Почему определение электрической прочности стандартизовано
Перейти к содержимому

Почему определение электрической прочности стандартизовано

Определение электрической прочности диэлектриков

Для вычисления электрической прочности диэлектрика необходимо измерить его Uпр. Для сопоставимости результатов, полученных разными лабораториями, введены стандарты (ГОСТы) на условия испытаний (форму, размеры и материал электродов; вид и длительность приложения напряжения; параметры окружающей среды и пр.)

Длительность приложения напряжения.Установлены методы определения Uпр при переменном (промышленной и повышенной частоты), импульсном и постоянном токе. По длительности приложения напряжения различают импульсные, кратковременные и длительные испытания на пробой.

Импульсное воздействие применяют для оценки стойкости изоляции к перенапряжениям, а также с целью изучения физического механизма быстро протекающих процессов электрического пробоя.

При кратковременных испытаниях переменное или постоянное напряжение повышают автоматически (либо плавно – с фиксированной скоростью, либо ступенями — за время от нескольких секунд до минут). Момент пробоя диэлектрика фиксируют по резкому увеличению тока или спаду напряжения, определяя величину кратковременного пробивного напряжения Uпр кр.

В случае длительных испытаний, применяемых для исследования надежности изоляции и изучения процессов электрического старения, оценивают время жизни от момента подачи напряжения (Uисп < Uпр) до пробоя диэлектрика.

Форма электродов.Пробивное напряжение пропорционально напряженности электрического поля только при условии его однородности, степень которой определяет форма электродов. Электрическое поле является наиболее однородным в случае применения так называемых электродов Роговского, поверхности которых описываются уравнениями Роговского и соответствуют форме эквипотенциальных линий поля. На практике, особенно для сравнительных испытаний, используют электроды более простой формы: диски с закругленными краями или шары. Если размер сфер много больше длины разрядного промежутка (толщины диэлектрика), то получают относительно однородное (или слабо неоднородное) поле.

В неоднородном поле (например: электроды типа шар-игла или игла-игла) Uпр всегда меньше, чем в однородном поле, при прочих равных условиях, так как в этом случае на элемент диэлектрика приходится большая электрическая нагрузка. Именно поэтому технологические нарушения типа складок при намотке ленточной изоляции, пылинок и пр. повышают вероятность пробоя. При вычислении электрической прочности в условиях неоднородного поля вводят поправочный коэффициент а>1. Тогда: Епр = (а×Uпр) / d. (22)

Величина коэффициента азависит от формы, размера электродов и расстояния между ними. Отмечено и влияние материала, из которого сделаны электроды. Поэтому значение поправочного коэффициента должно указываться в стандарте на материал.

Обработка результатов измерения. Величина пробивного напряжения диэлектрика определяется электрической прочностью наиболее слабого участка. Величина Епрэлектроизоляционного материала существенно зависит от местных изменений толщины диэлектрика, наличия дефектных мест (неоднородностей, полупроводящих включений, пустот и пр.), а также от состояния поверхности электродов. Поскольку перечисленные факторы случайны, то и электрическая прочность диэлектрика также является случайной величиной, при определении которой наблюдается значительный разброс значений. Поэтому испытания на пробой производят путем многократных измерений на больших партиях образцов (выборках) с последующей статистической обработкой экспериментальных результатов.

Установлено, что распределение кратковременной электрической прочности диэлектрических материалов подчиняется нормальному закону, реже – экстремальному закону Вейбулла. В соответствии с нормальным законом распределения по результатам измерения Uпр выборки из n образцов рассчитывают значения их Епр, а затем – среднюю величину электрической прочности диэлектрика [ кВ/мм ]: (23)

Разброс значений электрической прочности характеризуют среднеквадратическим отклонением:

(24)

Если испытания проводились на одних и тех же электродах при постоянном расстоянии между ними (или при одной и той же толщине диэлектрика), то о степени однородности материала можно судить по величине коэффициента вариации Квар (тем точнее, чем больше выборка):

(25)

Согласно стандарту, при Квар< 15% материал считается относительно (более) однородным, а результаты измерения достоверными. При Квар > 15% качество диэлектрика неудовлетворительно (материал неоднороден) и для получения достоверных результатов необходимо увеличивать выборку.

Однако в любом случае ограниченное число измерений приводит к тому, что найденные Епр и S будут случайными величинами. Известно, что отклонение средних значений от истинногоили генерального среднего подчиняется распределению Стьюдента (t-распределение). Тогда отклонение от средней величины электрической прочности при данной доверительной вероятности p определяется, как: (26)

где t – величина критерия Стьюдента для n измерений.

Для вероятности p = 95% имеем:

n
t 2,78 2,57 2,45 2,37 2,31 2,26

Окончательное значение электрической прочности (определенное, например, по 5 пробоям) с вероятностью 95% будет находиться в пределах: (27)

Механизм пробоя диэлектриков.

Кратковременная электрическая прочность электроизоляционных материалов определяется прежде всего их физическим состоянием и структурой.

Пробой газов. Пробой газообразных диэлектриков носит чисто электрический характер и происходит вследствие ударной и фотонной ионизации, заключающейся в лавинообразном расщеплении нейтральных атомов (молекул) газа на электроны и ионы.

Под воздействием внешних факторов (например: ультрафиолетовое и радиационное излучения) развивается начальная ионизация атомов (молекул) газа с образованием незначительного количества свободных электронов и ионов, которые находятся в беспорядочном тепловом движении. При наложении электрического поля свободные заряженные частицы (главным образом, электроны) получают добавочную скорость и начинают движение в направлении поля, приобретая дополнительную энергию:

(28)

где q заряд частицы; Uλ разность потенциалов на длине свободного пробега (λ). Если электрическое поле однородно, то: (29)

где Е– напряженность поля в газе, λ–длина свободного пробега электронов (среднее расстояние между двумя соударениями), зависящая от давления газа.

Отсюда: (30)

Если приобретенная энергия W достаточно велика, то в случае соударения заряженной частицы с нейтральным атомом (молекулой) газа происходит либо возбуждение – переход электрона на более удаленную орбиту, либо ионизация –расщепление атома (молекулы) на электроны и положительные ионы. Так, например, при разряде в воздухе образуются следующие положительные ионы: О + , О2 + , N + , N2 + , NO + .В некоторых случаях (например, в кислороде, углекислом газе, парах воды и др.) электрон, встречаясь c нейтральным атомом (молекулой), соединяется с ним, образуя отрицательный ион. Следует отметить, что в инертных газах (аргоне, неоне, гелии, криптоне, ксеноне, а также в азоте) подобного явления не наблюдается.

Условия возникновения ударной ионизации: (31)

где: Wион – энергия ионизации, характеризуемая потенциалом Uион = Wион / q.

Для различных газов Wион = (4 – 25) эВ при выбивании одного электрона. Установлено, что электрон ионизирует молекулы газа, если скорость его движения превышает 1000 км/с.

Одновременно развивается и фотонная ионизация за счет поглощения нейтральными атомами (молекулами) энергии фотонов, испускаемых возбужденными, но не ионизованными, частицами. Появившиеся вследствие указанных процессов свободные электроны в свою очередь также ионизируют или возбуждают нейтральные атомы (молекулы), а положительные ионы выбивают электроны при ударах о катод. Число свободных носителей в газе лавинообразно нарастает, что приводит к образованию проводящих каналов – стримеров: отрицательного (состоящего из двигающихся от катода к аноду электронов и отрицательных ионов) и положительного (представляющего собой направленный от анода к катоду поток положительно заряженных ионов). Проводящие каналы в газе развиваются практически мгновенно. Происходит электрический пробой.

Электрическая прочность газов в нормальных условиях невелика и в значительной мере зависит от их химического состава, условий эксперимента и внешних факторов: формы распределения электрического поля, расстояния между электродами, давления, влажности, температуры и частоты переменного поля. Епр газообразных диэлектриков резко снижается при увеличении степени неоднородности поля: наблюдается развитие частичных разрядов в виде короны с последующим переходом в искровой разряд и дугу при увеличении напряжения. Так, для воздуха (который служит внешней изоляцией во многих видах электротехнических конструкций: трансформаторах, конденсаторах, линиях электропередачи) при нормальном давлении в однородном электрическом поле при газовом промежутке порядка 1–10 мм Епр = 3 кВ/мм,в неоднородном – 0,5 кВ/мм. Газы, содержащие галогены (J,Br,Cl,F), как, например, фреон CF2Cl2 или элегаз SF6, имеют электрическую прочность, которая в 2,5 – 3,0 раза выше, чем у воздуха или азота.

На электрическую прочность газа влияет длина разрядного промежутка. При малых расстояниях между электродами наблюдается значительное увеличениеэлектрической прочности, связанное с отсутствием условий для развития лавин вследствие малой длины пробега свободных носителей заряда. Так, если для воздуха в нормальных условиях при разрядном промежутке 1–10 мм Епр = 3 кВ/мм, то при расстоянии между электродами в 0,005 мм Епр возрастает до 70 кВ/мм (при 50 Гц).

Особое практическое значение имеет зависимость электрической прочности газов от давления (рис 19).

Рис.19. Зависимость Епр газа от давления

Как отмечалось, энергия, накопленная электроном при движении в электрическом поле и необходимая для развития ударной и фотонной ионизации, зависит от средней длины свободного пробега носителя λи определяется плотностью газа. Прибольшом давлении и, соответственно, повышенной плотности газа расстояние между отдельными атомами (молекулами) сокращается, т.е. уменьшается λ.

Поэтому энергию, необходимую для ионизации, электрон приобретает при более высокой напряженности поля. При уменьшении давления вначале наблюдается снижение электрической прочности газа, так как облегчаются условия лавинообразования (растетλ). Когда же разряжение достигнет высокой степени (глубокий вакуум), электрическая прочность начинает снова возрастать, что объясняется уменьшением числа атомов (молекул) газа в единице объема и, следовательно, снижением вероятности столкновения электронов с нейтральными частицами. В этих условиях пробой может произойти вследствие вырывания электронов из поверхности электрода силой электрического поля (холодная эмиссия). Электрическая прочность вакуума имеет достаточно высокие значения.

Пробой жидких диэлектриков.Процессы, происходящие в жидкостях при пробое, сложны и зависят, главным образом, от их химического состава и степени чистоты. К максимально чистым жидкостям применяют теорию чисто электрического пробоя. В этом случае при высоких значениях электрического поля может происходить вырывание электронов из металлических электродов с последующим развитием ударной ионизации. В нормальных условиях электрическая прочность чистых жидких диэлектриков существенно превосходит электрическую прочность газов вследствие более высокой плотности и, соответственно, значительно меньшей длины свободного пробега электронов. Для таких жидкостей в лабораторных условиях получены значения Епр = (50-70) кВ/мм, а при малых зазорах – (150-250) кВ/мм. Технически чистые жидкости имеют Епр = (20-25) кВ/мм. В них постоянно присутствуют растворенные и нерастворенные примеси, которые подразделяют на естественные (вода, газы, твердые частицы и пр.) и искусственные, т.е. преднамеренно внесенные в жидкий диэлектрик при его производстве (например, антиокислители, сорбенты и т.д.).

Пробой жидкостей, содержащих газовые включения, объясняют местным перегревом (за счет энергии, выделяющейся в относительно легко ионизирующихся пузырьках газа), который, в конечном счете, приводит к вскипанию жидкого диэлектрика и образованию газового канала между электродами.

Изоляционные жидкости часто содержат воду, которая, не смешиваясь с жидким диэлектриком, присутствует в нем в виде мелких капель. Под воздействием электрического поля капли воды (сильно полярного вещества) поляризуются, приобретая форму эллипсоидов, и ориентируются по полю, образуют цепочку с повышенной проводимостью, по которой и происходит пробой. Содержание даже 0,01% воды в электроизоляционном масле снижает его Епр в 5–6 раз. Поэтому при использовании жидких диэлектриков их подвергают тщательной термо-вакуумной сушке и дегазации.

К жидкостям, имеющим высокую электропроводность, применима теория теплового пробоя. После приложения электрического поля такой жидкий диэлектрик разогревается за счет диэлектрических потерь. С ростом температуры его удельное объемное сопротивление снижается, что приводит к дальнейшему возрастанию сквозного тока и, соответственно, стимулирует непрерывный рост температуры вплоть до вскипания изоляционной жидкости и последующего пробоя.

Электрическая прочность технических жидких диэлектриков имеет тенденцию к снижению по мере увеличения их полярности и соответствующего возрастания способности к диссоциации. Электрическая прочность чистых масел снижается с ростом температуры из-за увеличения длины свободного пробега электронов вследствие уменьшения плотности жидкости. Однако в жидких диэлектриках, содержащих воду, с ростом температуры происходит сушка, поэтому электрическая прочность увеличивается, образуя характерный максимум примерно при 80 о С.

Необходимо учитывать, что по мере увеличения числа пробоев в одном и том же объеме жидкости наблюдается снижение Епр вследствие образования продуктов ее разрушения, в частности, сажи в случае углеродсодержащих жидкостей. Поэтому для обеспечения удовлетворительной воспроизводимости результатов необходимо после каждого пробоя менять пробы испытуемого жидкого диэлектрика, а также ограничивать величину тока и время его протекания.

Пробой твердых диэлектриков. Различают три основных формы пробоя твердых диэлектриков: электрический, электротепловой (тепловой) и электрохимический.

Электрический пробой чаще всего имеет место при кратковременном воздействии напряжения (в частности, импульсного характера), а механизм его развития определяется степенью однородности диэлектрика

Физическая сущность электрического пробоя высокооднородных, не содержащих газовые включения твердых диэлектриков, к которым относятся монокристаллы щелочногалоидных соединений, вакуумплотная керамика, кварцевое стекло, органические пленки из полистирола и фторопласта-4 и др., – практически мгновенно развивающаяся ударная ионизация с непосредственным разрушением структуры изоляционного материала. Для этого механизма пробоя характерна заметная разница значений пробивного напряжения в однородном и неоднородном электрических полях. Электрическая прочность высокооднородных изоляционных материалов наиболее высока (достигает нескольких сотен кВ/мм) и слабо зависит от температуры и частоты приложенного поля.

Электрический пробой неоднородных (технических) твердых диэлектриков с открытой пористостью (пористая керамика, непропитанная бумага, мрамор и пр.) также отличается быстротечностью и начинается с пробоя воздушных включений. Пробивные напряжения неоднородных материалов, как правило, невысоки и мало отличаются друг от друга в однородном и неоднородном полях. Электрическая прочность диэлектриков с открытой пористостью сравнима с Епр воздуха и составляет (3–5) кВ/мм. Электрическая прочность твердых диэлектриков сзакрытой пористостью на порядок выше и составляет (10–30) кВ/мм.

Уплотнение бумаги способствует некоторому увеличению ее пробивных характеристик. Однако в целлюлозных материалах всегда присутствуют сквозные воздушные каналы: механическая нагрузка, необходимая для преобразования открытой пористости в закрытую, приводит к морфологическим нарушениям в диэлектрике в процессе его производства. Поэтому для повышения электрической прочности бумажной изоляции применяется ее термо-вакуумная сушка и пропитка, т.е. замена воздуха электрически более прочными диэлектрическими жидкостями. При этом Епр пропитанной бумаги более высока, чем Епр непосредственно жидкого диэлектрика, так как волокнистая структура целлюлозной основы осложняет формирование канала пробоя.

В большинстве случаев при увеличении толщины твердого диэлектрического материала его электрическая прочность снижается вследствие возрастания дефектности. Однако и при переходе к особо тонким слоям (лаковые пленки, напыленные диэлектрики и пр.) Епр падает из-за неизбежного влияния неоднородностей структуры.

Электротепловой (тепловой) пробой развивается в том случае, когда количество тепла, выделяющееся в диэлектрике в единицу времени за счет диэлектрических потерь, превышает количество тепла, которое может отводиться в данных условиях в окружающую среду. При этом нарушается тепловое равновесие (тепловой баланс) и, как следствие, инициируется термостарение изоляционного материала, приводящее к дальнейшему снижению его диэлектрических свойств. Процесс приобретает лавинообразный характер, а в диэлектрике происходят необратимые морфологические изменения: расплавление, растрескивание, обугливание и т.д. Если за время приложения напряжения твердый диэлектрик с тепловым механизмом пробоя не успевает прогреться, то пробоя не будет, т.е. тепловой пробой развивается длительно и может быть вызван местным перегревом материала вследствие локального увеличения диэлектрических потерь или ухудшения условий теплоотвода. Теплоотвод за счет теплопроводности окружающей среды, как правило, имеет место для кабелей, вмонтированных в стену вводов. Условия работы подвесных и опорных изоляторов, керамических конденсаторов, каркасов катушек индуктивности таковы, что теплоотвод обуславливается конвекцией воздуха. Поэтому при тепловом механизме пробоя электрическая прочность твердых диэлектриков существенно зависит от условий их эксплуатации и снижается с ростом температуры окружающей среды и частоты поля (способствующих увеличению диэлектрических потерь изоляционного материала).

В случае длительных испытаний пробой в твердых диэлектриках обеспечивается не только термостарением, но и параллельно развивающимися процессами электрического старения. При этом в органических диэлектриках разрушение материала происходит под действием частичных разрядов в газовых порах и прослойках как в толще изоляции, так и на границе с электродом. В неорганических диэлектриках развиваются сложные электронно-ионные процессы, приводящие к появлению дополнительных дефектов и росту тока проводимости, а, следовательно, и к увеличению диэлектрических потерь материала.

Электрохимический пробой происходит в результате сложных физико- химических процессов (электрохимическое старение), обусловленных длительным воздействием электрического поля и приводящих к необратимому снижению сопротивления изоляции. При переменном напряжении низких частот в диэлектрике происходит ионизация остаточных воздушных включений вследствие развития частичных разрядов. Ионизация связана с выделением озона и окислов азота, вызывающих постепенное химическое разрушение органического диэлектрика. При постоянном напряжении электрохимическое старение обусловлено электролитическими процессами, протекающими особо интенсивно при повышенных температуре и влажности. Данный вид пробоя свойственен не только органическим материалам (пропитанная бумага, резина и пр.), но и некоторым неорганическим диэлектрикам, например, керамике, содержащей диоксид титана.

Каждый из указанных видов пробоя может иметь место в одном и том же диэлектрике в зависимости от его макроструктуры, геометрии, а также условий эксплуатации. Наиболее сложными процессами обусловлен пробой композиционных и неоднородных материалов: пористой керамики, бумажно-масляной, стекловолокнистой, слюдосодержащей изоляции и др.

Рис.20. Обобщенная зависимость Uпр

В общем случае формы пробоя твердых электроизоляционных материалов можно проиллюстрировать обобщенной зависимостью Uпр от времени приложения напряжения (t) (рис. 20), имеющей три участка, соответствующих электрическому (I), электротепловому (II) и электрохимическому старению (III).

Электрический пробой и электрическая прочность: виды и причины явления

Резкое возрастание величины тока в вакууме, а также в газообразном, жидком или твердом диэлектрике, либо в полупроводнике, связанное с приложением к объему образца напряжения, величина которого превышает некое критическое значение, именуют электрическим пробоем. Электрический пробой как явление может длиться от нескольких пикосекунд до довольно продолжительного времени, как например в случае установления устойчивого дугового разряда в газе.

Пробой воздуха

С явлением электрического пробоя тесно связана такая характеристика как электрическая (или диэлектрическая) прочность. Для твердых и жидких диэлектриков, а также для газов, электрическая прочность в заранее определенных условиях является величиной постоянной и выражается в В/см (вольт на сантиметр).

Она обозначает величину минимальной (критической) напряженности электрического поля в веществе, при которой наступает электрический пробой. Для твердых диэлектриков, таких как кварц или слюда, электрическая прочность лежит в диапазоне от 10 6 до 10 7 В/см, для жидких диэлектриков (таких как трансформаторное масло) — достигает 10 6 В/см.

Если напряженность электрического поля в диэлектрике вдруг начинает превышать его электрическую прочность, то после пробоя диэлектрик начинает проводить электрический ток. Это связано с явлениями ударной ионизации и туннелирования, причем роли каждого из этих двух явлений для разных конкретных диэлектриков различны. В условиях пробоя электропроводность диэлектрика возрастает скачком, а сам диэлектрик зачастую испытывает при этом перегрев и разрушается.

У газов электрическая прочность связана с давлением и толщиной слоя, — чем выше давление — тем ниже электрическая прочность: при нормальных условиях в воздухе, при толщине слоя в 1 см, электрическая прочность находится в районе 30 кВ/см, однако с понижением давления она может доходить до 10 7 В/см.

Электрический пробой и прочность воздуха

Электрический пробой вакуума

В вакууме, в промежутке между двумя проводящими электродами, к которым приложено критическое электрическое напряжение, появляются свободные электроны. Как следствие — проводимость в промежутке увеличивается и возникает электрический ток.

Суть происходящего заключается в том, что при некотором минимальной напряжении, на микроостриях катода (отрицательного электрода) сначала начинается автоэлектронная эмиссия, формирующая слабые предпробойные токи.

Когда же напряжение возрастает, между электродами формируется искровой разряд, который в принципе способен превратиться в дугу в парах металла, из которого изготовлены электроды. Есть две теории, описывающие данный процесс.

Электрический пробой вакуума

Согласно одной — электронно-лучевой теории — электроны, образовавшиеся в результате автоэлектронной эмиссии на катоде, будучи ускорены электрическим полем в промежутке, врезаются в анод, вызывая его локальный разогрев. Выделяются газы и пары металлов, атомы которых тут же ионизируются ускоренными электронами, в результате формируется электронная лавина.

Положительно заряженные ионы, получившиеся в результате такой ионизации, направляются к катоду, формируя возле него пространственный заряд, локально увеличивающий электрическую напряженность возле катода, что способствует усилению автоэлектронной эмиссии.

Вместе с этим начинается ионно-электронная эмиссия и катодное распыление. Концентрация паров металлов и газов в промежутке возрастает, вследствие чего развиваются искровой и дуговой разряды.

Как возникает электрический пробой

Согласно другой теории, ток автоэлектронной эмиссии разогревает катод, и при плотностях тока около 10 8 А/кв.м, на катоде происходит микровзрыв, приводящий к образованию паров металла, в которых и формируется дуговой разряд.

Электрический пробой газа

Электрический пробой газа

В газах электрический пробой напрямую связан с электрическим током и процессом ионизации. В результате столкновений электронов, ускоренных электрическим полем, с атомами и молекулами газа, начинается лавинообразное размножение заряженных частиц с образованием новых электронов, которые также ускоряются и усиливают ионизацию, формируя самостоятельный разряд.

Если для поддержания разряда в газе требуется дополнительная ионизация, например, внешним ионизирующим излучением, то такой разряд называется несамостоятельным. Обычно для поддержания разряда в газе применяют постоянное или переменное электрическое поле. В процессе разряда в газе, движущиеся ионы увлекают за собой молекулы газа, это называют электрическим ветром.

Молния как электрический пробой газа

Так называемый «пробой на убегающих электронах» впервые в 1992 году рассмотрел российский физик-теоретик Александр Викторович Гуревич. Данный вид пробоя в газе, как полагают, является начальной фазой формирования природной молнии.

Молния как электрический пробой газа

Суть заключается в том, что электроны в воздухе при обычных условиях отличаются небольшой средней длиной свободного пробега — около 1 мкм. Среди электронов в воздухе встречаются быстрые электроны — с энергиями от 0,3 до 1 МэВ, которые движутся со скоростями близкими к скорости света. Такие быстрые электроны отличаются от «обычных» электронов в 100 раз большей средней длиной свободного пробега.

Электрическое поле в атмосфере способно ускорить быстрые электроны до энергий, сильно превышающих энергию обычных, изначально покоившихся электронов. При столкновении ускоренных электронов с молекулами воздуха, высвобождаются «убегающие» релятивистские электроны, формирующие электронные лавины.

Таким образом происходит пробой воздуха при атмосферном давлении, причем напряжение пробоя оказывается сильно меньше, чем при пробое воздуха (тоже при атмосферном давлении) в лабораторных условиях. Здесь критический уровень равен около 2,16 кВ/см, тогда как без «убегающих» электронов потребовалось бы 23 кВ/см.

Источником, отвечающим за образование быстрых электронов в атмосфере, изначально являются космические лучи, ионизирующие молекулы воздуха в верхних слоях атмосферы, высвобождающие таким образом релятивистские электроны, которые и рассматриваются как «быстрые».

Гроза и молния

Тепловой пробой полупроводников и диэлектриков

При чрезмерном разогреве кристаллической решетки полупроводника или диэлектрика может случиться его тепловой пробой. Суть в том, что с ростом температуры вещества, свободные электроны в нем приобретают энергию, близкую к той, которой достаточно для ионизации атомов кристаллической решетки. В связи с этим пробивное (критическое) напряжение данного вещества снижается.

Так, в результате передачи тепла к полупроводнику извне, либо вследствие протекания по нему тока, или из-за протекания переменного тока внутри диэлектрика (тепло диэлектрических потерь), в условиях когда тепло не успевает уходить в окружающую среду, может произойти термическое разрушение образца.

Тепловой пробой полупроводников и диэлектриков

Для полупроводникового p-n-перехода тепловой пробой является необратимым, и, как правило, является следствием превышения обратного напряжения, которое из-за разогрева полупроводника уменьшилось. Именно таким путем часто вызывается выход из строя полупроводниковых приборов.

Лавинный пробой в диэлектриках и полупроводниках

Под действием сравнительно сильного электрического поля внутри диэлектрика или полупроводника, носители заряда в нем способны уже на расстоянии длины свободного пробега разогнаться до такой степени, что приобретают кинетическую энергию достаточную для того чтобы произвести ударную ионизацию атомов или молекул.

Лавинный пробой в диэлектриках и полупроводниках

В итоге, от столкновений с атомами или молекулами таких ускоренных носителей заряда, внутри вещества образуются пары противоположно заряженных частиц, которые также начинают разгонятся электрическим полем и тоже производят ударную ионизацию. При этом число участвующих в ударной ионизации заряженных частиц нарастает лавинообразно.

Туннельный пробой и эффект Зенера

Туннельный эффект, проявляющийся как квантовомеханическое явление просачивания электронов через тонкий потенциальный (энергетический) барьер, способен вызвать явление резкого нарастания тока через обратносмещенный p-n-переход — туннельный пробой.

Туннельный пробой и эффект Зенера

Суть эффекта состоит в том, что когда p-n-переход находится в обратносмещенном состоянии, энергетические зоны — зона проводимости и валентная зона — перекрываются. В данных условиях электроны имеют возможность переходить из валентной зоны p-области — в зону проводимости n-области.

Электрическое поле, приложенное к обедненному слою полупроводника, вызывает в нем туннелирование электронов из валентной зоны — в зону проводимости, что и выражается как резкое нарастание обратного тока через p-n-переход. Если данный ток как-то ограничен, то пробой обратим и p-n-переход не разрушается (а при лавинном пробое — разрушается).

В сильнолегированных p-n-переходах туннельный эффект наблюдается уже при напряжении менее 5 вольт, пробой является обратимым и относится к чистому эффекту Зенера (применяется в стабилитронах — диодах Зенера).

Почему диэлектрики теряют электрическую прочность?

Напряженность электрического поля возрастает с увеличением напряжения между проводниками, это могут быть пластины конденсатора или жилы кабеля (в индивидуальной обмотке), в определенный момент возникает пробой изоляции. Величина, характеризующая напряженность в момент пробоя называется электрическая прочность и определяется по формуле:

здесь: U – напряжение между проводниками, d – толщина диэлектрика.

Электрическая прочность измеряется в кВ/мм (кВ/см). Эта формула справедлива для плоских проводников (в виде лент или пластин) с равномерным слоем изоляции между ними, как, например, в бумажном конденсаторе.


Короткие замыкания в электрических аппаратах и кабелях происходят как раз именно из-за пробоя изоляции, в этот момент возникает электрическая дуга. Поэтому электрическая прочность одна из важнейших характеристик изоляции. Требования к электрической прочности изоляции электрооборудования и электроустановок напряжение 1 – 750 кВ изложены в ГОСТ 55195-2012 и ГОСТ 55192-2012 (методы испытаний электрической прочности на месте установки).

— определяет способность ЭИМ сохранять свои изоляционные свойства в электрическом поле

— для равномерного электрического поля определяется:

электрическая прочность зависит:

— площади электродов ( поры, неровности поверхности)

— времени воздействия напряжения ( старение )

— скорости нарастания напряжения ( tпр = tож + tформ ). Предразрядное, ожидания, формирования – время.

— частоты источника питания

— расстояния между электродами равномерное поле – 30 Кв/см (плоскость-плоскость)

Слабо неравномерное 27,5 Кв/см (шар-шар)

ПЛОЩАДЬ ЭЛЕКТРОДОВ.

Пробой электроизоляционных материалов происходит всœегда в самом слабом месте. Это должна быть воздушное включение, нарушение структуры или уменьшение толщены диэлектрика. При увеличении площади электродов возрастает вероятность нарушения однородности электрического поля из-за шероховатости электродов, и возможного наличия в объёме ЭИМ пустот. По этой причине при увеличении площади поверхности электродов и равных прочих условиях электрическая прочность снижается.

ВРЕМЯ ВОЗДЕЙСТВИЯ НАПРЯЖЕНИЯ.

При приложении к электроизоляционному материалу высокого напряжения в нём выделяется неĸᴏᴛᴏᴩᴏᴇ количество тепла. Его источниками служат ток проводимости, дипольные потери и потери энергии на абсорбцию. При повышении температуры в электроизоляционных материалах могут происходить электролитические процессы, сопровождающиеся образованием дендридов. В электроизоляционных материалах с воздушными включениями под действием высокого напряжения воздух ионизируется. Образующийся при этом атомарный кислород и водород вместе с азотом образуют азотную кислоту, которая разрушает органический изоляционный материал. Электрохимические явления в сочетании с перепадом температур, влажности, динамических и механических нагрузок приводят к постепенному необратимому ухудшению качества ЭИМ, называемому старением изоляции.

ПРОБИВНОЕ НАПРЯЖЕНИЕ СТАРЕЮЩЕЙ ИЗОЛЯЦИИ СНИЖАЕТСЯ.

СКОРОСТЬ НАРАСТАНИЯ НАПРЯЖЕНИЯ.

Пробой газового промежутка мгновенно наступить не может крайне важно время на формирование дугового разряда —
tпр
. Различают две составляющие предразрядного времени: —
tзап.
время запаздывания, связанное с ожиданием первого свободного электрона, способного ионизировать газ в промежутке; —
tформ.
время формирования разряда, ᴛ.ᴇ. время, в течение которого плотность тока в газовом промежутке возрастёт соответствующей искровому или дуговому разряду. Временная характеристика пробоя представлена не рисунке 3:

Сумму времени запаздывания и времени формирования и времени формирования называют предразрядным временем.

В равномерных электрических полях, где самостоятельный разряд возникает одновременно по всœей длинœе искрового промежутка, время формирования очень мало и составляет примерно 10 – 8 с.

При заданной форме электродов (игла – игла) и расстоянии между ними пробивное импульсное напряжение зависит от скорости нарастания напряжения, каждый промежуток характеризуется вольт – секундной характеристикой (ВСХ). Вследствие сильного влияния крутизны фронта и формы изменения импульса напряжения на развитие разряда для испытательных целœей принята стандартная форма испытательного импульса напряжения Рис. 4.:

Рис. 4. Форма испытательного импульса:

Вместо термина ʼʼимпульс напряженияʼʼ часто употребляют термин волна напряжения; Импульс или волна имеет следующие параметры: Uм амплитуду т. е. наибольшее мгновенное значение; t¢ф — длительность (длину) фронта от момента начала импульса до момента достижения им амплитудного значения; t¢в, — длительность (длину) импульса измеряемую от начала импульса до момента после перехода через амплитудное значение, когда мгновенное значение напряжения снизится до половинной величины его амплитуды. Реальное очертание фронта импульса, генерируемого испытательными установками, несколько отличается от теоретического. При расшифровке осциллограмм не всœегда можно четко установить момент начала волны и момент наступления ее ампли­туды, вследствие чего возможна относительно большая погреш­ность в оценке длительности фронта. По этой причине введены условные определœения длительности импульса и его фронта͵ графическое построение которых показано на рис. 4 (точки С, С¢и D);условные длительности импульса tв и его фронта tф меньше физически наблюдаемых. Сегодня стандартизованы рекомендации МЭК и стран Европы: tф=

tв = 50 мкс ±

Осциллограммы процесса пробоя газа при разных амплитудах импульса используют для построения вольт-секундной характери­стики; эта характеристика представляет собой важнейшую зави­симость, используемую при вы­боре уровня изоляции иоценке ее эксплуатационных возмож­ностей.

На рисунке 5 поясняет метод по­строения вольт-секундной ха­рактеристики. По мере увели­чения амплитуды импульса при некотором ее минимальномзна­чении возникают редкие пробои (кривая 1),

вызывающие срезы на хвосте импульса при среднем предразрядном времени t1;повышение амплитуды им­пульса (кривые 2, 3, 4)сопровождается сокращением сред­него предразрядного времени. Мгновенное значение напряжения в момент пробоя смещается к значению амплитуды и, наконец, пе­реходит на фронт импульса. По мере повышения амплитуды им­пульса вероятность пробоя растет, и, начиная от некоторого ее значения, пробой происходит всякий раз при приложении импульса. Зависимость наибольшего до момента среза мгновенного зна­чения импульса от предразрядного времени представляет собой вольт-секундную характеристику.Построение вольт-секундной характеристики по осциллограммам пробоя производится следую­щим образом. На ординате, соответствующей каждому предразрядному времени t1, t2, …,
tk,
откладывается наибольшее мгновен­ное значение напряжения, имевшее место на объекте до момента среза: для t2и t3это напряжение равно амплитудам соответствен­ных импульсов, для t4 равно мгновенному значению при пробое, как наибольшему наблюденному до среза. Плавная кривая, проведенная через точки
а, b, с, d
образует вольт-секундную характеристику изоляции для даннойформы импульса, конфигурации электродов, длины пробивного промежутка между ними.

Метод построения вольт-секундной характеристики.

В силу статистического характера пробоя промежутка вольт-секундная характеристика дает связь между среднимизначениями напряжения и соответствующими им среднимизначениями предразрядного времени. Конкретные значения пробивного напряжения и предразрядиого времени образуют некоторую область воз­можных их сочетаний. Эта область показана на рисунке пункти­ром; практическое значение при координации изоляции имеют как верхняя, так и нижняя огибающиеэтой области.

Вольт-секундная характеристика u(t) = f(t)аналитически мо­жет быть рассчитана по эмпирической формуле:

и

— параметры, определяемые опытным путем; их величина зависит от формы электрического поля между электро­дами.

1. Что такое удельное объёмное сопротивление ?

2. Как определяют электрическую прочность для равномерного электрического поля ?

3. Чем определяется предразрядное время ?

4. Как определяют длительность фронта волны напряжения ?

5. Что такое вольт-секундная характеристика.?

Виды пробоя

У однородных диэлектриков различают несколько видов пробоя — электрический и тепловой. Также существует еще ионизационный пробой, который является следствием ионизации газовых включений в твердом диэлектрике. Электрическая прочность диэлектриков, во многом, зависит от неоднородности поля и возникновения процессов ионизации газа (интенсивности и характера) или иных химических изменений материала. Это приводит к тому, что пробой в одном и том же материале возникает при разном напряжении. Поэтому пробивное напряжение определяется средним значением по результатам многочисленных испытаний. Зависимость электрической прочности газа от плотности (давления) и толщины газового слоя выражается законом Пашена: Uпр= f (pA)

Жидкие синтетические диэлектрики

Эти электроизоляционные материалы превосходят по некоторым характеристикам нефтяные масла. У них существует склонность к электрическому старению, что негативно отражается на свойствах под воздействием электрического поля повышенной напряженности.

Для того чтобы справиться с подобной проблемой, пропитка конденсаторов осуществляется полярным жидким диэлектриком.

Проверка электрической прочности является обязательным мероприятием, позволяющим подобрать наиболее эффективный вид изолятора.

гост электрическая прочность

Газ и изоляция

Казалось бы, как связана ионизация газов и изоляция электрооборудования? Газ и электричество связаны самым тесным образом, ведь он является отличным диэлектриком. И поэтому для изоляции высоковольтного оборудования используется газовая среда.

В качестве диэлектрика используются: воздух, азот и элегаз. Элегаз – это гексафторид серы, наиболее перспективный, в плане электроизоляции материал. Для распределения и приема электроэнергии высокого напряжения, более 100 кВ (отвод электростанций, прием электричества в крупных городах и так далее), используются комплектные распределительные устройства (КРУЭ).

Основной областью применения элегаза как раз и являются КРУЭ. Газ помимо использования в качестве электроизоляции, может возникать в процессе эксплуатации маслонаполненных кабелей (или кабелей с пропитанной бумажной изоляцией). Так как происходят цикличный нагрев и охлаждение кабеля в результате прохождения напряжения разной величины.

К кабелям с пропитанной бумажной изоляцией применим термин «термическая деструкция». В результате пиролиза целлюлозы возникают водород, метан, углекислый и угарный газы. В процессе старения изоляции, возникающие газовые образования (при повышенном напряжении) вызывают ионизационный пробой изоляции. Как раз по причине ионизационных явлений силовые кабели с изоляцией из пропитанной маслом бумаги (с вязкой пропиткой) применяются в силовых линиях напряжением до 35 кВ и все реже применяются в современной энергетике.

Классификация

При различных условиях диэлектрический материал может проявлять различные изоляционные характеристики, что определяет сферы его применения. Например, в зависимости от температуры, меняется электрическая прочность.

В зависимости от строения, выделяют органические и неорганические электроизоляционные материалы.

По мере развития электротехнической промышленности формировалось и производство диэлектрических материалов из минералов. Технология за последнее время усовершенствовалась настолько, что удалось существенно снизить стоимость продукции, в результате минеральные диэлектрики вытеснили химические и натуральные материалы.

электрическая прочность диэлектрика

Смотреть галерею

Причины уменьшения электрической прочности

Наиболее отрицательное влияние на электрическую прочность изоляции оказывает переменное напряжение и температура. При переменном напряжении, то есть напряжении, которое меняется время от времени, например, электростанция выдает в линию 220 кВ, из-за технической неисправности или планового ремонта, величина напряжения уменьшена до 110 кВ, после ремонта стало опять 220 кВ. Это и есть переменное напряжение, то есть изменяющееся за определенный период времени. Ввиду того что в Российской Федерации 50 процентов электроустановок для передачи электроэнергии уже выработали свой ресурс (а он составляет 25-30 лет), то переменное напряжение довольно-таки частое явление. Среднее значение такого напряжение определяется с помощью графика:


Или определяется по формуле: Температура нагрева кабеля, вследствие протекания электрического тока, значительно уменьшает срок службы проводника (происходит, так называемое, старение изоляции). Зависимость напряженности пробоя при различной температуре изображена на графике:

Периодичность проверок

Для диэлектрических калош через каждые 12 месяцев проводят плановые испытания, прикладывая напряжение 3,5 кВ на протяжении 1 мин.

Также читайте: Что такое напряжение шага

Кроме этого могут проводиться внеочередные проверки в следующих случаях:

  • в результате падения;
  • после ремонта;
  • после замены отдельных элементов;
  • при возникновении повреждений.

Испытания вспомогательных защитных средств проводятся по утверждённым инструкциям, основные положения из которых гласят:

  1. Механические испытания следует проводить прежде электрических.
  2. Для испытаний привлекаются исключительно квалифицированные специалисты, прошедшие специальную аттестацию.
  3. Пред проверкой необходимо удостовериться в наличии заводской маркировки и целостности изоляционных поверхностей.

При несоответствии испытуемого образца данным условиям, испытания проводиться не могут вплоть до устранения обнаруженных недостатков.

Электрическая прочность силовых кабелей

Самой требовательной к электрической прочности отраслью производства, наверное, является кабельная продукция. В России основным видом кабелей, используемым в силовой энергетике (рассчитаны на номинальное напряжение до 500 кВ), являются маслонаполненные кабели с бумажной изоляцией.

При этом, чем выше номинальное напряжение, на которое они рассчитаны, тем выше вес кабеля. Масло в качестве пропитки используется дегазированное и маловязкое (МН-3, МН-4 и аналоги). Увеличение давления масла приводит к росту электрической прочности масляно-бумажной изоляции. Кабели с давлением 10-15 атмосфер применяются при высокой напряженности, значение прочности достигает 15 кВ/мм.

В последние годы маслонаполненные кабели вытесняются кабелями из сшитого полиэтилена (СПЭ-кабели). Они легче, проще в эксплуатации, срок службы при этом такой же. К тому же СПЭ не так чувствительны к перепадам температур и не нуждаются в дополнительном оборудовании, вроде масляных компенсирующих баков (для компенсации избытков масла при различном давлении). Кабели из сшитого полиэтилена гораздо проще монтировать, концевые и соединительные муфты проще в обслуживании.

Весь мир развивает именно СПЭ-кабели (XLPE-кабели), это привело к тому, что такие проводники уже заметно лучше по своим параметрам, чем маслонаполненные кабели:


Единственным недостатком СПЭ является интенсивное старение, однако, многочисленные исследования всех мировых производителей замедлило этот процесс. Так называемые, триинги, уже не являются причинами пробоя изоляции. Рост энергопотребления в современном мире стимулирует развитие не только источников электроэнергии, но и кабельной продукции, и распределительных устройств. Исследования на тему электрической прочности изоляции являются основным направлением в силовой энергетике.

Испытания

Испытание диэлектрических галош проводят при напряжении величиной в 3,5 кВ, которое подключают на 1 минуту.

Далее проводят замеры тока утечки, путём пропускания сквозь изделие электрического тока. Делают это следующим образом:

  1. Обувь погружают в ёмкость с водой при температуре от 15 до 35 градусов.
  2. Проверяют, чтобы края объекта находились над поверхностью воды, а внутреннее пространство оставалось сухим. Требуется, чтобы уровень воды оказался ниже края предмета на 2 сантиметра.
  3. Во внутреннюю полость обуви вкладывается электрод, заземлённый при посредстве миллиамперметра.
  4. К испытуемому сосуду подключают ток, на период длиной 2 минуты, при этом напряжение повышают до отметки в 5 кВ.
  5. Когда до завершения испытания остаётся 30 с, подключают миллиамперметр и снимают показания.

Схема для испытания диэлектрических перчаток, для галош аналогичная.


1 – присоединение к источнику напряжения; 2 – ванна с водой; 3 – вода внутри перчатки и ванны; 4 – электроды (стержень) для подсоединения воды к двум полюсам источника напряжения; 5 – расстояние от края перчатки до воды в ванне

Если величина тока утечки выявленная в ходе испытаний соответствует допустимым нормам, а изделие избежало пробоев, то результаты проверки считают удовлетворительными, а защитное средство пригодное к эксплуатации.

Нормативы допускают проводить испытания одновременно для нескольких пар диэлектрических галош при помощи одного сосуда. В случае если один из объектов оказался пробитым, в период тестирования, то его извлекают, не останавливая испытаний. Все галоши прошедшие проверку получают соответствующий штамп с датой проведения испытания.

Также читайте: Какое влияние трансформаторная будка может оказывать на человека

ИЭ / Лабораторные / 3 лаба / №3 Электрическая прочность диэлектриков

Передача электрической энергии на любые расстояния осуществляется по металлическим проводникам, которые обязательно должны отделятся диэлектриком. От качества изоляции во многом зависят не только эффективность работы энергосистемы, но и безопасность человека. Однако со временем технические характеристики диэлектрика утрачиваются, из-за чего во всех устройствах периодически должна проверяться электрическая прочность изоляции.

Электрическое старение может ускоряться из-за воздействия ряда факторов, чтобы разобраться в них мы более детально рассмотрим строение и физические процессы, протекающие в диэлектрических материалах.

Физический смысл

Напряженность электрического поля возрастает с увеличением напряжения между проводниками, это могут быть пластины конденсатора или жилы кабеля (в индивидуальной обмотке), в определенный момент возникает пробой изоляции. Величина, характеризующая напряженность в момент пробоя называется электрическая прочность и определяется по формуле:

здесь: U – напряжение между проводниками, d – толщина диэлектрика.

Электрическая прочность измеряется в кВ/мм (кВ/см). Эта формула справедлива для плоских проводников (в виде лент или пластин) с равномерным слоем изоляции между ними, как, например, в бумажном конденсаторе.


Короткие замыкания в электрических аппаратах и кабелях происходят как раз именно из-за пробоя изоляции, в этот момент возникает электрическая дуга. Поэтому электрическая прочность одна из важнейших характеристик изоляции. Требования к электрической прочности изоляции электрооборудования и электроустановок напряжение 1 – 750 кВ изложены в ГОСТ 55195-2012 и ГОСТ 55192-2012 (методы испытаний электрической прочности на месте установки).

гост электрическая прочность

Виды пробоя

У однородных диэлектриков различают несколько видов пробоя — электрический и тепловой. Также существует еще ионизационный пробой, который является следствием ионизации газовых включений в твердом диэлектрике. Электрическая прочность диэлектриков, во многом, зависит от неоднородности поля и возникновения процессов ионизации газа (интенсивности и характера) или иных химических изменений материала. Это приводит к тому, что пробой в одном и том же материале возникает при разном напряжении. Поэтому пробивное напряжение определяется средним значением по результатам многочисленных испытаний. Зависимость электрической прочности газа от плотности (давления) и толщины газового слоя выражается законом Пашена: Uпр= f (pA)

Определения

Диэлектриками называют вещества, которые плохо либо полностью не проводят электрический ток. Величина плотности в таком веществе носителей заряда (электронов) не превышает 108 штук на кубический сантиметр. Основной характеристикой электроизоляционных материалов является их способность поляризоваться во внешнем поле. К диэлектрикам относятся газообразные вещества, разные смолы, стекло, полимерные материалы. Химически чистым изолятором является вода.

электрическая прочность

Газ и изоляция

Казалось бы, как связана ионизация газов и изоляция электрооборудования? Газ и электричество связаны самым тесным образом, ведь он является отличным диэлектриком. И поэтому для изоляции высоковольтного оборудования используется газовая среда.

В качестве диэлектрика используются: воздух, азот и элегаз. Элегаз – это гексафторид серы, наиболее перспективный, в плане электроизоляции материал. Для распределения и приема электроэнергии высокого напряжения, более 100 кВ (отвод электростанций, прием электричества в крупных городах и так далее), используются комплектные распределительные устройства (КРУЭ).

Основной областью применения элегаза как раз и являются КРУЭ. Газ помимо использования в качестве электроизоляции, может возникать в процессе эксплуатации маслонаполненных кабелей (или кабелей с пропитанной бумажной изоляцией). Так как происходят цикличный нагрев и охлаждение кабеля в результате прохождения напряжения разной величины.

К кабелям с пропитанной бумажной изоляцией применим термин «термическая деструкция». В результате пиролиза целлюлозы возникают водород, метан, углекислый и угарный газы. В процессе старения изоляции, возникающие газовые образования (при повышенном напряжении) вызывают ионизационный пробой изоляции. Как раз по причине ионизационных явлений силовые кабели с изоляцией из пропитанной маслом бумаги (с вязкой пропиткой) применяются в силовых линиях напряжением до 35 кВ и все реже применяются в современной энергетике.

Характеристики диэлектриков

К данной группе относятся пироэлектрики, сегнетоэлектрики, релаксоры, пьезоэлектрики. В современной технике активно используются пассивные и активные свойства таких материалов, поэтому остановимся на них подробнее.

Пассивные свойства изоляторов применяются в тех случаях, когда они используются в обычных конденсаторах.

Электроизоляционными материалами считают диэлектрики, не допускающие потери электрических зарядов. С их помощью можно отделять друг от друга электрические цепи, части приборов от проводящих частей. В таких ситуациях диэлектрическая проницаемость не имеет особой роли.

Активные (управляемые) диэлектрики — это пироэлектрики, сегнетоэлектрики, электролюминофоры, материалы для затворов и излучателей в лазерной технике.

Спрос на диэлектрические материалы ежегодно возрастает. Причиной является увеличение мощности промышленных предприятий и коммерческих учреждений.

Кроме того, повышенный спрос на диэлектрики можно объяснить увеличением числа средств связи и различных электрических приборов.

В технике особое значение играет электрическая прочность изоляторов, связанная с расположением молекул и атомов в кристаллической решетке.

электрическая прочность изоляции

Причины уменьшения электрической прочности

Наиболее отрицательное влияние на электрическую прочность изоляции оказывает переменное напряжение и температура. При переменном напряжении, то есть напряжении, которое меняется время от времени, например, электростанция выдает в линию 220 кВ, из-за технической неисправности или планового ремонта, величина напряжения уменьшена до 110 кВ, после ремонта стало опять 220 кВ. Это и есть переменное напряжение, то есть изменяющееся за определенный период времени. Ввиду того что в Российской Федерации 50 процентов электроустановок для передачи электроэнергии уже выработали свой ресурс (а он составляет 25-30 лет), то переменное напряжение довольно-таки частое явление. Среднее значение такого напряжение определяется с помощью графика:


Или определяется по формуле: Температура нагрева кабеля, вследствие протекания электрического тока, значительно уменьшает срок службы проводника (происходит, так называемое, старение изоляции). Зависимость напряженности пробоя при различной температуре изображена на графике:

Методы контроля

Контроль состояния и электрической прочности позволяет вовремя выявлять дефекты или старение диэлектрика в обмотках силовых трансформаторов, проходных и опорных изоляторах, высоковольтных вводах, силовых кабелях и других видах оборудования. Благодаря этому устройства можно заменить или отремонтировать, просушить изоляционную среду или установить новую обмотку. Современные испытательные установки для проверки электрической прочности могут применять различные методики.

Наиболее популярными являются:

  • Измерение сопротивления изоляции – производится при помощи мегаомметра напряжением в 500, 1000 или 2500В, в зависимости от номинала испытуемого агрегата. Длительность и нормы регламентируются Приложением 3 ПТЭЭП, на внутреннюю изоляцию подается напряжение и происходит измерение сопротивления.
  • Испытание повышенным напряжением – выполняется путем подачи на внешнюю изоляцию, устройство или его часть через испытательный трансформатор кенотронной установки повышенного напряжения. Данная процедура носит временный, а в некоторых случаях и импульсный характер, технология и нормы испытательных напряжений регламентируются ГОСТ 246060.1-81, а также более современным ГОСТ Р55195-2012 для различных видов оборудования, бумажной изоляции и прочих.
  • Измерение угла диэлектрических потерь – в идеальном диэлектрике этот параметр должен равняться 0, но чем меньше электрическая прочность, тем больше потери в изоляции. Возникает разница между активной и реактивной составляющей переменного тока, из-за чего и возрастает tg δ, что показано на рисунке ниже:

Тангенс угла диэлектрических потерь

Рис. 3. Тангенс угла диэлектрических потерь

Электрическая прочность силовых кабелей

Самой требовательной к электрической прочности отраслью производства, наверное, является кабельная продукция. В России основным видом кабелей, используемым в силовой энергетике (рассчитаны на номинальное напряжение до 500 кВ), являются маслонаполненные кабели с бумажной изоляцией.

При этом, чем выше номинальное напряжение, на которое они рассчитаны, тем выше вес кабеля. Масло в качестве пропитки используется дегазированное и маловязкое (МН-3, МН-4 и аналоги). Увеличение давления масла приводит к росту электрической прочности масляно-бумажной изоляции. Кабели с давлением 10-15 атмосфер применяются при высокой напряженности, значение прочности достигает 15 кВ/мм.

В последние годы маслонаполненные кабели вытесняются кабелями из сшитого полиэтилена (СПЭ-кабели). Они легче, проще в эксплуатации, срок службы при этом такой же. К тому же СПЭ не так чувствительны к перепадам температур и не нуждаются в дополнительном оборудовании, вроде масляных компенсирующих баков (для компенсации избытков масла при различном давлении). Кабели из сшитого полиэтилена гораздо проще монтировать, концевые и соединительные муфты проще в обслуживании.

Весь мир развивает именно СПЭ-кабели (XLPE-кабели), это привело к тому, что такие проводники уже заметно лучше по своим параметрам, чем маслонаполненные кабели:


Единственным недостатком СПЭ является интенсивное старение, однако, многочисленные исследования всех мировых производителей замедлило этот процесс. Так называемые, триинги, уже не являются причинами пробоя изоляции. Рост энергопотребления в современном мире стимулирует развитие не только источников электроэнергии, но и кабельной продукции, и распределительных устройств. Исследования на тему электрической прочности изоляции являются основным направлением в силовой энергетике.

Природные изоляторы

Канифоль, являющаяся хрупкой смолой, получаемой из живицы, в своем составе имеет органические кислоты. Она хорошо растворяется в нефтяных маслах, используется в качестве заливочных и пропиточных кабельных компаундов.

Тонкий слой растительного масла, попадая на поверхность материала, образует тонкую пленку, увеличивая изоляционные характеристики детали.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *