающей и отраженной пропускной способностью.


Определение реактивной величины на примере

Реактивная емкость

Часто возникает вопрос о том, что такое реактивная мощность — величина, характеризующая нагрузку, которая создаётся в электросистемах колебаниями энергии электромагнитного поля в цепи, где преобладает синусоидальный переменный ток.

Реактивная ёмкость представляет собой энергию, которая переносится от источника на реактивные элементы прибора. К ним можно отнести: индуктивность, конденсатор, обмотки двигателей. После чего данная емкость вместе с элементами перемещается в источник в течение одного периода колебаний.

Важно подчеркнуть, что показатель sin φ для значения φ от 0 до плюс 90° представляет собой положительную величину. Данное значение, которое обозначается как sin φ для φ от 0 до минус 90° является — это отрицательная величина. Учитывая формулу, по которой происходит определение реактивной производительности, можно получить как положительную величину (при нагрузке с активно-индуктивным характером), так и отрицательную (при нагрузке с активно-ёмкостным характером). Всё это характеризуется тем, что реактивная отдача не происходит когда поступает электрический ток.

Некоторые электросистемы обладают положительной реактивной емкостью. Здесь уже говорится о том, что происходит нагрузка активно-индуктивного характера. Когда определяется отрицательная производительность то здесь производится нагрузка с активно-ёмкостным характером. Этот фактор характеризуется тем, что многие электропотребляющие устройства, подключение которых происходит при помощи трансформатора, являются активно-индуктивными.

Вам это будет интересно Коэффициент измерения цветопередачи

Электрические станции оснащены синхронными генераторами. Они могут потреблять и производить реактивную ёмкость. Кроме того происходит определение величины электрического тока возбуждения, который поступает в обмотки ротора генератора. Благодаря отличительным особенностям синхронной электрической машины можно свободно регулировать заданный уровень напряжения сети. Чтобы снизить нагрузки, а также повысить коэффициент производительности электросистем, специалисты производят компенсацию реактивной ёмкости.

Обратите внимание! Если использовать современные электрические измерительные преобразователи на микропроцессорной технике, тогда производится точная оценка показателя энергии от индуктивной и нагрузки ёмкости в источник переменного напряжения.


Определение полной производительности

Полная емкость

Для того чтобы определить какие системы обладают полной производительностью, необходимо изучить особенности данной величины. Полная мощность — это физическая величина, равная произведению действующих элементов периодического электрического тока I в цепи и напряжения U на её зажимах. Для определения соотношения полной отдачи с активной и реактивной емкостями нужно расшифровать значения, которые вычисляются по формуле. Например, соотношение производительности, где P — активная, Q — представляет собой реактивную пропускную способность (если нагрузка индуктивного характера Q»0, а при ёмкостной обозначается — Q»0).

Важно! Полная производительность описывает нагрузку, налагается на элементы подводящей электросети (проводам, распределительным щитам, трансформаторам, линиям электропередач). Ведь вся эта нагрузка зависит от потребляемой энергии, а не от расходующей пользователем энергии. Исходя из этих результатов полная мощность трансформатора или распределительного щита измеряют в вольт-амперах, а не в ваттах.


По какой единице измеряется ёмкость

Физика процесса

Когда мы имеем дело с цепями постоянного тока, то говорить о реактивной мощности не приходится. В таких цепях значения мгновенной и полной мощности совпадают. Исключением являются моменты включения и отключения ёмкостных и индуктивных нагрузок.

Похожая ситуация происходит при наличии чисто активных сопротивлений в синусоидальных цепях. Однако если в такую электрическую цепь включены устройства с индуктивными или ёмкостными сопротивлениями, происходит сдвиг фаз по току и напряжению (см. рис.1).

При этом на индуктивностях наблюдается отставание тока по фазе, а на ёмкостных элементах фаза тока сдвигается так, что ток опережает напряжение. В связи с нарушением гармоники тока, полная мощность разлагается на две составляющие. Ёмкостные и индуктивные составляющие называют реактивными, бесполезными. Вторая составляющая состоит из активных мощностей.


Рис. 1. Сдвиг фаз индуктивной нагрузкой

Угол сдвига фаз используется при вычислениях значений активных и реактивных ёмкостных либо индуктивных мощностей. Если угол φ = 0, что имеет место при резистивных нагрузках, то реактивная составляющая отсутствует.

Важно запомнить:

  • резистор потребляет исключительно активную мощность, которая выделяется в виде тепла и света;
  • катушки индуктивности провоцируют образование реактивной составляющей и возвращают её в виде магнитных полей;
  • Ёмкостные элементы (конденсаторы) являются причиной появления реактивных сопротивлений.

Измерение мощности

Измерять мощность трёхфазных цепей позволяют ваттметры, специальные приборы, предназначенные для этой цели. Их количество и способы подключения зависят от конкретной электрической цепи: её характеристик и схемы подключения нагрузок. Трёхфазные сети различают по количеству подводящих проводов и распределением нагрузки по фазам, а именно:

  • трёхпроводная система;
  • четырёхпроводная система;
  • равномерная нагрузка;
  • асимметричная нагрузка.

Симметричная нагрузка

Если система состоит из четырёх проводов (3 фазы и «ноль»), а нагрузка равномерно распределена между фазами, то для того, чтобы узнать суммарную величину мощности, достаточно иметь один прибор для измерения. Токовую обмотку ваттметра последовательно подключают в один из линейных проводов, а между линейным и нулевым проводами включается обмотка напряжения измерительного устройства. Этот вид подключения даёт возможность узнать количество ватт на одной фазе. А поскольку нагрузка в системе распределяется равномерно, то результирующую мощность трёхфазной сети находят умножением полученных показаний на количество фаз, то есть на 3.

Неравномерное распределение потребителей

Цепи с несимметричной нагрузкой на фазах требуют использования нескольких ваттметров для определения мощностной характеристики. В системе, состоящей из четырёх проводов, нужно подключить три прибора таким образом, чтобы обмотки напряжений каждого были включены между нулевым проводом и одной из фаз. Общий результат находится путём суммирования отдельных показаний каждого ваттметра.

Трёхпроводная система потребует минимум двух ваттметров для определения мощности всей цепи. С входным токовым зажимом и оставшимся свободным линейным проводом соединяются обмотки напряжений каждого отдельного ваттметра. Полученные показания складывают и получают значение этой величины для трёхфазной цепи. Эта схема подключения измерительных приборов основана на первом законе Кирхгофа.

Подобные нюансы очень важны при проектировании трёхфазной сети для частного сектора. А также их стоит учитывать при правильном обслуживании уже действующих систем электропитания.

Треугольник мощностей и cos φ

Для наглядности изобразим полную мощность и её составляющие в виде векторов (см. рис. 2). Обозначим вектор полной мощности символом S, а векторам активной и реактивной составляющей присвоим символы P и Q, соответственно. Поскольку вектор S является суммой составляющих тока, то, по правилу сложения векторов, образуется треугольник мощностей.


Рис. 2. коэффициент мощности

Применяя теорему Пифагора, вычислим модуль вектора S:

Отсюда можно найти реактивную составляющую:

Выше мы уже упоминали, что реактивная мощность зависит от сдвига фаз, а значит и от угла этого сдвига. Эту зависимость удобно выражать через cos φ. По определению cos φ = P/S. Данную величину называют коэффициентом мощности и обозначают Pf. Таким образом, Pf = cos φ = P/S.

Коэффициент мощности, то есть cos φ, является очень важной характеристикой, позволяющей оценить эффективность работы тока. Данная величина находится в промежутке от 0 до 1.

Если угол сдвига фаз принимает нулевое значение, то cos φ = 1, а это значит что P = S, то есть полная мощность состоит только из активной мощности, а реактивность отсутствует. При сдвиге фаз на угол π/2 , cos φ = 0, откуда следует, что в цепи господствуют только реактивные токи (на практике такая ситуация не возникает).

Из этого можно сделать вывод: чем ближе к 1 коэффициент Pf , тем эффективнее используется ток. Например, для синхронных генераторов приемлемым считается коэффициент от 0,75 до 0,85.

Как правильно рассчитать

Активная мощность, как сделать правильный расчет?

Мощность электрического тока влияет на то, как быстро прибор сможет выполнить работу. К примеру, дорогой обогреватель, имеющий в 2 раза большую мощность, обогреет помещение быстрее, чем два дешевых, с меньшей в 2 раза мощностью. Получается, что выгоднее купить агрегат, имеющий большую мощность, чтобы быстрее обогреть холодное помещение. Но, в то же время, такой агрегат будет тратить существенно больше энергии, чем его более дешевый аналог.

Потребляемая мощность всех приборов в доме учитывается и при подборе проводки для прокладки в доме. Если не учитывать этого и в последующем включить в сеть слишком много приборов, то это вызовет перегрузку сети. Проводка не сможет выдержать мощность электрического тока всех приборов, что приведет к плавлению изоляции, замыканию и самовоспламенению проводки. В результате может начаться пожар, который может привести к непоправимым последствиям.

Вам это будет интересно Миллиамперы в амперы

Однофазный синусоидальный ток в электрических цепях вычисляется по формуле Р = U x I x cos φ, где υ и Ι. Их обозначение шифруется следующим образом: среднеквадратичное значение напряжение и тока, а φ — фазный угол фаз между ними.

Для цепей несинусоидального тока электрическая ёмкость равна корню квадратному из суммы квадратов активной и реактивной производительности. Активная производительность характеризуется скоростью, которая имеет необратимый процесс преобразования электрической энергии в другие виды энергии. Данная ёмкость может вычисляться через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле P = I(2) x r = U(2) x g.


Реактивная мощность (Reactive Power)

Следует заметить, что:

  • резистор потребляет активную мощность и отдаёт её в форме тепла и света.
  • индуктивность потребляет реактивную мощность и отдаёт её в форме магнитного поля.
  • конденсатор потребляет реактивную мощность и отдаёт её в форме электрического поля.

В любой электрической цепи как синусоидального, так и несинусоидального тока активная способность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая емкость определяется как сумма пропускной способности отдельных фаз. С полной производительностью S, активная связана соотношением P = S x cos φ.

В теории длинных линий (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая мощность, которая определяется как разность между падающей мощностью и отраженной производительностью.

Как найти реактивную полную мощность через активную? Данная производительность, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U и тока I, умноженному на синус угла сдвига фаз φ между ними: Q = U x I x sin φ (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным).


Обозначение реактивной величины

Способы компенсации

Мы уже выяснили, как влияют реактивные токи на работу устройств и оборудования с индуктивными или ёмкостными нагрузками. Для уменьшения потерь в электрических сетях с синусоидальным током их оборудуют дополнительными устройствами компенсации.

Принцип действия установок компенсации основан на свойствах индуктивностей и ёмкостей по сдвигу фаз в противоположные стороны. Например, если обмотка электромотора сдвигает фазу на угол φ, то этот сдвиг можно компенсировать конденсатором соответствующей ёмкости, который сдвигает фазу на величину – φ. Тогда результирующий сдвиг будет равняться нулю.

На практике компенсирующие устройства подключают параллельно нагрузкам. Чаще всего они состоят из блоков конденсаторов большой ёмкости, расположенных в отдельных шкафах. Одна из таких конденсаторных установок изображена на рисунке 3. На картинке видно группы конденсаторов, используемых для компенсации сдвигов напряжений в различных устройствах с индуктивными обмотками.

Устройство компенсации

Рис. 3. Устройство компенсации

Компенсацию реактивной мощности ёмкостными нагрузками хорошо иллюстрируют графики на рисунке 4. Обратите внимание на то, как эффективность компенсации зависит от напряжения сети. Чем выше сетевое напряжение, тем сложнее компенсировать паразитные токи (график 3).

Компенсация реактивной мощности с помощью конденсаторов

Рис. 4. Компенсация реактивной мощности с помощью конденсаторов

Устройства компенсации часто устанавливаются в производственных цехах, где работает много устройств на электроприводах. Потери электричества при этом довольно ощутимы, а качество тока сильно ухудшается. Конденсаторные установки успешно решают подобные проблемы.

Особенности подключения питания к частному дому

Многие считают, что трехфазная сеть в доме повышает потребляемую мощность. На самом деле лимит устанавливается электроснабжающей организацией и определяется факторами:

  • возможностями поставщика;
  • количеством потребителей;
  • состоянием линии и оборудования.

Для предупреждения скачков напряжения и перекоса фаз их следует нагружать равномерно. Расчет трехфазной системы получается примерным, поскольку невозможно точно определить, какие приборы в данный момент будут подключены. Наличие импульсных приборов в настоящее время приводит к повышенному энергопотреблению при их пуске.

Распределительный электрощит при трехфазном подключении берется больших размеров, чем при однофазном питании. Возможны варианты с установкой небольшого вводного щитка, а остальных — из пластика на каждую фазу и на надворные постройки.

Подключение к магистрали реализуется по подземному способу и по воздушной линии. Предпочтение отдают последней благодаря небольшому объему работ, низкой стоимости подключения и удобству ремонта.

Сейчас воздушное подключение удобно делать с помощью самонесущего изолированного провода (СИП). Минимальное сечение алюминиевой жилы составляет 16 мм2, чего с большим запасом хватит для частного дома.

СИП крепится на опорах и стене дома с помощью анкерных кронштейнов с зажимами. Соединение с главной воздушной линией и кабелем ввода в электрощит дома производится ответвительными прокалывающими зажимами. Кабель берется с негорючей изоляцией (ВВГнг) и проводится через металлическую трубу, вставленную в стену.

Советуем изучить — Расчет электрических цепей

Нужны ли устройства компенсации в быту?

На первый взгляд в домашней сети не должно быть больших реактивных токов. В стандартном наборе бытовых потребителей преобладают электрическая техника с резистивными нагрузками:

  • электрочайник (Pf = 1);
  • лампы накаливания (Pf = 1);
  • электроплита (Pf = 1) и другие нагревательные приборы;

Коэффициенты мощности современной бытовой техники, такой как телевизор, компьютер и т.п. близки к 1. Ими можно пренебречь.

Но если речь идёт о холодильнике (Pf = 0,65), стиральной машине и микроволновой печи, то уже стоит задуматься об установке синхронных компенсаторов. Если вы часто пользуетесь электроинструментом, сварочным аппаратом или у вас дома работает электронасос, тогда установка устройства компенсации более чем желательна.

Экономический эффект от установки таких устройств ощутимо скажется на вашем семейном бюджете. Вы сможете экономить около 15% средств ежемесячно. Согласитесь, это не так уж мало, учитывая тарифы не электроэнергию.

Попутно вы решите следующие вопросы:

  • уменьшение нагрузок на индуктивные элементы и на проводку;
  • улучшение качества тока, способствующего стабильной работе электронных устройств;
  • понижение уровня высших гармоник в бытовой сети.

Для того чтобы ток и напряжение работали синфазно, устройства компенсации следует размещать как можно ближе к потребителям тока. Тогда реальная отдача индуктивных электроприёмников будет принимать максимальные значения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *